Minggen Cui, Xueqin Lv

Weyl-Heisenberg frame in p-adic analysis

<http://ambp.cedram.org/item?id=AMBP_2005__12_1_195_0>

© Annales mathématiques Blaise Pascal, 2005, tous droits réservés.

L’accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques de l’université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

http://www.cedram.org/
Weyl-Heisenberg frame in p-adic analysis

Minggen Cui
Xueqin Lv

Abstract

In this paper, we establish an one-to-one mapping between complex-valued functions defined on \(R^+ \cup \{0\} \) and complex-valued functions defined on \(p \)-adic number field \(\mathbb{Q}_p \), and introduce the definition and method of Weyl-Heisenberg frame on harmonic analysis to \(p \)-adic analysis.

1 Introduction

Wavelet transform was introduced to the field of \(p \)-adic numbers in [1]. In [4],[3] some theory of wavelet analysis and affine frame introduced to the field of \(p \)-adic numbers, respectively, on the basis of a mapping \(P : R^+ \cup \{0\} \rightarrow \mathbb{Q}_p \) (field of \(p \)-adic numbers). This paper considers on the basis of the mapping \(P \), gives the Weyl-Heisenberg frame in field of \(p \)-adic numbers.

The field \(\mathbb{Q}_p \) of the \(p \)-adic numbers is defined as the completion of field \(\mathbb{Q} \) of rational with respect to the \(p \)-adic metric induced by the \(p \)-adic norm \(|.|_p\), (see [5]). A \(p \)-adic number \(x \neq 0 \) is uniquely represented in the canonical form

\[
x = p^{-r} \sum_{k=0}^{\infty} x_k p^k, \quad |x|_p = p^r
\]

where \(p \) is prime and \(r \in Z \) (\(Z \) is integer set), \(0 \leq x_k \leq p-1, x_0 \neq 0 \). For \(x, y \in \mathbb{Q}_p \), we define \(x < y \), either when \(|x|_p < |y|_p \) or when \(|x|_p = |y|_p \), but there exists an integer \(j \) such that \(x_0 = y_0, \ldots, x_{j-1} = y_{j-1}, x_j < y_j \) from viewpoint of (1.1). By interval \([a, b]\), we mean the set defined by \(\{x \in \mathbb{Q}_p | a \leq x \leq b\} \).

It is known that if \(x = p^r \sum_{k=0}^{n} x_k p^{-k} \in R^+ \cup \{0\} \) and \(x_0 \neq 0, \ 0 \leq x_k \leq p-1, k = 1, 2, \ldots \), then there is another expression;

\[
x = p^r \left(\sum_{k=0}^{n-1} x_k p^{-k} + (x_n - 1)p^{-n} + (p - 1) \sum_{k=n+1}^{\infty} p^{-k} \right)
\]
But we won’t use that expression (1.2) in this paper.

A mapping \(P : R^+ \cup \{0\} \rightarrow \mathbb{Q}_p \) was introduced in [4],[3],[2], as for
\[
x = p^r \sum_{k=0}^{\infty} x_k p^{-k} \in R, \hspace{1em} x_0 \neq 0, \hspace{1em} 0 \leq x_k \leq p - 1, \hspace{1em} k = 1, 2, \ldots
\]

\[
P(x) = p^{-r} \sum_{k=0}^{\infty} x_k p^k
\]

Let \(M_p = P(M_R) \),
\[
M_R = \{ x_R | x_R = p^r \sum_{k=0}^{n-1} x_k p^{-k} + (n-1)p^{-n} + (p-1) \sum_{k=0}^{\infty} p^{-k}, n \in \mathbb{Z}^+ \cup \{0\} \}
\]

In the following to distinguish between real number field \(R \) and \(p \)-adic number field \(\mathbb{Q}_p \), number in \(R \) denotes by the subscript \(R \), and number with the subscript \(p \) belongs to \(\mathbb{Q}_p \). For example \(x_R, a_R, b_R \) in \(R \); \(x_p, a_p \) in \(\mathbb{Q}_p \).

In [2] a measure is constructed using the mapping \(P \) from \(R^+ \cup \{0\} \) into \(\mathbb{Q}_p \setminus M_p \) and Lebesgue measure on \(R^+ \cup \{0\} \), the symbol \(\sum \) is the set of all compact subsets of \(\mathbb{Q}_p \), and \(S \) is the \(\sigma \)-ring generated by \(\sum \).

Definition 1.1: Let \(E \in S \), and put \(E_P = E \setminus M_p \), and \(E_R = P^{-1}(E_P) \). If \(E_R \) is a measurable set on \(R^+ \cup \{0\} \), the we call \(E \) is a measurable set on \(\mathbb{Q}_p \), and define a set function \(\mu_p(E) \) on \(S \)
\[
\mu_p(E) = \frac{1}{p} \mu(E_R)
\]
where \(\mu(E_R) \) is the Lebesgue measure on \(E_R \). This \(\mu_p(E) \) is called the measure on \(E \).

By the Definition 1.1, some examples can given immediately:
1. Let \(a_p, b_p \in \mathbb{Q}_p \), then \(\mu_p([a_p, b_p]) = (b_R - a_R)/p \)
2. Let \(B_r(0) = \{ x_p | x_p \leq p^r, x_p \in \mathbb{Q}_p \} \), then \(\mu_p\{B_r(0)\} = p^r \)
3. Let \(S_r(0) = \{ x_p | p^r, x_p \in \mathbb{Q}_p \} \), then \(\mu_p\{S_r(0)\} = p^r(1 - \frac{1}{p}) \)
4. \(\mu_p\{M_p\} = 0 \)

According to the above definition 1.1 of measure, we can define integration over measurable sets \(E \) in \(\mathbb{Q}_p \)
\[
\int_E f(x_p) d\mu_p(x_p) \hspace{1em} \text{or} \hspace{1em} \int_E f(x_p) dx_p
\]
By the definition 1.1 of measure we have following theorem.

Theorem 1.2: (see [2]) Suppose $f(x_p)$ is a Complex-Valued function on Q_p, the $f(x_p)$ is integrable over the interval $[a_p, b_p](a_p, b_p \in Q_p)$, if and if the real function $f_R(x_R)$ defined on $R^+ \cup \{0\}$ is Lebesgue integrable over the interval $[a_R, b_R]$, and

$$
\int_{[a_p, b_p]} f(x_p) dx_p = \frac{1}{p} \int_{a_R}^{b_R} f(x_R) dx_R
$$

(1.3)

where $f_R(x_R)$ is defined

$$
f(x_p) = f(P \circ P^{-1}(x_p)) = (f \circ P)(x_R) \overset{def}{=} f_R(x_R), x_p = P(x_R) \in Q_p \setminus M_p
$$

2 Weyl-Heisenberg frame on p-adic number field

In real analysis, if there exists constants A and B, $A, B > 0$, such that

$$
A\|f\|^2_{L^2(R)} \leq \sum_{m,n} |(f, g_{m,n})_{L^2(R)}|^2 \leq B\|f\|^2_{L^2(R)}
$$

holds for $\forall f \in L^2(R)$, then $g_{mn}(x)$ is called the Weyl-Heisenberg frame, where $g \in L^2(R), p_0, q_0 \in R, g_{mn}(x) = g(x - nq_0)e^{2\pi i m x}, m, n \in Z$ and $(f, g_{mn})_{L^2(R)}$ is inner product in $L^2(R),

$$(f, g_{mn})_{L^2(R)} = \int_{R} f(x)\overline{g_{mn}(x)} dx.$$

In this section we give the definition of a Weyl-Heisenberg frame in Q_p by

$$
g_{mn}(x_p) = g(\alpha_{mn}(x_p) - x_p) \exp(2\pi i m p_0 \rho(x_p))
$$

(2.1)

where

$$
\alpha_{mn}(x_p) = P(|x_R + nq_0|) + x_p
$$

(2.2)

and $m, n, p_0, q_0 \in Z, x_R = P^{-1}(x_p), x_p \in Q_p \setminus M_p$. If $g_{mn}(x_p)$ satisfies the frame condition:

$$
A\|f\|^2_{L^2} \leq \sum_{m,n} |(f, g_{m,n})_{L^2}|^2 \leq B\|f\|^2_{L^2}, A, B > 0, \forall f \in L^2(Q_p)
$$
then we have

\[f(x_p) = \sum_{m,n} (f, g_{m,n}^*)_{L^2} g_{m,n}(x_p) = \sum_{m,n} (f, g_{m,n}) g_{m,n}^*(x_p), \quad x_p \in Q_p \]

where \(\{g_{m,n}^*\} \) is the dual frame of \(\{g_{m,n}\} \):

\[g_{m,n}^* = S^{-1} g_{m,n} \]

and \(S \) is the frame operator:

\[S f = \sum_{m,n} (f, g_{m,n})_{L^2} g_{m,n} \]

and

\[(f, g_{m,n})_{L^2} = \int_{Q_p} f(x_p) g_{m,n}(x) dx \]

Theorem 2.1: Suppose \(f, g \in L^2(Q_p) \) are complex-valued functions defined on \(Q_p \), \(p_0 = p^r, q_0 = p^q, r_p, r_q \in \mathbb{Z} \), if support \(\hat{g}_R(|w|) \subset \left[\frac{-1}{2q_0}, \frac{1}{2q_0} \right] \), and \(\exists A, B > 0 \), such that

\[A \leq \sum_{m \in \mathbb{Z}} |\hat{g}_R(|w - mp_0|)|^2 \leq B, \quad w \in \mathbb{R}, \forall w \neq 0, \]

then functions \(g_{m,n}(x_p) \) defined by (2.1) construct a frame of \(L^2(Q_p) \), where \(g_R(|t|) = (g \circ P)(|t|) = g(x_p), (P(|t|) = x_p), g_R = g \circ P, t \in \mathbb{R}, \) and \(\hat{g}_R(|w|) \) is the Fourier transform of \(g_R(|t|) \) in real analysis

\[\hat{g}_R(|w|) = \int_R g_R(|t|) \exp(-2\pi i wt) dt \]

Proof. From formula (2.2) or \(g(\alpha_{mn}(x_p) - x_p) = (g \circ P)(|x_p + nq_0|) = g_R(|x_p + nq_0|) \), for \(\forall f \in L^2(Q_p) \), we have

\[\sum_{m,n \in \mathbb{Z}} |(f, g_{m,n})_{L^2}|^2 = \sum_{m,n \in \mathbb{Z}} |\int_{Q_p} f(x_p) \overline{g_{m,n}(x_p)} dx_p|^2 \]

\[= \sum_{m,n \in \mathbb{Z}} |\int_{Q_p} f(x_p) \overline{g(\alpha_{m}^{(n)}(x_p) - x_p)} \exp(-2\pi i mp_0 \rho(x_p))|^2 \]
Weyl-Heisenberg frame in p-adic analysis

\[\frac{1}{p} \sum_{m,n \in \mathbb{Z}} \left| \int_{R^+} f_R(x_R) \overline{g_R(|x_R + nq_0|)} \exp(-2\pi imp_0 x_R) dx_R \right|^2 \] (2.3)

where we used (1.3) and \(f_R(x_R) = (f \circ P^{-1})(x_p) \) in section 1.

Let

\[f_R^+(x) = \begin{cases} f_R(x), & x \geq 0 \\ 0, & x < 0 \end{cases} \]

From (2.3), we obtain

\[\sum_{m,n \in \mathbb{Z}} |(f, g_{m,n})|^2 \]

\[= \sum_{m,n \in \mathbb{Z}} \left| \int_R f_R^+(x) \overline{g_R(|x + nq_0|)} \exp(-2\pi imp_0 x) dx \right|^2 \]

\[= \sum_{m,n \in \mathbb{Z}} \left| \int_R \hat{f}_R(w) \hat{g}_R(|\cdot + nq_0|) \exp(2\pi imp_0 \cdot) \hat{g}(w) dw \right|^2 \] (2.4)

where sign “:” is the argument on the function, for Fourier transform. But

\[[g_R(|\cdot + nq_0|) \exp(2\pi imp_0 \cdot)](w) \]

\[= \hat{g}_R(|w - mp_0|) \exp(2\pi inq_0 (w - mp_0)) \]

Hence from the support \(\hat{g} \subset [-\frac{1}{2q_0}, \frac{1}{2q_0}] \) in condition of the theorem and (2.4) we have

\[\sum_{m,n \in \mathbb{Z}} |(f, g_{mn})|^2 \]

\[= \sum_{m,n \in \mathbb{Z}} \left| \int_R \hat{f}_R^+(w + mp_0) \hat{g}_R(|w|) \exp(-2\pi inq_0 w) dw \right|^2 \]

\[= \sum_{m,n \in \mathbb{Z}} \left| \int_{\frac{1}{2q_0}}^{\frac{1}{2q_0}} \hat{f}_R^+(w + mp_0) \hat{g}_R(|w|) \exp(-2\pi inq_0 w) \overline{dw} \right|^2 \] (2.5)
We know that
\[c_n = q_0 \int_{-\frac{1}{2q_0}}^{\frac{1}{2q_0}} \hat{f}_R^+(w + mp_0) \hat{g}_R^+(|w|) \exp(-2\pi i q_0 w) dw, \quad n \in \mathbb{Z} \]
are Fourier coefficient of \(\hat{f}_R^+(w + mp_0) \hat{g}_R^+(|w|) \) on \([\frac{-1}{2q_0}, \frac{1}{2q_0}] \). Hence by virtue of Parseval equality we have
\[\sum_{n \in \mathbb{Z}} |c_n|^2 = q_0 \int_{-\frac{1}{2q_0}}^{\frac{1}{2q_0}} |\hat{f}_R^+(w + mp_0) \hat{g}_R^+(|w|)|^2 dw \]
\[= q_0 \int_{-\frac{1}{2q_0}}^{\frac{1}{2q_0}} |\hat{f}_R^+(w + mp_0)|^2 dw
\]
\[= q_0 \int_{R} |\hat{f}_R^+(w + mp_0)|^2 dw
\]
\[= q_0 \int_{R} |\hat{f}_R^+(w)|^2 \hat{g}_R^+(|w - mp_0|)^2 dw \] (2.6)
Comparing (2.5) and (2.6), we have
\[\sum_{m,n \in \mathbb{Z}} |(f, g_{m,n})_{L^2}|^2 = \frac{1}{q_0} \int_{R} |\hat{f}_R^+(w)|^2 G(w) dw \] (2.7)
where
\[G(w) = \sum_{m \in \mathbb{Z}} |\hat{g}_R^+(|w - mp_0|)|^2 \]
Finally, by virtue of the conditions of the theorem, we have
\[\sum_{m \in \mathbb{Z}, n \in \mathbb{Z}} |(f, g_{m,n})_{L^2}|^2 = \begin{cases} \geq \frac{A}{q_0} \int_{R} |\hat{f}_R^+(w)|^2 dw \\ \leq \frac{B}{q_0} \int_{R} |\hat{f}_R^+(w)|^2 dw \end{cases} \]
But
\[\int_{R} |\hat{f}_R^+(w)|^2 dw = \int_{R} |f_R^+(x)|^2 dx = \int_{R} |f_R(x_R)|^2 dx_R = \int_{Q_p} |f(x_p)|^2 dx_p = \|f\|_{L^2}. \]
Hence we completed our proof.
3 Dual frame

In the section, we will give a formula to calculate the dual frame. By (2.7), we have

\[(Sf, f)_{L^2} = \sum_{m,n \in \mathbb{Z}} |(f, g_{m,n})_{L^2}|^2 = \frac{1}{q_0} \int_{R} \hat{f_R}^+(w)G(w)\overline{\hat{f_R}^+(w)}dw \]

\[= \frac{1}{q_0} \int_{R} (\hat{f_R}^+(\cdot)G(\cdot))\overline{\varphi(\cdot)}dx \]

\[= \frac{1}{q_0} \int_{R^+} (\hat{f_R}^+(\cdot)G(\cdot))\overline{\varphi(\cdot)}\overline{\varphi(\cdot)}dx \]

where sign “ v ” is the inverse Fourier transform. Therefore

\[(Sf, f)_{L^2} = \frac{1}{q_0} \int_{Q_p} (\hat{f_R}^+(\cdot)G(\cdot))\overline{(P^{-1}(x_p))}\overline{\varphi(\cdot)}dx_p \]

\[= \frac{1}{q_0} ((\hat{f_R}^+(\cdot)G(\cdot))\overline{(P^{-1}(x_p))}, f(x_p))_{L^2} \]

Since \(f \) is an arbitrary function in \(L^2(Q_p) \), we conclude that

\[(Sf)(x_p) = \frac{1}{q_0} (\hat{f_R}^+(\cdot)G(\cdot))\overline{(P^{-1}(x_p))} \]

or for \(x \in R^+ \cup \{0\} \) we conclude that

\[(Sf)_R(x_R) = \frac{1}{q_0} (\hat{f_R}^+(\cdot)G(\cdot))\overline{x_R}, x_R \geq 0 \]

(3.1)

where \((Sf)_R = (Sf)P^{-1} \)

Bases on (3.1), we will extend the domain of \((Sf)_R(x_R) \) from \(R^+ \cup \{0\} \) onto \(R \) such that \((Sf)_R(t), t \in R \) is an even function on \(R \). Taking Fourier transform on both sides of (3.1), we have

\[((Sf)_R)(w) = \frac{1}{q_0} \hat{f_R}^+(w)G(w) \]

(3.2)
After replace f with $S^{-1}f$ in formula (3.2), we have

$$\hat{f}_R(w) = \frac{1}{q_0} \{(S^{-1}f)^+_R(w)\}^G(w)$$

Which leads to

$$\{(S^{-1}f)^+_R(w)\}^G(w) = \frac{q_0\hat{f}_R(w)}{G(w)} \quad (3.3)$$

Then we take Fourier inverse transformation on both sides of (3.3), we have

$$(S^{-1}f)^+_R(x) = \left\{\frac{q_0\hat{f}_R(\cdot)}{G(\cdot)}\right\}^\vee(x)$$

So, for $x \geq 0$,

$$(S^{-1}f)_R(x_R) = \left\{\frac{q_0\hat{f}_R(\cdot)}{G(\cdot)}\right\}^\vee(x_R)$$

is valied or

$$(S^{-1})f(x_p) = \left\{\frac{q_0\hat{f}_R(\cdot)}{G(\cdot)}\right\}^\vee(P^{-1}(x_p)) \quad (3.4)$$

Finally, let $f(x_p) = g_{mn}(x_p)$ in formula (3.4), we obtain

$$g^{*}_{m,n}(x_p) = \left\{\frac{q_0\hat{f}_R(\cdot)}{G(\cdot)}\right\}^\vee(P^{-1}(x_p))$$

References

Weyl-Heisenberg frame in p-adic analysis

Minggen Cui
Harbin Institute of Technology
Department of Mathematics
Wen Hua Xi Road
Weihai Shan Dong, 264209
P.R.China
cmgyfs@263.net

Xueqin Lv
Harbin Normal University
Department of Information Science
He Xing Road
Harbin HeiLongJiang, 150001
P.R.China
lvxueqin@163.net