With cedram.org
Annales Mathématiques
Blaise Pascal
Search for an article
Search within the site
Table of contents for this issue | Previous article | Next article
Anne-Laure Thiel
Categorification of the virtual braid groups
(Catégorification des groupes de tresses virtuelles)
Annales mathématiques Blaise Pascal, 18 no. 2 (2011), p. 231-243, doi: 10.5802/ambp.297
Article PDF | Reviews MR 2896487 | Zbl 1260.20059
Class. Math.: 20F36, 05E10, 05E18, 13D99, 18G35
Keywords: braid group, virtual braid, categorification

Résumé - Abstract

We extend Rouquier’s categorification of the braid groups by complexes of Soergel bimodules to the virtual braid groups.

Bibliography

[1] R. Fenn, R. Rimányi and C. Rourke. The braid-permutation group. Topology, 36(1):123-135, 1997. Article |  MR 1410467 |  Zbl 0861.57010
[2] N. Kamada and S. Kamada. Abstract link diagrams and virtual knots. J. Knot Theory Ramifications, 9(1):93-106, 2000. Article |  MR 1749502 |  Zbl 0997.57018
[3] S. Kamada. Braid presentation of virtual knots and welded knots. Osaka J. Math., 44(2):441-458, 2007. Article |  MR 2351010 |  Zbl 1147.57008
[4] C. Kassel and V. Turaev. Braid groups, volume 247 of Graduate Texts in Mathematics. Springer, 2008  MR 2435235 |  Zbl 1208.20041
[5] L. H. Kauffman. Virtual knot theory. European J. Combin., 20(7):663-690, 1999. Article |  MR 1721925 |  Zbl 0938.57006
[6] M. Khovanov. Triply-graded link homology and Hochschild homology of Soergel bimodules. Internat. J. Math., 18(8):869-885, 2007. Article |  MR 2339573 |  Zbl 1124.57003
[7] G. Kuperberg. What is a virtual link?. Algebr. Geom. Topol., 3:587-591 (electronic), 2003. Article |  MR 1997331 |  Zbl 1031.57010
[8] V. O. Manturov. Knot theory. Chapman & Hall/CRC, Boca Raton, FL, 2004  MR 2068425 |  Zbl 1052.57001
[9] V. Mazorchuk and C. Stroppel. On functors associated to a simple root. J. Algebra, 314(1):97-128, 2007. Article |  MR 2331754 |  Zbl 1152.17002
[10] R. Rouquier, Categorification of ${\mathfrak{sl}}_2$ and braid groups, Trends in representation theory of algebras and related topics, Contemp. Math. 406, Amer. Math. Soc., 2006, p. 137–167  MR 2258045 |  Zbl 1162.20301
[11] W. Soergel. The combinatorics of Harish-Chandra bimodules. J. Reine Angew. Math., 429:49-74, 1992. Article |  MR 1173115 |  Zbl 0745.22014
[12] W. Soergel. Gradings on representation categories. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 800-806. Birkhäuser, 1995  MR 1403980 |  Zbl 0854.17006
[13] V. V. Vershinin. On homology of virtual braids and Burau representation. J. Knot Theory Ramifications, 10(5):795-812, 2001. Article |  MR 1839703 |  Zbl 0997.57020