Avec cedram.org
Annales Mathématiques
Blaise Pascal
Rechercher un article
Recherche sur le site
Table des matières de ce fascicule | Article précédent | Article suivant
Sander Hille; Katarzyna Horbacz; Tomasz Szarek
Existence of a unique invariant measure for a class of equicontinuous Markov operators with application to a stochastic model for an autoregulated gene
Annales mathématiques Blaise Pascal, 23 no. 2 (2016), p. 171-217, doi: 10.5802/ambp.360
Article PDF
Class. Math.: 92B05, 37A30, 60J20
Mots clés: Regulatory network model, Markov operators, invariant measure

Résumé - Abstract

We extend the so-called lower-bound technique for equicontinuous families of Markov operators by introducing the new concept of uniform equicontinuity on balls. Combined with a semi-concentrating condition, it yields a new abstract mathematical result on existence and uniqueness of invariant measures for Markov operators. It allows us to show the tightness of the set of invariant measures for some classes of Markov operators. This, in turn, gives a useful tool for proving a continuous dependence on given parameters for semi–concentrating Markov semigroups. In the second part we formulate an abstract modelling framework that defines a piecewise deterministic Markov process whose transition operator at the times of intervention yields a semi-concentrating Markov operator that is uniformly equicontinuous on balls. We show that this framework applies to a detailed stochastic model for an autoregulated gene in a bacterium that takes random transcription delay into account.


[1] Adam Arkin, John Ross and Harley H. McAdams. Stochastic kinetic analysis of developmental pathway bifurcations in phage lambda-infected Escherichia coli cells. Genetics, 149:1633-1648, 1998.
[2] Michael F. Barnsley, Stephen G. Demko, John H. Elton and Jeffrey S. Geronimo. Invariant measures arising from iterated function systems with place dependent probabilities. Ann. Inst. Henri Poincaré, Probab. Stat., 24:367-394, 1988. Numdam |  MR 971099 |  Zbl 0653.60057
[3] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 1968  MR 233396 |  Zbl 0944.60003
[4] Jonathan R. Chubb, Tatjana Trcek, Shailesh M. Shenoy and Robert H. Singer. Transcriptional pulsing of a developmental gene. Curr. Biol., 16:1018-1025, 2006. Article
[5] Kai-Nai Chueh, Charles C. Conley and Smoller Joel A.. Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J., 26(2):373-392, 1977. Article |  MR 430536 |  Zbl 0368.35040
[6] Edward Conway, David Hoff and Joel Smoller. Large time behavior of solutions of systems of nonlinear reaction-diffusion equations. SIAM J. Appl. Math., 35(1):1-16, 1978. Article |  MR 486955 |  Zbl 0383.35035
[7] Giuseppe Da Prato and Jerzy Zabczyk. Ergodicity for Infinite Dimensional Systems, volume 229 of London Mathematical Society lecture Note. Cambridge University Press, 1996  Zbl 0849.60052
[8] Hidde De Jong, Johannes Geiselmann, Grégrory Batt, Céline Hernandez and Michel Page. Qualitative simulation of the initiation of sporulation in Bacillus subtilis. Bull. Math. Biol., 66:261-299, 2004. Article |  MR 2254589
[9] James A. Dix and A. S. Verkman. Crowding effects of diffusion in solutions and cells. Annu. Rev. Biophys., 37:247-263, 2008. Article
[10] Christopher M. Dobson. Chemical space and biology. Nature, 432:824-828, 2004. Article
[11] Wolfgang Doeblin. Sur les propriétés asymptotiques de mouvement régis par certains types de chaines simples. Bull. Math. Soc. Roum. Sci., 39(1):57-115, 1937.  JFM 63.1077.03
[12] Richard M. Dudley. Probabilities and Metrics, volume 45 of Lecture Notes Series. Aarhus Universitet, 1976  MR 488202 |  Zbl 0355.60004
[13] Johan Elf, Gene-Wei Li and X. Sunney Xie. Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316:1191-1194, 2007. Article
[14] Michael B. Elowitz, Arnold J. Levine, Eric D. Siggia and Peter S. Swain. Stochastic gene expression in a single cell. Science, 297:1183-1186, 2002. Article
[15] Anne Farewell and Frederick C. Neidhardt. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol., 180(17):4704-4710, 1998.
[16] Alfred L. Goldberg. Protein degradation and protection against misfolded or damaged proteins. Nature, 426:895-899, 2003. Article
[17] Ido Golding, Johan Paulsson, Scott M. Zawilski and Edward C. Cox. Real-time kinetics of gene activity in individual bacteria. Cell, 123:1025-1036, 2005. Article
[18] Brian C. Goodwin. Advances in enzymatic control processes. Adv. Enzyme Regul., 3:425-437, 1965. Article
[19] Rafał Kapica, Tomasz Szarek and Maciej Śleçzka. On a unique ergodicity of some Markov processes. Potential Anal., 36:589-606, 2012. Article |  MR 2904635 |  Zbl 1244.60074
[20] Edward L. King and Cart Altman. A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J. Phys. Chem., 60(10):1375-1378, 1956. Article
[21] Tomasz Komorowski, Szymon Peszat and Tomasz Szarek. On ergodicity of some Markov processes. Ann. Probab., 38(4):1401-1443, 2010. Article |  MR 2663632 |  Zbl 1214.60035
[22] Juhong Kuang, Moxun Tang and Jianshe Yu. The mean and noise of protein numbers in stochastic gene expression. J. Math. Biol., 67(2):261-291, 2013. Article |  MR 3071158
[23] Andrzej Lasota and Michael C. Mackey. Cell division and the stability of cellular population. J. Math. Biol., 38(3):241-261, 1999. Article |  MR 1684877 |  Zbl 0982.92011
[24] Andrzej Lasota and James Yorke. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc., 186:481-488, 1973. Article |  MR 335758 |  Zbl 0298.28015
[25] Andrzej Lasota and James Yorke. Lower bound technique for Markov operators and iterated function systems. Random Comput. Dynam., 2(1):41-77, 1994.  MR 1265226 |  Zbl 0804.47033
[26] Michael C. Mackey, Marta Tyran-Kamińska and Romain Yvinec. Molecular distributions in gene regulatory dynamics. J. Theor. Biol., 247:84-96, 2011. Article |  MR 2974940
[27] Harley H. McAdams and Adam Arkin. Stochastic mechansisms in gene expression. Proc. Natl. Acad. Sci., 94(3):814-819, 1997. Article
[28] Jacek T. Mika and Bert Poolman. Macromolecule diffusion and confinement in prokarytic cells. Curr. Op. Biotech., 22(1):117-126, 2011. Article
[29] A. Ochab-Marcinek and M. Tabaka. Bimodal gene expression in noncooperative regulatory systems. Proc. Natl. Acad. Sci., 107(51):22096-22101, 2010. Article
[30] Amnon Pazy. Semigroups of Linear Operators and Applications to Partial Dfferential Equations, volume 41 of Applied Mathematical Sciences. Springer-Verlag, 1983  MR 710486 |  Zbl 0516.47023
[31] Martin J. Pine. Regulation of intracellular proteolysis in Escherichia coli. J. Bacteriol., 115(1):107-116, 1973.
[32] Jonathan M. Raser and Erin K. O’Shea. Noise in gene expression: origins, consequences, and control. Science, 309:2010-2013, 2005. Article
[33] Shaunak Sen, Jordi Garcia-Ojalvo and Michael B. Elowitz. Dynamical consequences of bandpass feedback loops in a bacterial phosphorelay. PLoS One, 6(9), 2011. Article
[34] Joshua W. Shaevitz, Elio A. Abbondanzieri, Robert Landick and Steven M. Block. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature, 426:685-687, 2003. Article
[35] Örjan Stenflo. A note on a theorem of Karlin. Statist. Probab. Lett., 54(2):183-187, 2001. Article |  MR 1858632 |  Zbl 0993.60073
[36] David M. Suter, Nacho Molina, David Gatfield, Kim Schneider, Ueli Schibler and Felix Naef. Mammalian genes are transcribed with widely different bursting kinetics. Science, 332:472-474, 2011. Article
[37] Peter S. Swain and André Longtin. Noise in genetic and neural networks. Chaos, 16, 2006. Article |  MR 2243818 |  Zbl 1146.37335
[38] Tomasz Szarek. Invariant measures for nonexpansive Markov operators on Polish spaces. Diss. Math., 415, 2003.  MR 1997024 |  Zbl 1051.37005
[39] Tomasz Szarek. Feller processes on nonlocally compact spaces. Ann. Probab., 34(5):1849-1863, 2006. Article |  MR 2271485 |  Zbl 1108.60064
[40] Moxun Tang. The mean frequency of transcriptional bursting and its variation in single cells. J. Math. Biol., 60(1):27-58, 2010. Article |  MR 2540125
[41] Jawahar Tiwari, Alex Fraser and Richard Beckman. Genetical feedback repression: I. Single locus models. J. Theor. Biol., 45(2):311-326, 1974. Article