With cedram.org
Annales Mathématiques
Blaise Pascal
Search for an article
Search within the site
Table of contents for this issue | Previous article | Next article
Muriel Livernet
From left modules to algebras over an operad: application to combinatorial Hopf algebras
Annales mathématiques Blaise Pascal, 17 no. 1 (2010), p. 47-96, doi: 10.5802/ambp.278
Article PDF | Reviews MR 2674654 | Zbl 1206.18010 | 1 citation in Cedram
Class. Math.: 18D50, 16W30, 16A06
Keywords: $\mathbb{S}$-module, operad, twisted bialgebra, free associative algebra, combinatorial Hopf algebra

Résumé - Abstract

The purpose of this paper is two fold: we study the behaviour of the forgetful functor from $\mathbb{S}$-modules to graded vector spaces in the context of algebras over an operad and derive the construction of combinatorial Hopf algebras. As a byproduct we obtain freeness and cofreeness results for those Hopf algebras.

Let $\mathcal{O}$ denote the forgetful functor from $\mathbb{S}$-modules to graded vector spaces. Left modules over an operad $\mathcal{P}$ are treated as $\mathcal{P}$-algebras in the category of $\mathbb{S}$-modules. We generalize the results obtained by Patras and Reutenauer in the associative case to any operad $\mathcal{P}$: the functor $\mathcal{O}$ sends $\mathcal{P}$-algebras to $\mathcal{P}$-algebras. If $\mathcal{P}$ is a Hopf operad the functor $\mathcal{O}$ sends Hopf $\mathcal{P}$-algebras to Hopf $\mathcal{P}$-algebras. If the operad $\mathcal{P}$ is regular one gets two different structures of Hopf $\mathcal{P}$-algebras in the category of graded vector spaces. We develop the notion of unital infinitesimal $\mathcal{P}$-bialgebras and prove freeness and cofreeness results for Hopf algebras built from Hopf operads. Finally, we prove that many combinatorial Hopf algebras arise from our theory, as it is the case for various Hopf algebras defined on the faces of the permutohedra and associahedra.


[1] Marcelo Aguiar and Frank Sottile. Structure of the Malvenuto-Reutenauer Hopf algebra of permutations. Adv. Math., 191(2):225-275, 2005. Article |  MR 2103213 |  Zbl 1056.05139
[2] Marcelo Aguiar and Frank Sottile. Structure of the Loday-Ronco Hopf algebra of trees. J. Algebra, 295(2):473-511, 2006.  MR 2194965 |  Zbl 1099.16015
[3] M. G. Barratt, Twisted Lie algebras, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math. 658, Springer, 1978, p. 9–15  MR 513566 |  Zbl 0393.55021
[4] Nantel Bergeron and Mike Zabrocki. The Hopf algebras of symmetric functions and quasi-symmetric functions in non-commutative variables are free and co-free. J. Algebra Appl., 8(4):581-600, 2009. Article |  MR 2555523 |  Zbl pre05622043
[5] Frédéric Chapoton. Algèbres de Hopf des permutohèdres, associahèdres et hypercubes. Adv. Math., 150(2):264-275, 2000. Article |  MR 1749253 |  Zbl 0958.16038
[6] Frédéric Chapoton. Bigèbres différentielles graduées associées aux permutoèdres, associaèdres et hypercubes. Ann. Inst. Fourier (Grenoble), 50(4):1127-1153, 2000. Cedram |  MR 1799740 |  Zbl 0963.16032
[7] Frédéric Chapoton. Construction de certaines opérades et bigèbres associées aux polytopes de Stasheff et hypercubes. Trans. Amer. Math. Soc., 354(1):63-74 (electronic), 2002. Article |  MR 1859025 |  Zbl 1035.18006
[8] Frédéric Chapoton. Opérades différentielles graduées sur les simplexes et les permutoèdres. Bull. Soc. Math. France, 130(2):233-251, 2002. Numdam |  MR 1924542 |  Zbl 1044.18007
[9] Gérard Duchamp, Florent Hivert and Jean-Yves Thibon. Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras. Internat. J. Algebra Comput., 12(5):671-717, 2002. Article |  MR 1935570 |  Zbl 1027.05107
[10] Loïc Foissy. Bidendriform bialgebras, trees, and free quasi-symmetric functions. J. Pure Appl. Algebra, 209(2):439-459, 2007. Article |  MR 2293319 |  Zbl 1123.16030
[11] Benoit Fresse, Koszul duality of operads and homology of partition posets, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$-theory, Contemp. Math. 346, Amer. Math. Soc., 2004, p. 115–215  MR 2066499 |  Zbl 1077.18007
[12] Muriel Livernet and Frédéric Patras. Lie theory for Hopf operads. J. Algebra, 319:4899-4920, 2008. Article |  MR 2423811 |  Zbl 1149.18005
[13] Jean-Louis Loday, Scindement d’associativité et algèbres de Hopf, Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr. 9, Soc. Math. France, 2004, p. 155–172  MR 2145941
[14] Jean-Louis Loday. On the algebra of quasi-shuffles. Manuscripta Math., 123(1):79-93, 2007. Article |  MR 2300061 |  Zbl 1126.16029
[15] Jean-Louis Loday and María Ronco. Hopf algebra of the planar binary trees. Adv. Math., 139(2):293-309, 1998. Article |  MR 1654173 |  Zbl 0926.16032
[16] Jean-Louis Loday and María Ronco, Trialgebras and families of polytopes, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$-theory, Contemp. Math. 346, Amer. Math. Soc., 2004, p. 369–398  MR 2066507 |  Zbl 1065.18007
[17] Jean-Louis Loday and María Ronco. On the structure of cofree Hopf algebras. J. reine angew. Math., 592:123-155, 2006. Article |  MR 2222732 |  Zbl 1096.16019
[18] Claudia Malvenuto and Christophe Reutenauer. Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra, 177(3):967-982, 1995. Article |  MR 1358493 |  Zbl 0838.05100
[19] Jean-Christophe Novelli and Jean-Yves Thibon. Construction de trigèbres dendriformes. C. R. Math. Acad. Sci. Paris, 342(6):365-369, 2006.  MR 2209212 |  Zbl 1101.17003
[20] Patricia Palacios and María O. Ronco. Weak Bruhat order on the set of faces of the permutohedron and the associahedron. J. Algebra, 299(2):648-678, 2006. Article |  MR 2228332 |  Zbl 1110.16046
[21] Frédéric Patras and Christophe Reutenauer. On descent algebras and twisted bialgebras. Mosc. Math. J., 4(1):199-216, 311, 2004.  MR 2074989 |  Zbl 1103.16026
[22] Frédéric Patras and Manfred Schocker. Trees, set compositions and the twisted descent algebra. J. Algebraic Combin., 28(1):3-23, 2008. Article |  MR 2420777 |  Zbl 1180.05032
[23] Stéphane Poirier and Christophe Reutenauer. Algèbres de Hopf de tableaux. Ann. Sci. Math. Québec, 19(1):79-90, 1995.  MR 1334836 |  Zbl 0835.16035
[24] Christopher R. Stover. The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring. J. Pure Appl. Algebra, 86(3):289-326, 1993. Article |  MR 1218107 |  Zbl 0793.16016
[25] Andy Tonks. Relating the associahedron and the permutohedron. In Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., pages 33-36. Amer. Math. Soc., 1997  MR 1436915 |  Zbl 0873.51016