Martine Picavet-L’Hermitte
Cale Bases in Algebraic Orders

<http://ambp.cedram.org/item?id=AMBP_2003__10_1_117_0>

© Annales mathématiques Blaise Pascal, 2003, tous droits réservés.
L’accès aux articles de la revue « Annales mathématiques Blaise Pascal »
(http://ambp.cedram.org/), implique l’accord avec les conditions générales
d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale
ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copy-
right.

Publication éditée par le laboratoire de mathématiques
de l’université Blaise-Pascal, UMR 6620 du CNRS
Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/
Cale Bases in Algebraic Orders

Martine Picavet-L’Hermitte

Abstract

Let R be a non-maximal order in a finite algebraic number field with integral closure \overline{R}. Although R is not a unique factorization domain, we obtain a positive integer N and a family Q (called a Cale basis) of primary irreducible elements of R such that x^N has a unique factorization into elements of Q for each $x \in R$ coprime with the conductor of R. Moreover, this property holds for each nonzero $x \in R$ when the natural map $\text{Spec}(\overline{R}) \rightarrow \text{Spec}(R)$ is bijective. This last condition is actually equivalent to several properties linked to almost divisibility properties like inside factorial domains, almost Bézout domains, almost GCD domains.

1 Introduction

Let K be a number field and \mathcal{O}_K its ring of integers. A subring of \mathcal{O}_K with quotient field K is called an algebraic order in K. Let R be a non-integrally closed order with integral closure \overline{R}. Since R cannot be a unique factorization domain, an element of R need not have a unique factorization into irreducibles. Let R be a quadratic order such that \mathfrak{f} is the conductor of $R \hookrightarrow \overline{R}$. A. Faisant got a unique factorization into a family of irreducibles for any x^e where $x \in R$ is such that $Rx + \mathfrak{f} = R$ and e is the exponent of the class group of R [7, Théorème 2]. We are going to generalize his result to an arbitrary order and to a larger class of elements, using the notion of Cale basis defined by S.T. Chapman, F. Halter-Koch and U. Krause in [4]. In Section 2, we show that there exists a Cale basis for an order R if and only if the spectral map $\text{Spec}(\overline{R}) \rightarrow \text{Spec}(R)$ is bijective. This condition is also equivalent to $R \hookrightarrow \overline{R}$ is a root extension, or R is an API-domain (resp. AD-domain, AB-domain, AP-domain, AGCD-domain, AUFD). These integral domains were studied by D. D. Anderson and M. Zafrullah in [3] and [11]. In Section 3, we consider orders R such that $\text{Spec}(\overline{R}) \rightarrow \text{Spec}(R)$ is bijective and exhibit a Cale basis Q for such an order. The elements of
\(\mathcal{Q} \) are primary and irreducible and we determine a number \(N \), linked to some integers associated to \(R \), such that \(x^N \) has a unique factorization into elements of \(\mathcal{Q} \) for each nonzero \(x \in R \). When \(R \) is an arbitrary order, we restrict this property to a smaller class of nonzero elements of \(R \). We do not know whether the integer \(N \) is the minimum number such that \(x^N \) has a unique factorization into elements of \(\mathcal{Q} \) for each nonzero \(x \in R \), but we get an affirmative answer for \(\mathbb{Z}[3i] \).

A generalization of these results can be gotten by considering a residually finite one-dimensional Noetherian integral domain \(R \) with torsion class group or finite class group and such that its integral closure is a finitely generated \(R \)-module.

Throughout the paper, we use the following notation:

For a commutative ring \(R \) and an ideal \(I \) in \(R \), we denote by \(V_{R}(I) \) the set of all prime ideals in \(R \) containing \(I \) and by \(D_{R}(I) \) its complement in \(\text{Spec}(R) \). If \(R \) is an integral domain, \(\mathcal{U}(R) \) is the set of all units of \(R \) and \(\overline{R} \) is the integral closure of \(R \). The conductor of \(R \hookrightarrow \overline{R} \) is called the conductor of \(R \). For \(a, b \in R \setminus \{0\} \), we write \(a|b \) if \(b = ac \) for some \(c \in R \). Let \(J \) be an ideal of \(R \) and \(x \) an element of \(R \): we say that \(x \) is coprime to \(J \) if \(Rx + J = R \) and we denote by \(\text{Copr}_{R}(J) \) the monoid of elements of \(R \) coprime to \(J \). The cardinal number of a finite set \(S \) is denoted by \(|S| \). When an element \(x \) of a group has a finite order, \(o(x) \) is its order. As usual, \(\mathbb{N}^\ast \) is the set of nonzero natural numbers.

2 Almost divisibility

Definition: Let \(R \) be a multiplicative, commutative and cancellative monoid. A subset of nonunit elements \(\mathcal{Q} \) of \(R \) is a Cale basis if \(R \) has the following two properties:

1. For every nonunit \(a \in R \), there exist some \(n \in \mathbb{N}^\ast \) and \(t_{i} \in \mathbb{N} \) such that \(a^{n} = u \prod_{q_{i} \in \mathcal{Q}} q_{i}^{t_{i}} \) where \(u \in \mathcal{U}(R) \) and only finitely many of the \(t_{i} \)'s are nonzero.
Cale bases in algebraic orders

2. If \(u \prod_{q_i \in Q} q_i^{s_i} = v \prod_{q_i \in Q} q_i^{t_i} \) where \(u, v \in \mathcal{U}(R) \) and \(s_i, t_i \in \mathbb{N} \) with \(s_i = t_i = 0 \) for almost all \(q_i \in Q \), then \(u = v \) and \(t_i = s_i \) for all \(q_i \in Q \).

3. A monoid is called \textit{inside factorial} if it possesses a Cale basis.

4. An integral domain \(R \) is called \textit{inside factorial} if its multiplicative monoid \(R \setminus \{0\} \) is inside factorial.

Remark: In [4], the authors give the definition of an inside factorial monoid by means of divisor homomorphisms, but their result [4, Proposition 4] allows us to use this simpler definition.

Proposition 2.1: Let \(R \) be a one-dimensional Noetherian inside factorial domain with Cale basis \(Q \). Any element of \(Q \) is a primary element and there is a bijective map

\[
\begin{cases}
Q \to \text{Max}(R) \\
q \mapsto \sqrt{Rq}
\end{cases}
\]

Proof: Let \(q \in Q \) and show that \(Rq \) is a primary ideal. Let \(x, y \in R \setminus \{0\} \) be such that \(q|(xy)^k = x^ky^k \) for some \(k \in \mathbb{N}^* \). By [4, Lemma 2 (f)], there exists some \(n \in \mathbb{N}^* \) such that \(q|x^{kn} \) or \(q|y^{kn} \). This implies that \(\sqrt{Rq} \) is a maximal ideal in \(R \) and \(Rq \) is a primary ideal.

Let \(P \in \text{Max}(R) \) and \(q, q' \in Q \) be two \(P \)-primary elements. \(R \) being Noetherian, there exists some \(n \in \mathbb{N}^* \) such that \(Rq^n \subset P^n \subset Rq' \), so that \(q' \mid q^n \). Set \(q^n = q'x, \ x \in R \). Since \(R \) is inside factorial, there exist some \(k \in \mathbb{N}^* \) and \(t_i \in \mathbb{N} \) such that \(x^k = u \prod_{q_i \in Q} q_i^{t_i} \) where \(u \in \mathcal{U}(R) \). This gives \(q^{nk} = uq'^k \prod_{q_i \in Q} q_i^{t_i} \) and \(q = q' \) since \(Q \) is a Cale basis.

Let \(P \in \text{Max}(R) \) and \(x \) be a nonzero element of \(P \). There exist some \(n \in \mathbb{N}^* \) and \(t_i \in \mathbb{N} \) such that \(x^n = u \prod_{q_i \in Q} q_i^{t_i} \) where \(u \in \mathcal{U}(R) \). Then \(Rx^n = \prod Rq_i^{t_i} \) with \(Rq_i^{t_i} \) a \(P_i \)-primary ideal and \(t_i \neq 0 \) for each \(P_i \) containing \(x \).

Moreover we have \(P_i \neq P_j \) for \(i \neq j \). Since \(P \) contains \(x \), one of the \(P_i \) such that \(t_i \neq 0 \) is \(P \) so that \(q_i \) is \(P \)-primary. So we get the bijection. \(\square \)
Remark: We recover here the structure of Cale bases gotten in [4, Theorem 2] with the additional new property that every element of the Cale basis is a primary element.

For a one-dimensional Noetherian domain with torsion class group, the notion of inside factorial domain is equivalent to a lot of special integral domains with different divisibility properties we are going to recall now (see [11], [3] and [1]).

Definition: Let R be an integral domain with integral closure \overline{R}. We say that

1. $R \hookrightarrow \overline{R}$ is a root extension if for each $x \in \overline{R}$, there exists an $n \in \mathbb{N}^*$ with $x^n \in R$ [3].

2. R is an almost principal ideal domain (API-domain) if for any nonempty subset $\{a_i\} \subseteq R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ with $(\{a_i^n\})$ principal [3, Definition 4.2].

3. R is an AD-domain if for any nonempty subset $\{a_i\} \subseteq R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ with $(\{a_i^n\})$ invertible [3, Definition 4.2].

4. R is an almost Bézout domain (AB-domain) if for $a, b \in R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ such that (a^n, b^n) is principal [3, Definition 4.1].

5. R is an almost Prüfer domain (AP-domain) if for $a, b \in R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ such that (a^n, b^n) is invertible [3, Definition 4.1].

6. R is an almost GCD-domain (AGCD-domain) if for $a, b \in R \setminus \{0\}$, there exists an $n \in \mathbb{N}^*$ such that $a^nR \cap b^nR$ is principal [11].

7. A nonzero nonunit $p \in R$ is a prime block if for all $a, b \in R$ with $aR \cap pR \neq apR$ and $bR \cap pR \neq bpR$, there exist an $n \in \mathbb{N}^*$ and $d \in R$ such that $(a^n, b^n) \subseteq dR$ with $(a^n/d)R \cap pR = (a^n/d)pR$ or $(b^n/d)R \cap pR = (b^n/d)pR$. Then R is an almost unique factorization domain (AUFD) if every nonzero nonunit of R is expressible as a product of finitely many prime blocks [11, Definition 1.10].

8. R is an almost weakly factorial domain if some power of each nonzero nonunit element of R is a product of primary elements [1].
Cale bases in algebraic orders

We first give a result for one-dimensional Noetherian integral domains.

Proposition 2.2: Let R be a one-dimensional Noetherian inside factorial domain with Cale basis Q. Then R is an AGCD and an almost weakly factorial domain.

Proof: R is obviously an almost weakly factorial domain (see also [1, Theorem 3.9]). Let $a, b \in R \setminus \{0\}$. There exist some $n \in \mathbb{N}^r$ and $s_i, t_i \in \mathbb{N}$ such that $a^n = u \prod_{q_i \in Q} q_i^{s_i}$, $b^n = v \prod_{q_i \in Q} q_i^{t_i}$ where $u, v \in U(R)$. For each i, set $m_i = \sup(s_i, t_i)$, $m'_i = \inf(s_i, t_i)$ and $c = \prod_{q_i \in Q} q_i^{m_i}$. Then $Rc \subset Ra^n \cap Rb^n$ so that $c = u^{-1}a^n a' = v^{-1}b^n b'$ with $a' = \prod_{q_i \in Q} q_i^{m_i - s_i}$ and $b' = \prod_{q_i \in Q} q_i^{m_i - t_i}$. Now, let $x, y \in R \setminus \{0\}$ be such that $xa^n = yb^n$. It follows that $xu \prod_{q_i \in Q} q_i^{s_i - m'_i} = yv \prod_{q_i \in Q} q_i^{t_i - m'_i}$ where q_i appears in the product in at most one side and $uxb' = vya'$. Assume $m'_i = s_i \neq t_i$. Since $Rq_i^{t_i - m'_i}$ is a P_i-primary ideal and $q_j \not\in P_i$ for each $j \neq i$ by Proposition 2.1, we get that $q_i^{m_i - s_i} = q_i^{t_i - m'_i}$ divides x. Repeating the process for each i such that $t_i > m'_i$, we get that $a' \mid x$ and $xa^n \in Rc$. Then $Rc = Ra^n \cap Rb^n$ and R is an AGCD. \(\square\)

More precisely, for one-dimensional Noetherian integral domains with torsion class group, we have the following.

Theorem 2.3: Let R be a one-dimensional Noetherian integral domain with torsion class group and with integral closure \overline{R}. The following conditions are equivalent.

1. $R \hookrightarrow \overline{R}$ is a root extension.
2. R is an API-domain.
3. R is an AD-domain.
4. R is an AB-domain.
5. R is an AP-domain.
6. R is an AGCD-domain.
7. R is an AUFD.

8. R is an inside factorial domain.

Moreover, if \overline{R} is a finitely generated R-module and R is residually finite, these conditions are equivalent to

9. $\text{Spec}(\overline{R}) \rightarrow \text{Spec}(R)$ is bijective.

Proof: (1) \iff (4) \iff (5) by [3, Corollary 4.8] since \overline{R} is a Prüfer domain.
(1) \iff (8) by [4, Corollary 6].
(6) \iff (7) by [11, Proposition 2.1 and Theorem 2.12].
At last, implications (4) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5) and (4) \Rightarrow (6) are obvious since R is Noetherian.

(6) \Rightarrow (1) follows from [3, Theorem 3.1] and (1) \Rightarrow (9) is true in any case by [3, Theorem 2.1].
Moreover, if \overline{R} is a finitely generated R-module and R is residually finite, we get (9) \Rightarrow (1). Indeed, it is enough to mimic the proof of [9, Proposition 3] since $R \hookrightarrow \overline{R}$ is factored in finitely many root extensions. \square

Remark: In [5, page 178] and [3, page 297], the authors asked about non-integrally closed AGCD domains of finite t-character or of characteristic 0. The previous theorem gives examples of such domains.

3 Structure of Cale bases of algebraic orders

In this section, we consider algebraic orders where Theorem 2.3 reveals as being useful. A generalization to residually finite one-dimensional Noetherian integral domains R with finite class group and with integral closure \overline{R} such that \overline{R} is a finitely generated R-module can be easily made. We use the following notation.

Let R be an order with integral closure \overline{R} and conductor \mathfrak{f}. Set $\mathcal{I}(\overline{R})$ (resp. $\mathcal{I}_I(\overline{R})$, $\mathcal{I}_f(\overline{R})$) the monoid of all nonzero ideals of \overline{R} (resp. the monoid of all nonzero ideals of \overline{R} comaximal to \mathfrak{f}, the monoid of all nonzero ideals of R comaximal to \mathfrak{f}). In particular, $D_R(\mathfrak{f}) = (\mathcal{I}_I(R) \cap \text{Spec}(R)) \cup \{0\}$. Let $\mathcal{P}(\overline{R})$ (resp. $\mathcal{P}_I(R)$) be the submonoid of all principal ideals belonging to $\mathcal{I}(\overline{R})$ (resp. to $\mathcal{I}_I(R)$). Then $\mathcal{C}(\overline{R}) = \mathcal{I}(\overline{R})/\mathcal{P}(\overline{R})$ (resp. $\mathcal{C}(R) = \mathcal{I}_I(R)/\mathcal{P}_I(R)$) is the class group of \overline{R} (resp. R [9, Proposition 2]) and $\mathcal{C}(R) \to \mathcal{C}(\overline{R})$ is
Cale bases in algebraic orders

surjective. Both of these groups are finite. Moreover, we have a monoid isomorphism \(\varphi : \mathcal{I}(R) \to \mathcal{I}(R) \) defined by \(\varphi(J) = JR \) for all \(J \in \mathcal{I}(R) \) (see [8, §3]). In particular, any ideal of \(\mathcal{I}(R) \), as any ideal of \(\mathcal{I}(R) \), is the product of maximal ideals in a unique way since \(\varphi(D_R(f)) = D_{\overline{R}}(f) \). The image of an ideal \(J \) of \(\mathcal{I}(\overline{R}) \) (resp. \(\mathcal{I}(R) \)) in \(\mathcal{C}(\overline{R}) \) (resp. \(\mathcal{C}(R) \)) is denoted by \([J]\).

The exponent of \(\mathcal{C}(R) \) is denoted by \(e(R) \) and \(s(R) \) is the order of the factor group \(U(\overline{R})/U(R) \).

3.1 Building a Cale basis

Proposition 3.1: Let \(\mathfrak{f} \) be the conductor of an order \(R \) where the integral closure is \(\overline{R} \).

1. Let \(P \in D_R(\mathfrak{f}) \setminus \{0\} \) and \(\alpha = o([P]) \). There exists an irreducible \(P \)-primary element \(q \in P \) such that \(P^\alpha = Rq \).

2. Let \(P \in V_R(\mathfrak{f}) \) such that there exists a unique \(P' \in \text{Spec}(\overline{R}) \) lying over \(P \). There exists a \(P \)-primary element \(q \in P \) such that \(P'^n = \overline{R}q \) for some \(n \in \mathbb{N}^\ast \) and such that \(P'q^m = \overline{R}q' \) with \(q' \in R \) implies \(n \leq n' \). Such an element \(q \) is irreducible in \(R \).

Proof:

(1) \(P^\alpha \) is a principal ideal. Let \(q \in R \) be such that \(P^\alpha = Rq \) and suppose there exist \(x, y \in R \) such that \(q = xy \) so that \(P^\alpha = (Rx)(Ry) \). Using the monoid isomorphism \(\varphi \), we get that \(Rx = P^\beta \) and \(Ry = P^\gamma \) with \(\alpha = \beta + \gamma \). But the definition of \(\alpha \) implies that \(x \) or \(y \) is a unit and \(q \) is an irreducible element, obviously \(P \)-primary.

(2) Set \(\alpha = o([P']) \). There exists \(p' \in P' \) such that \(P'^\alpha = \overline{R}p' \).

Let \(Q \in D_R(\mathfrak{f}) \). Then \(RQ \to \overline{R}Q \) is an isomorphism, so that \(p'/1 \in RQ \).

Let \(P \neq Q \in V_R(\mathfrak{f}) \). Then \(p'/1 \in U(\overline{R}Q) \). As \(|U(\overline{R}Q)/U(RQ)| \) is finite, there exists \(n_Q \in \mathbb{N}^\ast \) such that \((p'/1)^{n_Q} \in R_Q \).

Lastly, \(R_P \to \overline{R}_P \) is a root extension in view of Theorem 2.3 (9). It follows that there exists \(n_P \in \mathbb{N}^\ast \) such that \((p'/1)^{n_P} \in R_P \).

\(V_R(\mathfrak{f}) \) being finite, there exists a least \(n \in \mathbb{N}^\ast \) such that \(p'^n \in R \cap P' = P \).

In case there exists \(u \in U(\overline{R}) \) such that \(P^m = \overline{R}p'^m \), with \(m < n \) and \(up'^m \in R \cap P' = P \), we pick \(q \in P \) such that \(P^\beta = \overline{R}q \), where \(\beta \) is the least \(k \in \mathbb{N}^\ast \) such that \(P^k = \overline{R}q' \) with \(q' \in R \). Then \(q \) is obviously a \(P \)-primary element.
Let \(x, y \in R \) be such that \(q = xy \), which gives \(P^{\mu \beta} = (R_x)(R_y) \) so that \(R_x = P^{\mu \alpha} \) and \(R_y = P^{\mu \delta} \) with \(\beta = \gamma + \delta \). But the definition of \(\beta \) implies that \(x \) or \(y \) is in \(U(R) \cap R = U(R) \) and \(q \) is an irreducible element in \(R \).

\[\square \]

Remark: If we assume that \(\text{Spec}(R) \to \text{Spec}(R) \) is bijective in Proposition 3.1, \(R \hookrightarrow \overline{R} \) is a root extension in view of Theorem 2.3 (1). Then, there exists a least \(n \in \mathbb{N}^* \) such that \(p_n \in R \cap P' = P \).

Theorem 3.2: Let \(R \) be an order with conductor \(f \) and integral closure \(\overline{R} \).

For each \(P \in \mathcal{D}_R(f) \setminus \{0\} \), let \(\alpha = o([P]) \). Choose \(q_P \in P \) such that \(P^\alpha = Rq_P \). Set \(Q_1 = \{ q_P \mid P \in \mathcal{D}_R(f) \setminus \{0\} \} \).

For each \(P \in \mathcal{V}_R(f) \) such that there exists a unique \(P' \in \text{Spec}(\overline{R}) \) lying over \(P \), choose \(q_P \in P \) such that \(q_P \) generates a least power of \(P' \). Set \(Q_2 = \{ q_P \mid P \in \mathcal{V}_R(f) \}, \) there exists a unique \(P' \in \text{Spec}(\overline{R}) \) lying over \(P \).

To end, set \(Q = Q_1 \cup Q_2 \) and let \(J \) be the intersection of all \(P \in \mathcal{V}_R(f) \) such that there exists more than one ideal in \(\text{Spec}(\overline{R}) \) lying over \(P \).

For each \(P_i \in \mathcal{V}_R(f) \) such that there exists a unique \(P'_i \in \text{Spec}(\overline{R}) \) lying over \(P_i \) let \(n_i \) be the least \(n \in \mathbb{N}^* \) such that \(P_i^{n} \) is a principal ideal generated by an element of \(R \). Lastly, set \(m = \text{lcm}(e(R), n_i) \) and \(N = ms(R) \). Then

1. Up to units of \(R \), \(x^N \) is a product of elements of \(Q \) in a unique way, for each \(x \in \text{Cop}_R(J) \).

In particular, \(\text{Cop}_R(J) \) is an inside factorial monoid with Cale basis \(Q \).

2. In particular, \(Q \) is a Cale basis for \(R \) when \(\text{Spec}(\overline{R}) \to \text{Spec}(R) \) is bijective.

Proof: • Since \(\mathcal{V}_R(f) \) is a finite set, there are finitely many \(P_i \in \mathcal{V}_R(f) \) such that there exists a unique \(P'_i \in \text{Spec}(\overline{R}) \) lying over \(P_i \).

Set \(n_i = \inf \{ n \in \mathbb{N}^* \mid P_i^n \) is a principal ideal generated by an element of \(R \} \). We can set \(m = \text{lcm}(e(R), n_i) \) so that \(m = e(R)e' = n_i n_i' \) and \(e(R) = \alpha_i \alpha_i' \), where \(\alpha_i = o([P_i]) \) for each \(i \) such that \(P_i \in \mathcal{D}_R(f) \setminus \{0\} \).

Let \(x \in \text{Cop}_R(J) \). Then \(R_x = \prod P_i^{a_i}, \ a_i \in \mathbb{N}^* \), \(P_i' \in \text{Max}(\overline{R}) \). Set \(P_i = R \cap P_i' \) and \(q_i = q_{P_i} \) for each \(i \).

Then we have \(\overline{R}_x = \prod P_i^{m_i} \prod P_i^{m_i} \).

If \(P_i \in \mathcal{V}_R(f) \), we get that \(P_i^{m_i} = P_i^{m_i n_i} = R \) with \(q_i \in Q_2 \).
Cale bases in algebraic orders

If \(P_i \in D_R(f) \setminus \{0\} \), we get that \(P_i' = R P_i \) so that \(P_i^{m a_i} = P_i^{e(R) e' a_i} = R P_i^{e(R) e' a_i} = R q_i^{a_i e' a_i} \). This gives finally \(Rx^m = R \prod_{P_i \in V_R(f)} q_i^{n_i a_i} \prod_{P_i \in D_R(f) \setminus \{0\}} q_i^{e' a_i} \), so that there exists \(u \in U(R) \) such that \(x^m = u \prod_{q \in Q} q^{b_q} \), \(b_q \in \mathbb{N} \). From \(v = u^{s(R)} \in R \cap U(R) = U(R) \), we deduce \(x^{ms(R)} = v \prod_{q \in Q} q^{s(R) b_q} \). Set \(N = ms(R) \) and \(t_q = s(R) b_q \) for each \(q \in Q \). Then \(x^N = v \prod_{q \in Q} q^{t_q} \).

Let us show that \(x^N \) has a unique factorization into elements of \(Q \). Let \(v, v' \in U(R) \), \(t_q, t'_q \in \mathbb{N} \) be such that \(x^N = v \prod_{q \in Q} q^{t_q} = v' \prod_{q \in Q} q^{t'_q} \). This implies \(\prod_{q \in Q} R q^{t_q} = \prod_{q \in Q} R q^{t'_q} \) in \(R \), with finitely many nonzero \(t_q \) and \(t'_q \). Taking into account the uniqueness of the primary decomposition of \(Rx^N \) in \(R \), we first get \(\prod_{q \in Q} R q^{t_q} = \prod_{q \in Q} R q^{t'_q} \), so that \(t_q = t'_q \) for each \(q \in Q \), and then \(v = v' \).

It follows that \(Q \) is a Cale basis for \(\text{Cop}_R(J) \), which is an inside factorial monoid. Part (2) is then a special case of the general case.

Remark: (1) If there exists a maximal ideal \(P \) in \(R \) with more than one maximal ideal in \(R \) lying over \(P \), then \(\text{Cop}_R(J) \) is not the largest inside factorial monoid contained in \(R \) where the elements of the Cale basis are primary.

Indeed, let \(q \) be a \(P \)-primary element. The monoid generated by \(\text{Cop}_R(J) \) and \(q \) is still inside factorial.

(2) Nevertheless, under the previous assumption, we can ask if there exists in \(R \) a largest inside factorial monoid of the form \(\text{Cop}_R(K) \) where \(K \) is an ideal of \(R \) and such that the elements of the Cale basis of \(\text{Cop}_R(K) \) are irreducible and primary.

Proposition 3.3: Under notation of Theorem 3.2, \(J \) is the greatest ideal \(K \) of \(R \) such that \(\text{Cop}_R(K) \) is an inside factorial monoid and such that the elements of the Cale basis of \(\text{Cop}_R(K) \) are primary. Moreover, we get \(\text{Cop}_R(K) \subset \text{Cop}_R(J) \) for any such an ideal \(K \).

Proof: Let \(K \) be an ideal of \(R \) such that \(\text{Cop}_R(K) \) is an inside factorial monoid and such that the elements of the Cale basis \(Q' \) of \(\text{Cop}_R(K) \) are
primary. Assume there exists a P-primary element $q \in \mathcal{Q}'$ with $P \in \mathcal{V}_R(J)$. Let $P_1, \ldots, P_n \in \text{Spec}(R)$ be lying over P with $n > 1$, so that $f \in P$. Let $p_1 \in \overline{R}$ be a P_1-primary element. We first show that there exist some r and $s \in \mathbb{N}^*$ such that $(q''p_1^s)/1$ is a P-primary element of R.

For a maximal ideal $M \in \text{Max}(R)$, we denote by X' the localization of an R-module X at M.

- If $M \in \text{D}_R(f)$, we get an isomorphism $R' \simeq \overline{R}$.
- Then $P_1/1 \in R'$ and $(q''p_1^s)/1 \in R'$ for any $r', s' \in \mathbb{N}^*$. Moreover, we have $(q''p_1^s)/1 \in \mathcal{U}(R')$.
- If $M \in \mathcal{V}_R(f)$ and $M \neq P$, then $P_1/1 \in \mathcal{U}(\overline{R})$ and there exists $s_M \in \mathbb{N}^*$ such that $(p_1^{s_M})/1 \in \mathcal{U}(R')$ since $\mathcal{U}(\overline{R})/\mathcal{U}(R')$ has a finite order. Because of $\mathcal{V}_R(f)$ being finite too, there exists $s \in \mathbb{N}^*$ such that $(q''p_1^s)/1 \in R'$ for any $M \in \mathcal{V}_R(f) \setminus \{P\}$ and for any $r' \in \mathbb{N}^*$. Moreover, $(q''p_1^s)/1 \in \mathcal{U}(R')$.
- If $M = P$, we get that f' is a P'-primary ideal and the conductor of R'. There exists $r \in \mathbb{N}^*$ such that $P'' \subset f'$, so that $q''/1 \in f'$. This implies $(q''p_1^s)/1 \in P'' \subset R'$.

To conclude, there exist $r, s \in \mathbb{N}^*$ such that $(q''p_1^s)/1 \in R_M$ for any $M \in \text{Max}(R)$, which gives $q''p_1^s \in R$ and is a P-primary element in R by the previous discussion. But $P + K = R$ since $q \in \text{Cop}_R(K)$. It follows that $q''p_1^s \in \text{Cop}_R(K)$ and there exist $t, x \in \mathbb{N}^*$ such that $(q''p_1^s)^t = uq^x$ (*), with $u \in \mathcal{U}(R)$. As q is a P-primary element, we get in \overline{R} the two factorizations $\overline{R}q = \prod_{i=1}^n P_i^{a_i}$ and $\overline{R}p_1 = P_1^a$, with $a_i, a \in \mathbb{N}^*$. From (*), we get

$$P_1^{ast}(\prod_{i=1}^n P_i^{rt_{a_i}}) = \prod_{i=1}^n P_i^{x_{a_i}},$$

which gives:

- if $i = 1$, then $rt_{a_1} + ast = a_1x$ (1)
- if $i \neq 1$, then $rt_{a_i} = a_ix$ (i)

so that $x = rt$ by (i) and then $ast = 0$ by (1), a contradiction.

Hence, any P-primary element $q \in \mathcal{Q}'$ is such that $P \in \text{D}_R(J)$.

For any $x \in \text{Cop}_R(K)$, let $k \in \mathbb{N}^*$ be such that $x^k = u \prod_{q \in \mathcal{Q}'} q^b_q$, so that any maximal ideal $P \in \mathcal{V}_R(x)$ is in $\text{D}_R(J)$. This implies that $x \in \text{Cop}_R(J)$.

We have just shown that $\text{Cop}_R(K) \subset \text{Cop}_R(J)$. To end, any $P \in \text{D}_R(K)$ contains some $q \in \text{Cop}_R(K) \subset \text{Cop}_R(J)$ so that $P \in \text{D}_R(J)$. Then $\mathcal{V}_R(J) \subset \mathcal{V}_R(K)$ and $K \subset \sqrt{K} \subset \sqrt{J} = J$. \hfill \Box

Recall that an integral domain is weakly factorial if each nonunit is a
Cale bases in algebraic orders

product of primary elements (D. D. Anderson and L. A. Mahaney [2]). In particular, the class group of a one-dimensional weakly factorial Noetherian domain is trivial [2, Theorem 12]. The following corollary generalizes the quadratic case worked out by A. Faisant [7, Corollaire].

Corollary 3.4: Let \(R \) be a weakly factorial order with conductor \(\mathfrak{f} \). Then each \(x \in \text{Cop}_R(\mathfrak{f}) \) is a product of prime elements of \(R \) in a unique way up to units.

Proof: We get \(|\mathcal{C}(R)| = 1 \). Let \(x \in \text{Cop}_R(\mathfrak{f}) \). Then, \(Rx = \prod_{P_i \in \mathcal{D}_R(\mathfrak{f}) \setminus \{0\}} P_i^{a_i} \), where each \(P_i \) is a principal ideal generated by a prime element \(p_i \in \mathcal{Q}_1 \) (notation of Theorem 3.2). It follows that \(x = u \prod_{p_i \in \mathcal{Q}_1} p_i^{a_i} \), \(u \in \mathcal{U}(R) \).

Corollary 3.5:

1. Let \(R \) be an inside factorial order with integral closure \(\overline{R} \). Let \(\mathcal{Q} \) be the Cale basis defined in Theorem 3.2. Any overring \(S \) of \(R \) contained in \(\overline{R} \) is inside factorial and \(\mathcal{Q} \) is still a Cale basis for \(S \).

2. Let \(R_1 \) and \(R_2 \) be two inside factorial orders with the same integral closure. Then \(R = R_1 \cap R_2 \) is inside factorial. Moreover, there exists a common Cale basis for \(R_1 \) and \(R_2 \).

Proof: (1) Since \(R \hookrightarrow \overline{R} \) is a root extension, so is \(S \hookrightarrow \overline{R} \) and \(S \) is inside factorial by Theorem 2.3. Moreover, the spectral map \(\text{Spec}(\overline{R}) \rightarrow \text{Spec}(S) \) is bijective. Then, the construction of \(\mathcal{Q} \) in the proof of Theorem 3.2 shows that \(\mathcal{Q} \) is also a Cale basis for \(S \).

We may also use [4, Proposition 5].

(2) Set \(R = R_1 \cap R_2 \). Then \(R \) is an order with the same integral closure \(\overline{R} \) as \(R_1 \) and \(R_2 \). Since \(R_1 \hookrightarrow \overline{R} \) and \(R_2 \hookrightarrow \overline{R} \) are root extensions, so is \(R \hookrightarrow \overline{R} \) and \(R \) is inside factorial by Theorem 2.3. Part (1) gives that any Cale basis for \(R \) is also a Cale basis for \(R_1 \) and \(R_2 \).

Remark: The elements of the Cale basis \(\mathcal{Q} \) gotten in Theorem 3.2 are irreducible in \(R \). The following examples show how they behave in the integral closure \(\overline{R} \).

(1) Consider the quadratic order \(R = \mathbb{Z}[\sqrt{-3}] \) with conductor \(\mathfrak{f} = 2\overline{R} \), a maximal ideal in \(R \) and \(\overline{R} \). Then \(R \) is weakly factorial and inside factorial.
[10, Corollary 2.2]. Let Q be the Cale basis of Theorem 3.2. Any element of Q belonging to $\text{Cop}_R(f)$ is irreducible in R as well as in \overline{R}. By Proposition 3.6 of the next subsection, 2 is the f-primary element of Q irreducible in both R and \overline{R}. Then Q is a Cale basis for \overline{R} and its elements are also irreducible in \overline{R}.

(2) Consider the quadratic order $R = \mathbb{Z}[2i]$. Its conductor $f = 2\overline{R}$ is a maximal ideal in R. But $f = \overline{R}(1 + i)^2$ where $\overline{R}(1 + i)$ is a maximal ideal in \overline{R}. Then R is weakly factorial and inside factorial [10, Corollary 2.2]. Let Q be the Cale basis of Theorem 3.2. Any element of Q belonging to $\text{Cop}_R(f)$ is irreducible in R as well as in \overline{R}. By Proposition 3.6 of the next subsection, 2 is the f-primary element of Q, irreducible in R but not in \overline{R} since $2 = -i(1 + i)^2$. Then Q is a Cale basis for \overline{R} and its elements need not be all irreducible in \overline{R}.

3.2 The quadratic case

In this subsection we keep notation of Theorem 3.2 for N, Q_1 and Q_2. For a quadratic order, determination of elements of Q_2 and the number N is simple. The characterization of quadratic inside factorial orders is given in [4, Example 3].

Let d be a square-free integer and consider the quadratic number field $K = \mathbb{Q}(\sqrt{d})$. It is well-known that the ring of integers of K is $\mathbb{Z}[\omega]$, where $\omega = \frac{1}{2}(1 + \sqrt{d})$ if $d \equiv 1 \pmod{4}$ and $\omega = \sqrt{d}$ if $d \equiv 2, 3 \pmod{4}$. Moreover, $\mathbb{Z}[\omega]$ is a free \mathbb{Z}-module with basis $\{1, \omega\}$. A quadratic order in K is a subring R of $\mathbb{Z}[\omega]$ which is a free \mathbb{Z}-module of rank 2 with basis $\{1, n\omega\}$ where $n \in \mathbb{N}^*$. Then $\mathbb{Z}[\omega]$ is the integral closure \overline{R} of $R = \mathbb{Z}[n\omega]$ and $n\mathbb{Z}[\omega]$ is the conductor of R. We denote by $N(x)$ the norm of an element $x \in \mathbb{Z}[\omega]$.

Proposition 3.6: Let $R = \mathbb{Z}[n\omega]$ be a quadratic order with conductor $f = n\mathbb{Z}[\omega]$, $n \in \mathbb{N}^*$. Then Q_2 is the set of ramified and inert primes dividing n.

In particular, $\mathbb{Z}[n\omega] \hookrightarrow \mathbb{Z}[\omega]$ is a root extension if and only if no decomposed prime divides n.

Proof: Let $P \in \text{Max}(R)$, with $p\mathbb{Z} = \mathbb{Z} \cap P$. There is only one maximal ideal lying over P in \overline{R} if p is ramified or inert. By [12, Proposition 12], we have $P = p\mathbb{Z} + n\omega\mathbb{Z}$ when $p|n$.

- If p is inert, then $\overline{R}p \in \text{Max}(\overline{R})$, so that p is irreducible in \overline{R} and in R.
- If p is ramified, then $\overline{R}p = P'\overline{R}$, where $P' \in \text{Max}(\overline{R})$.
- Let \(P' = Rp', p' \in \overline{R} \). Then \(p = up^2 \) with \(u \in \mathcal{U}(\overline{R}) \). Indeed, \(p \) is still irreducible in \(R \). Deny and let \(x, y \in R \) be nonunits such that \(p = xy \). It follows that \(N(p) = p^2 = N(x)N(y) \) which gives \(N(x) = N(y) = \pm p \). But \(x \in R \) can be written \(x = a + bn\omega, a, b \in \mathbb{Z} \).

If \(d \equiv 2, 3 \pmod{4} \), we get \(N(x) = a^2 - nb^2d \), with \(p \mid n \) and \(p \mid N(x) \), a contradiction.

If \(d \equiv 1 \pmod{4} \), we get \(d = 1 + 4k, k \in \mathbb{Z} \). It follows that \(N(x) = a^2 + abn - nb^2k \). The same argument leads to a contradiction.

\[\text{Corollary 3.7: Let } R = \mathbb{Z}[\omega] \text{ be a quadratic order, } n \in \mathbb{N}^*, \text{ with conductor } \mathfrak{f} = n\mathbb{Z}[\omega]. \text{ The integer } N \text{ is} \]

1. \(N = 2e(R)s(R) \text{ if } e(R) \text{ is odd and if a ramified prime divides } n \)

2. \(N = e(R)s(R) \text{ if } e(R) \text{ is even or if no ramified prime divides } n \).

\[\text{Remark: We can ask whether the integer } N \text{ gotten in Theorem 3.2 or in Corollary 3.7 is the least integer } n \text{ such that } x^n \text{ is a product of elements of } \mathcal{Q} \text{ in a unique way, for any nonzero nonunit } x \text{ of an inside factorial order. We can answer in the quadratic case by an example.} \]

\[\text{Example: Consider } R = \mathbb{Z}[3i]. \text{ Its integral closure is the PID } \overline{R} = \mathbb{Z}[i] \text{ and its conductor is } \mathfrak{f} = 3\overline{R} \in \text{Max}(R) \text{ since } 3 \text{ is inert.} \]

As \(|\mathcal{U}(\overline{R})/\mathcal{U}(R)| = 2 \), we get \(|\mathcal{C}(R)| = 2 \) by the class number formula \(|\mathcal{C}(R)| = |\mathcal{C}(\overline{R})|/|\mathcal{U}(\overline{R})/\mathcal{U}(R)|^{-1}(1 + 3) \) (see [6, Chapter 9.6]), so that \(N = 4 \). Moreover, \(2 = -i(1+i)^2 \) is ramified in \(\overline{R} \) and \(P = R \cap (1+i)\overline{R} = 2\mathbb{Z} + 3(1+i)\mathbb{Z} \) is a nonprincipal maximal ideal in \(R \) such that \(P^2 = 2R \), with 2 and 3 irreducible in \(R \). We get \(2 \in \mathcal{Q}_1 \) and \(3 \in \mathcal{Q}_2 \). Let \(t = 3(1+i) \in R \). The only maximal ideals of \(R \) containing \(t \) are \(\mathfrak{f} \) and \(P \). Now \(t^2 = 3^2(2i), t^3 = 3^3 \cdot 2(-1 + i) \) and \(t^4 = -3^4 \cdot 2^2 \). Then \(t^4 \) is the least power which has, up to units of \(R \), a unique factorization into elements of \(\mathcal{Q} \). It follows that \(N = e(R)s(R) \) is the least integer \(n \) such that \(x^n \) is a product of elements of \(\mathcal{Q} \) in a unique way, for any nonzero nonunit \(x \) of \(R \).

Cale bases in algebraic orders

Martine Picavet-L’Hermitte
Université Blaise Pascal
Laboratoire de Mathématiques Pures
Les Cézeaux
63177 Aubiere CEDEX
France
Martine.Picavet@math.univ-bpclermont.fr