Telemachos Hatziafratis

On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial}$-closed $(n, n - 1)$-forms

<http://ambp.cedram.org/item?id=AMBP_2004__11_1_41_0>

L’accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques de l’université Blaise-Pascal, UMR 6620 du CNRS
Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/
On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial}$-closed $(n, n-1)$-forms

Telemachos Hatziafratis

Abstract

We give a proof of an integral formula of Berndtsson which is related to the inversion of Fourier-Laplace transforms of $\bar{\partial}$-closed $(n, n-1)$-forms in the complement of a compact convex set in \mathbb{C}^n.

1 Introduction

Let K be a compact and convex subset of \mathbb{C}^n and $F(\zeta)$ an entire analytic function of the following exponential type: For every $\delta > 0$ there exists a constant $C_\delta > 0$ so that
\[|F(\zeta)| \leq C_\delta \exp \left(H_K(\zeta) + \delta|\zeta| \right) \quad (\zeta \in \mathbb{C}^n), \quad (1.1) \]
where $H_K(\zeta) = \sup \{ \Re \langle z, \zeta \rangle : z \in K \}$ and $\langle z, \zeta \rangle = \sum_{j=1}^{n} z_j \zeta_j$. One way to produce functions $F(\zeta)$, which satisfy (1.1), is to take a $\bar{\partial}$-closed $(n, n-1)$-form $\theta(z)$ in $\mathbb{C}^n - K$ and consider its Fourier-Laplace transform $F_\theta(\zeta)$ defined by the integral
\[F_\theta(\zeta) = \int_{z \in S} e^{\langle z, \zeta \rangle} \theta(z), \]
where S is a smooth $(2n-1)$-dimensional surface surrounding K. Then it is easy to see that F_θ does not depend on the choice of S and that it satisfies (1.1).

In [2], we showed that, conversely, any entire function $F(\zeta)$, which satisfies (1.1), is $F_\theta(\zeta)$ for some $\theta \in Z^{(n,n-1)}(\mathbb{C}^n - K)$. (Notation: $Z^{(n,n-1)}(\mathbb{C}^n - K)$ denotes sets of $\bar{\partial}$-closed $(n, n-1)$-forms.) The proof uses an integral of Berndtsson, which is defined as follows:
\[\theta_F(\zeta) = a_n \left(\int_{t=0}^{\infty} t^{n-1} e^{-t(\zeta, \partial \rho/\partial z)} F(t \partial \rho/\partial z) dt \right) \partial \rho(z) \wedge [\bar{\partial} \partial \rho(z)]^{n-1}, \]
Telemachos Hatziafratis

for \(z \in \mathbb{C}^n - \{ \rho \leq 1 \} \), where \(\partial \rho / \partial z = (\partial \rho / \partial z_1, \ldots, \partial \rho / \partial z_n) \) and \(a_n = 1/[(n - 1)!(2\pi i)^n] \). Here we assume that \(0 \in K \) and that the function \(\rho \) is chosen to be convex, positively homogeneous (i.e., \(\rho(sz) = s\rho(z) \) for \(s > 0 \)) and such that \(\{ \rho < 1 \} \) is a strictly convex neighborhood of \(K \). ((1.1) is needed for the convergence of the above integral.)

Then Berndtsson proved (in [1]) that if the entire function \(F(\zeta) \) satisfies (1.1) then

\[
\int_{\{ \rho(z) = 1 \}} e^{(z,\zeta)} \theta^\rho_F(z) = F(\zeta), \quad \text{for } \zeta \in \mathbb{C}^n. \tag{1.2}
\]

The proof given in [1] was based on an integral formula with weights and a change of variables, using some facts from convex analysis concerning the polar set of the convex set \(\{ \rho \leq 1 \} \).

In this note we will give a proof of (1.2) by a direct computation of the integral which is based on the following observations: First, the differential form \(\theta^\rho_F(z) \) is \(\bar{\partial} \)-closed in the set \(\mathbb{C}^n - \{ \rho \leq 1 \} \) (see [2, Lemma 1]) and therefore

\[
\int_{\{ \rho(z) = 1 \}} e^{(z,\zeta)} \theta^\rho_F(z) = \int_{\{|z|=R\}} e^{(z,\zeta)} \theta^\rho_F(z) \tag{1.3}
\]

when the sphere \(\{|z| = R\} \) surrounds the compact set \(\{ \rho \leq 1 \} \), and second, if we expand the entire function \(F(\zeta) \) in power series

\[
F(\zeta) = \sum_{k_1,\ldots,k_n \geq 0} c_{k_1\ldots k_n} \zeta_1^{k_1} \ldots \zeta_n^{k_n}
\]

and we if we substitute this expansion in the integral which defines \(\theta^\rho_F(z) \), then we may interchange the order of summation and integration, provided that \(R \) is sufficiently large.

After this interchange we see that \(\theta^\rho_F(z) \) is a combination of terms of the form

\[
a_n \left(\int_{t=0}^{\infty} t^{n+k_1+\cdots+k_n-1} e^{-t(z,\partial \rho/\partial z)} dt \right) \times \left(\frac{\partial \rho}{\partial z_1} \right)^{k_1} \ldots \left(\frac{\partial \rho}{\partial z_n} \right)^{k_n} \partial \rho(z) \wedge [\bar{\partial} \partial \rho(z)]^{n-1}. \tag{1.4}
\]

42
On an integral formula of Berndtsson

Since \(\int_{t=0}^{\infty} t^N e^{-t\sigma} dt = \frac{N!}{\sigma^{N+1}} \) (for \(\text{Re} \sigma > 0 \)), we see that

\[\int_{t=0}^{\infty} t^{n+k_1+\cdots+k_n-1} e^{-t(z,\partial \rho/\partial z)} dt = \frac{(n+k_1+\cdots+k_n-1)!}{\langle z, \partial \rho/\partial z \rangle^{n+k_1+\cdots+k_n}}. \]

It follows that (1.4) is the following derivative of the Cauchy-Fantappiè kernel:

\[(n-1)!a_n \left. \frac{\partial^{k_1+\cdots+k_n}}{\partial w_1^{k_1} \cdots \partial w_n^{k_n}} \right|_{w=0} \left(\frac{\partial \rho(z) \land [\partial \partial \rho(z)]^{n-1}}{\langle z-w, \partial \rho/\partial z \rangle^n} \right). \]

(1.5)

Now recall the Cauchy-Fantappiè formula: For entire functions \(f \),

\[\frac{1}{(2\pi i)^n} \int_{\{|z|=R\}} f(z) \frac{\partial \rho(z) \land [\partial \partial \rho(z)]^{n-1}}{\langle z-w, \partial \rho/\partial z \rangle^n} = f(w) \quad (|w| < R). \]

Differentiating both sides of this equation with respect to \(w \), we obtain that

\[\int_{\{|z|=R\}} f(z) \mathcal{F}^\rho_{k_1,\ldots,k_n}(z) = \frac{\partial^{k_1+\cdots+k_n}}{\partial w_1^{k_1} \cdots \partial w_n^{k_n}} f(0), \]

(1.6)

where \(\mathcal{F}^\rho_{k_1,\ldots,k_n}(z) \) is the kernel (1.5) (which, as we pointed out, is equal to (1.4)).

These observations lead to a proof of the following theorem.

Theorem 1.1: If the entire function \(F(\zeta) = \sum c_k \zeta^k \) satisfies (1.1) then

\[\int_{\{|\rho(z)|=1\}} f(z) \theta^\rho_F(z) = \sum_{k_1,\ldots,k_n} c_{k_1,\ldots,k_n} \frac{\partial^{k_1+\cdots+k_n}}{\partial w_1^{k_1} \cdots \partial w_n^{k_n}} f(0), \quad \text{for every entire function } f. \]

(1.7)

Notice that (1.2) is the formula (1.7) when \(f(z) = e^{\langle z,\zeta \rangle} \). Since the set of the functions \(e^{\langle z,\zeta \rangle}, \zeta \in \mathbb{C}^n \), is dense in the space of entire functions (with the topology of uniform convergence on compact sets), (1.2) is actually equivalent to (1.7).
2 The proof of the Theorem

First (1.1) guarantees the convergence of the integral which defines \(\theta^\rho_F(z) \), for \(\rho(z) \geq 1 \) (see [2, p.910]) and, as we pointed out before, \(\theta^\rho_F \in Z^{(n,n-1)}(\mathbb{C}^n - \{ \rho \leq 1 \}) \). Therefore, by Stokes’s theorem, the integral \(\int_{\rho=1} f \theta^\rho_F \) is equal to

\[
a_n \int_{\{ |z|=R \}} f(z) \int_{t=0}^\infty t^{n-1} e^{-t(z,\partial \rho/\partial z)} \sum_{k_1,\ldots,k_n} c_{k_1,\ldots,k_n} t^{k_1+\cdots+k_n} \times \left(\frac{\partial \rho}{\partial z_1} \right)^{k_1} \cdots \left(\frac{\partial \rho}{\partial z_n} \right)^{k_n} dt \partial \rho(z) \wedge [\bar{\partial} \partial \rho(z)]^{n-1}. \tag{2.1}
\]

We want to show that we may interchange the order of integration and summation in (2.1), provided that \(R \) is sufficiently large. By Lebesgue’s dominated convergence theorem, it suffices to choose \(R \) so that

\[
\sum_{k_1,\ldots,k_n} |c_{k_1,\ldots,k_n}| \int_{\{ |z|=R \}} \int_{t=0}^\infty |f(z)| t^{n-1} e^{-t(z,\partial \rho/\partial z)} t^{k_1+\cdots+k_n} \times \left(\frac{\partial \rho}{\partial z_1} \right)^{k_1} \cdots \left(\frac{\partial \rho}{\partial z_n} \right)^{k_n} \left| dt \partial \rho(z) \wedge [\bar{\partial} \partial \rho(z)]^{n-1} \right| < \infty. \tag{2.2}
\]

For this purpose, we will need an estimate for the coefficients \(c_k \), which follows from (1.1). First (1.1) implies that \(|F(\zeta)| \leq Ae^{B|\zeta|} \) for \(\zeta \in \mathbb{C}^n \), where \(A \) and \(B \) are positive constants. Using this and Cauchy’s formula in the polydisc, we see that the coefficients

\[
c_{k_1,\ldots,k_n} = \frac{1}{k_1! \cdots k_n!} \frac{\partial^{k_1+\cdots+k_n} F}{\partial \zeta_1^{k_1} \cdots \partial \zeta_n^{k_n}}(0)
\]

satisfy the inequality

\[
|c_{k_1,\ldots,k_n}| \leq \frac{Ae^{B(r_1+\cdots+r_n)}}{r_1^{k_1} \cdots r_n^{k_n}}, \quad \text{for every } r_1, \ldots, r_n > 0.
\]

Applying this with \(r_1 = k_1/B, \ldots, r_n = k_n/B \), we obtain that

\[
|c_{k_1,\ldots,k_n}| \leq \frac{(eB)^{k_1+\cdots+k_n}}{k_1^{k_1} \cdots k_n^{k_n}}, \quad \text{for every } k_1, \ldots, k_n. \tag{2.3}
\]
On an integral formula of Berndtsson

On the other hand \((\partial \rho / \partial z_j)(sz) = (\partial \rho / \partial z_j)(z)\) for \(s > 0\), and therefore

\[\left| \frac{\partial \rho}{\partial z_j}(z) \right| \leq \beta \stackrel{def}{=} \max \left\{ \left| \frac{\partial \rho}{\partial z_j}(\xi) \right| : |\xi| = 1, j = 1, \ldots, n \right\} \quad (z \neq 0). \]

Also the function \(\gamma(z) \stackrel{def}{=} \text{Re}\langle z, \partial \rho / \partial z \rangle\) has the property \(\gamma(sz) = s\gamma(z)\) \((s > 0)\), and therefore

\[\gamma(z) = |z|\gamma(z/|z|) \geq \epsilon |z| \quad \text{for } z \neq 0, \text{ where } \epsilon \stackrel{def}{=} \min \{\gamma(\xi) : |\xi| = 1\} > 0. \]

It follows that

\[\int_{t=0}^{\infty} e^{-t(z,\partial \rho / \partial z)} \left| e^{-t(z,\partial \rho / \partial z)} \right|^k dt = \frac{(n + k_1 + \cdots + k_n - 1)!}{[\gamma(z)]^{n+k_1+\cdots+k_n}} \leq \frac{(n + k_1 + \cdots + k_n - 1)!}{(\epsilon |z|)^{n+k_1+\cdots+k_n}}. \]

Thus

\[\int_{\{|z|=R\}} \int_{t=0}^{\infty} f(z) |t^{n-1} e^{-t(z,\partial \rho / \partial z)} \left| k_1 \cdots k_n \left(\partial \rho / \partial z_1 \right)^{k_1} \cdots \left(\partial \rho / \partial z_n \right)^{k_n} \right| dt \]

\[\times |\partial \rho(z) \wedge [\bar{\partial} \partial \rho(z)]^{n-1}| \leq \frac{(n + k_1 + \cdots + k_n - 1)!}{(\epsilon R)^{n+k_1+\cdots+k_n}} \beta^{k_1+\cdots+k_n} \int_{\{|z|=R\}} |f(z)||\partial \rho(z) \wedge [\bar{\partial} \partial \rho(z)]^{n-1}|. \]

This inequality together with (2.3) imply that, in order to have (2.2), it suffices to choose \(R\) so that

\[\sum_{k_1,\ldots,k_n} \frac{(n + k_1 + \cdots + k_n - 1)!}{(\epsilon R)^{k_1+\cdots+k_n}} \frac{(\beta eB)^{k_1+\cdots+k_n}}{k_1 \cdots k_n} < \infty. \quad (2.4) \]

But (2.4) holds, if \(R > n\beta eB/\epsilon\), since

\[\sum_{k_1,\ldots,k_n} \frac{(k_1 + \cdots + k_n)!}{k_1! \cdots k_n!} \tau_1^{k_1} \cdots \tau_n^{k_n} = \frac{1}{1 - (\tau_1 + \cdots + \tau_n)} \]

for \(\tau_1 + \cdots + \tau_n < 1, \tau_j > 0\).
Thus, working with $R > n\beta eB/\epsilon$, we may interchange the order of integration and summation in (2.1). The result is that the integral $\int_{\{\rho=1\}} f^{\rho} \tilde{F}$ is equal to the sum

$$\sum_{k_1,\ldots,k_n} c_{k_1,\ldots,k_n} \int_{\{|z|=R\}} f(z) \tilde{F}_{k_1,\ldots,k_n}^{\rho}(z),$$

which, by (1.6), is equal to $\sum_{k_1,\ldots,k_n} c_{k_1,\ldots,k_n} \frac{\partial^{k_1+\cdots+k_n} f}{\partial w_1^{k_1} \cdots \partial w_n^{k_n}}(0)$.

This proves (1.7) and completes the proof of the Theorem.

References

Telemachos Hatziafratis

University of Athens
Department of Mathematics
Panepistemiopolis
Athens 15784
GREECE
thatziaf@math.uoa.gr