With cedram.org
Annales Mathématiques
Blaise Pascal
Search for an article
Search within the site
Table of contents for this issue | Next article
Arnaud Durand
Describability via ubiquity and eutaxy in Diophantine approximation
Annales mathématiques Blaise Pascal, 22 no. S2: Numéro spécial Ecole de Printemps d’Analyse (2015), p. 1-149, doi: 10.5802/ambp.349
Article PDF
Class. Math.: 11J82, 11J83, 28A78, 28A80, 60D05, 60G17, 60G51

Résumé - Abstract

We present a comprehensive framework for the study of the size and large intersection properties of limsup sets that arise naturally in Diophantine approximation and multifractal analysis. This setting encompasses the classical ubiquity techniques, as well as the mass and the large intersection transference principles, thereby leading to a thorough description of the properties in terms of Hausdorff measures and large intersection classes associated with general gauge functions. The sets issued from eutaxic sequences of points and optimal regular systems may naturally be described within this framework. The discussed applications include the classical homogeneous and inhomogeneous approximation, the approximation by algebraic numbers, the approximation by fractional parts, the study of uniform and Poisson random coverings, and the multifractal analysis of Lévy processes.

Bibliography

[1] A. Baker and Wolfgang M. Schmidt. Diophantine approximation and Hausdorff dimension. Proc. London Math. Soc. (3), 21:1-11, 1970.  MR 271033 |  Zbl 0206.05801
[2] Julien Barral and Stéphane Seuret. Heterogeneous ubiquitous systems in $\mathbb{R}^d$ and Hausdorff dimension. Bull. Braz. Math. Soc. (N.S.), 38(3):467-515, 2007. Article |  MR 2344210 |  Zbl 1131.28003
[3] Julien Barral and Stéphane Seuret. Ubiquity and large intersections properties under digit frequencies constraints. Math. Proc. Cambridge Philos. Soc., 145(3):527-548, 2008. Article |  MR 2464774 |  Zbl 1231.28008
[4] Julien Barral and Stéphane Seuret. A localized Jarník-Besicovitch theorem. Adv. Math., 226(4):3191-3215, 2011. Article |  MR 2764886 |  Zbl 1223.11090
[5] Victor Beresnevich. On approximation of real numbers by real algebraic numbers. Acta Arith., 90(2):97-112, 1999.  MR 1709049 |  Zbl 0937.11027
[6] Victor Beresnevich. Application of the concept of regular systems of points in metric number theory. Vestsī Nats. Akad. Navuk Belarusī Ser. Fīz.-Mat. Navuk:35-39, 140, 2000.  MR 1773667
[7] Victor Beresnevich, Detta Dickinson and Sanju Velani. Measure theoretic laws for lim sup sets. Mem. Amer. Math. Soc., 179(846), 2006. Article |  MR 2184760 |  Zbl 1129.11031
[8] Victor Beresnevich and Sanju Velani. A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2), 164(3):971-992, 2006. Article |  MR 2259250 |  Zbl 1148.11033
[9] Jean Bertoin. Lévy processes, volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996  MR 1406564 |  Zbl 0861.60003
[10] A. S. Besicovitch. Sets of Fractional Dimensions (IV): On Rational Approximation to Real Numbers. J. London Math. Soc., S1-9(2), 1934. Article |  MR 1574327 |  Zbl 0009.05301
[11] Hermine Biermé and Anne Estrade. Covering the whole space with Poisson random balls. ALEA Lat. Am. J. Probab. Math. Stat., 9:213-229, 2012.  MR 2923191 |  Zbl 1277.60094
[12] Y. Bugeaud and A. Durand. Metric Diophantine approximation on the middle-third Cantor set. To appear in J. Eur. Math. Soc., 2015
[13] Yann Bugeaud. Approximation by algebraic integers and Hausdorff dimension. J. London Math. Soc. (2), 65(3):547-559, 2002. Article |  MR 1895732 |  Zbl 1020.11049
[14] Yann Bugeaud. Approximation par des nombres algébriques de degré borné et dimension de Hausdorff. J. Number Theory, 96(1):174-200, 2002.  MR 1931199 |  Zbl 1038.11049
[15] Yann Bugeaud. A note on inhomogeneous Diophantine approximation. Glasg. Math. J., 45(1):105-110, 2003. Article |  MR 1972699 |  Zbl 1039.11048
[16] Yann Bugeaud. Approximation by algebraic numbers, volume 160 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2004 Article |  MR 2136100 |  Zbl 1055.11002
[17] Yann Bugeaud. An inhomogeneous Jarník theorem. J. Anal. Math., 92:327-349, 2004. Article |  MR 2072751 |  Zbl 1148.11035
[18] Yann Bugeaud. Intersective sets and Diophantine approximation. Michigan Math. J., 52(3):667-682, 2004. Article |  MR 2097404 |  Zbl 1196.11103
[19] J. W. S. Cassels. An introduction to Diophantine approximation. Cambridge University Press, New York, 1957  MR 87708 |  Zbl 0077.04801
[20] Michael Drmota and Robert F. Tichy. Sequences, discrepancies and applications, volume 1651 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997  MR 1470456 |  Zbl 0877.11043
[21] Arnaud Durand, Propriétés d’ubiquité en analyse multifractale et séries aléatoires d’ondelettes à coefficients corrélés, Ph. D. Thesis, Université Paris 12 (France), 2007
[22] Arnaud Durand. Sets with large intersection and ubiquity. Math. Proc. Cambridge Philos. Soc., 144(1):119-144, 2008. Article |  MR 2388238 |  Zbl 1239.11076
[23] Arnaud Durand. Ubiquitous systems and metric number theory. Adv. Math., 218(2):368-394, 2008. Article |  MR 2407939 |  Zbl 1138.11029
[24] Arnaud Durand. Large intersection properties in Diophantine approximation and dynamical systems. J. Lond. Math. Soc. (2), 79(2):377-398, 2009. Article |  MR 2496520 |  Zbl 1169.28007
[25] Arnaud Durand. Singularity sets of Lévy processes. Probab. Theory Related Fields, 143(3-4):517-544, 2009. Article |  MR 2475671 |  Zbl 1163.60004
[26] Arnaud Durand, On randomly placed arcs on the circle, Recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2010, p. 343–351 Article |  MR 2743004 |  Zbl 1218.60007
[27] Arnaud Durand and Stéphane Jaffard. Multifractal analysis of Lévy fields. Probab. Theory Related Fields, 153(1-2):45-96, 2012. Article |  MR 2925570 |  Zbl 1247.60066
[28] Aryeh Dvoretzky. On covering a circle by randomly placed arcs. Proc. Nat. Acad. Sci. U.S.A., 42:199-203, 1956.  MR 79365 |  Zbl 0074.12301
[29] P. Erdős. Representations of real numbers as sums and products of Liouville numbers. Michigan Math. J., 9:59-60, 1962.  MR 133300 |  Zbl 0114.26306
[30] K. J. Falconer. Classes of sets with large intersection. Mathematika, 32(2):191-205 (1986), 1985. Article |  MR 834489 |  Zbl 0606.28003
[31] K. J. Falconer. Sets with large intersection properties. J. London Math. Soc. (2), 49(2):267-280, 1994. Article |  MR 1260112 |  Zbl 0798.28004
[32] Kenneth Falconer. Fractal geometry. John Wiley & Sons, Inc., Hoboken, NJ, 2003 Article |  MR 2118797 |  Zbl 1285.28011
[33] Ai-Hua Fan and Jun Wu. On the covering by small random intervals. Ann. Inst. H. Poincaré Probab. Statist., 40(1):125-131, 2004. Numdam |  MR 2037476 |  Zbl 1037.60010
[34] Stéphane Jaffard. The multifractal nature of Lévy processes. Probab. Theory Related Fields, 114(2):207-227, 1999. Article |  MR 1701520 |  Zbl 0947.60039
[35] Stéphane Jaffard. On lacunary wavelet series. Ann. Appl. Probab., 10(1):313-329, 2000. Article |  MR 1765214 |  Zbl 1063.60053
[36] Stéphane Jaffard, Wavelet techniques in multifractal analysis, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math. 72, Amer. Math. Soc., Providence, RI, 2004, p. 91–151  MR 2112122 |  Zbl 1093.28005
[37] V. Jarník. Diophantischen Approximationen und Hausdorffsches Mass. Mat. Sb., 36:371-381, 1929.  JFM 55.0719.01
[38] V. Jarník. Über die simultanen Diophantischen Approximationen. Math. Z., 33(1):505-543, 1931.  MR 1545226 |  JFM 57.1370.01
[39] A. Khintchine. Zur metrischen Theorie der diophantischen Approximationen. Math. Z., 24(1):706-714, 1926. Article |  MR 1544787 |  JFM 52.0183.02
[40] A. Khintchine. Ein Satz über lineare diophantische Approximationen. Math. Ann., 113(1):398-415, 1937. Article |  MR 1513100 |  Zbl 0015.15402
[41] J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in Probability. The Clarendon Press, Oxford University Press, New York, 1993  MR 1207584 |  Zbl 0771.60001
[42] J. F. Koksma. Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen. Monatsh. Math. Phys., 48:176-189, 1939.  MR 845 |  Zbl 0021.20804
[43] J. Kurzweil. On the metric theory of inhomogeneous diophantine approximations. Studia Math., 15:84-112, 1955.  MR 73654 |  Zbl 0066.03702
[44] J. Lesca, Sur les approximations diophantiennes à une dimension, Ph. D. Thesis, Université de Grenoble, 1968
[45] Kurt Mahler. Zur Approximation der Exponentialfunktion und des Logarithmus.. J. Reine Angew. Math., 166:118-150, 1932. Article |  MR 1581302 |  Zbl 0003.38805
[46] Benoit B. Mandelbrot. Renewal sets and random cutouts. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22:145-157, 1972.  MR 309162 |  Zbl 0234.60102
[47] Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995 Article |  MR 1333890 |  Zbl 0819.28004
[48] J. Neveu, Processus ponctuels, École d’Été de Probabilités de Saint-Flour, VI—1976, Springer-Verlag, Berlin, 1977, p. 249–445. Lecture Notes in Math., Vol. 598  MR 474493 |  Zbl 0439.60044
[49] L. Olsen and Dave L. Renfro. On the exact Hausdorff dimension of the set of Liouville numbers. II. Manuscripta Math., 119(2):217-224, 2006. Article |  MR 2215968 |  Zbl 1126.28007
[50] Walter Philipp. Some metrical theorems in number theory. Pacific J. Math., 20:109-127, 1967.  MR 205930 |  Zbl 0144.04201
[51] Marc Reversat. Approximations diophantiennes et eutaxie. Acta Arith., 31(2):125-142, 1976.  MR 427262 |  Zbl 0303.10050
[52] C. A. Rogers. Hausdorff measures. Cambridge University Press, London-New York, 1970  MR 281862 |  Zbl 0915.28002
[53] Wolfgang M. Schmidt. Metrical theorems on fractional parts of sequences. Trans. Amer. Math. Soc., 110:493-518, 1964.  MR 159802 |  Zbl 0199.09402
[54] Wolfgang M. Schmidt. Badly approximable systems of linear forms. J. Number Theory, 1:139-154, 1969.  MR 248090 |  Zbl 0172.06401
[55] L. A. Shepp. Covering the circle with random arcs. Israel J. Math., 11:328-345, 1972.  MR 295402 |  Zbl 0241.60008
[56] L. A. Shepp. Covering the line with random intervals. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 23:163-170, 1972.  MR 322923 |  Zbl 0238.60006
[57] Vladimir G. Sprindžuk. Metric theory of Diophantine approximations. V. H. Winston & Sons, Washington, D.C.; A Halsted Press Book, John Wiley & Sons, New York-Toronto, Ont.-London, 1979  MR 548467
[58] Claude Tricot. Two definitions of fractional dimension. Math. Proc. Cambridge Philos. Soc., 91(1):57-74, 1982. Article |  MR 633256 |  Zbl 0483.28010
[59] David Williams. Probability with martingales. Cambridge University Press, Cambridge, 1991 Article |  MR 1155402 |  Zbl 0722.60001
[60] Eduard Wirsing. Approximation mit algebraischen Zahlen beschränkten Grades. J. Reine Angew. Math., 206:67-77, 1960.  MR 142510 |  Zbl 0097.03503