Fares Gherbi and Tarek Rouabhi

Hyper–(Abelian–by–finite) groups with many subgroups of finite depth

<http://ambp.cedram.org/item?id=AMBP_2007___14_1_17_0>
Hyper–(Abelian–by–finite) groups with many subgroups of finite depth

FARES GHERBI
TAREK ROUABHI

Abstract

The main result of this note is that a finitely generated hyper–(Abelian–by–finite) group G is finite–by-nilpotent if and only if every infinite subset contains two distinct elements x, y such that $\gamma_n(\langle x, x^y \rangle) = \gamma_{n+1}(\langle x, x^y \rangle)$ for some positive integer $n = n(x, y)$ (respectively, $\langle x, x^y \rangle$ is an extension of a group satisfying the minimal condition on normal subgroups by an Engel group).

1. Introduction and results

Let \mathcal{X} be a class of groups. Denote by (\mathcal{X}, ∞) (respectively, $(\mathcal{X}, \infty)^*$) the class of groups G such that for every infinite subset X of G, there exist distinct elements $x, y \in X$ such that $\langle x, y \rangle \in \mathcal{X}$ (respectively, $\langle x, x^y \rangle \in \mathcal{X}$). Note that if \mathcal{X} is a subgroup closed class, then $(\mathcal{X}, \infty) \subseteq (\mathcal{X}, \infty)^*$.

In answer to a question of Erdös, B.H. Neumann proved in [16] that a group G is centre–by–finite if and only if G is in the class (\mathcal{A}, ∞), where \mathcal{A} denotes the class of Abelian groups. Lennox and Wiegold showed in [13]...
that a finitely generated soluble group is in the class \((\mathcal{N}, \infty)\) (respectively, \((\mathcal{P}, \infty))\) if and only if it is finite-by-nilpotent (respectively, polycyclic), where \(\mathcal{N}\) (respectively, \(\mathcal{P}\)) denotes the class of nilpotent (respectively, polycyclic) groups. Other results of this type have been obtained, for example in \([1]—[3], [4]—[6], [7], [8], [13], [14]—[16], [21], [22]\) and \([23]\).

We say that a group \(G\) has finite depth if the lower central series of \(G\) stabilises after a finite number of steps. Thus if \(\gamma_n(G)\) denotes the \(n^\text{th}\) term of the lower central series of \(G\), then \(G\) has finite depth if and only if \(\gamma_n(G) = \gamma_{n+1}(G)\) for some positive integer \(n\). Denote by \(\Omega\) the class of groups which has finite depth. Moreover, if \(k\) is a fixed positive integer, let \(\Omega_k\) denotes the class of groups \(G\) such that \(\gamma_k(G) = \gamma_{k+1}(G)\).

Clearly, any group in the class \(\mathcal{FN}\) is of finite depth, where \(\mathcal{F}\) denotes the class of finite groups. From this and the fact that \(\mathcal{FN}\) is a subgroup closed class, we deduce that finite-by-nilpotent groups belong to \((\Omega, \infty)^*\). Here we shall be interested by the converse. In \([5]\), Boukaroura has proved that a finitely generated soluble group in the class \((\Omega, \infty)\) is finite-by-nilpotent. We obtain the same result when \((\Omega, \infty)^*\) is replaced by \((\Omega, \infty)^*\) and soluble by hyper-(Abelian-by-finite). More precisely we shall prove the following result.

Theorem 1.1. Let \(G\) be a finitely generated hyper-(Abelian-by-finite) group. Then, \(G\) is in the class \((\Omega, \infty)^*\) if, and only if, \(G\) is finite-by-nilpotent.

Note that Theorem 1.1 improves the result of \([12]\) which asserts that a finitely generated soluble-by-finite group whose subgroups generated by two conjugates are of finite depth, is finite-by-nilpotent.

It is clear that an Abelian group \(G\) in the class \((\Omega_1, \infty)^*\) is finite. For if \(G\) is infinite, then it contains an infinite subset \(X = G \setminus \{1\}\). Therefore there exist two distinct elements \(x, y \neq 1\) in \(X\) such that \(\gamma_1(\langle x, x^y \rangle) = \gamma_2(\langle x, x^y \rangle) = 1\); so \(x = 1\), which is a contradiction. From this it follows that a hyper-(Abelian-by-finite) group \(G\) in the class \((\Omega_1, \infty)^*\) is hyper-(finite) as \((\Omega_1, \infty)^*\) is a subgroup and a quotient closed class. But it is not difficult to see that a hyper-(finite) group is locally finite \([17, \text{Part 1, page 36}]\). So \(G\) is locally finite. Now if \(G\) is infinite, then it contains an infinite Abelian subgroup \(A\) \([17, \text{Theorem 3.43}]\). Since \(A\) is in the class \((\Omega_1, \infty)^*\), it is finite; a contradiction and \(G\), therefore, is finite. As consequence of Theorem 1.1, we shall prove other results on the class \((\Omega_k, \infty)^*\).

Corollary 1.2. Let \(k\) be a positive integer and let \(G\) be a finitely generated hyper-(Abelian-by-finite) group. We have:
A condition on infinite subsets

(i) If G is in the class $(\Omega_k, \infty)^*$, then there exists a positive integer $c = c(k)$, depending only on k, such that $G/Z_c(G)$ is finite.

(ii) If G is in the class $(\Omega_2, \infty)^*$, then $G/Z_2(G)$ is finite.

(iii) If G is in the class $(\Omega_3, \infty)^*$, then G is in the class $\mathcal{FN}_3^{(2)}$, where $\mathcal{N}_3^{(2)}$ denotes the class of groups whose 2-generator subgroups are nilpotent of class at most 3.

Let k be a fixed positive integer, denote by \mathcal{M}, \mathcal{E}_k and \mathcal{E} respectively the class of groups satisfying the minimal condition on normal subgroups, the class of k-Engel groups and the class of Engel groups. Using Theorem 1.1, we will prove the following results concerning the classes $(\mathcal{M}\mathcal{E}, \infty)^*$ and $(\mathcal{M}\mathcal{E}_k, \infty)^*$

Theorem 1.3. Let G be a finitely generated hyper-(Abelian-by-finite) group. Then, G is in the class $(\mathcal{M}\mathcal{E}, \infty)^*$ if, and only if, G is finite-by-nilpotent.

Note that this theorem improves Theorem 3 of [23] (respectively, Corollary 3 of [5]) where it is proved that a finitely generated soluble group in the class $(\mathcal{CN}, \infty)^*$ (respectively, (\mathcal{XN}, ∞)) is finite-by-nilpotent, where \mathcal{C} (respectively, \mathcal{X}) denotes the class of Chernikov groups (respectively, the class of groups satisfying the minimal condition on subgroups).

Corollary 1.4. Let k be a positive integer and let G be a finitely generated hyper-(Abelian-by-finite) group. We have:

(i) If G is in the class $(\mathcal{M}\mathcal{E}_k, \infty)^*$, then there exists a positive integer $c = c(k)$, depending only on k, such that $G/Z_c(G)$ is finite.

(ii) If G is in the class $(\mathcal{MA}, \infty)^*$, then $G/Z_2(G)$ is finite.

(iii) If G is in the class $(\mathcal{M}\mathcal{E}_2, \infty)^*$, then G is in the class $\mathcal{FN}_3^{(2)}$.

Note that these results are not true for arbitrary groups. Indeed, Golod [9] showed that for each integer $d > 1$ and each prime p, there are infinite d-generator groups all of whose $(d-1)$-generator subgroups are finite p-groups. Clearly, for $d = 3$, we obtain a group G which belongs to the class $(\mathcal{F}, \infty)^*$. Therefore, G belongs to the classes $(\Omega, \infty)^*$, $(\Omega_k, \infty)^*$, $(\mathcal{M}\mathcal{E}, \infty)^*$ and $(\mathcal{M}\mathcal{E}_k, \infty)^*$, but it is not finite-by-nilpotent.

Acknowledgments: The authors would like to thank their supervisor Dr. N. Trabelsi for his help and encouragement while doing this work.
2. Proofs of Theorem 1.1 and Corollary 1.2

Let $\mathcal{E}(\infty)$ the class of groups in which every infinite subset contains two distinct elements x, y such that $[x, n y] = 1$ for a positive integer $n = n(x, y)$. In [15], it is proved that a finitely generated soluble group in the class $\mathcal{E}(\infty)$ is finite-by-nilpotent. We will extend this result to finitely generated hyper-(Abelian-by-finite) groups (Proposition 2.5).

Our first lemma is a weaker version of Lemma 11 of [23], but we include a proof to keep our paper reasonably self contained.

Lemma 2.1. Let G be a finitely generated Abelian-by-finite group. If G is in the class (\mathcal{FN}, ∞), then it is finite-by-nilpotent.

Proof. Let G be a finitely generated infinite Abelian-by-finite group in the class (\mathcal{FN}, ∞). Hence there is a normal torsion-free Abelian subgroup A of finite index. Let x be a non trivial element in A and let g in G. Then the subset $\{x^i g : i \text{ a positive integer}\}$ is infinite, so there are two positive integers m, n such that $\langle x^m g, x^n g \rangle$ is finite-by-nilpotent, hence $\langle x^r, x^n g \rangle$ is finite-by-nilpotent where $r = m - n$. Thus there are two positive integers c and d such that $[x^r c, x^n g]^d = 1$. The element x being in A which is Abelian and normal in G, we have $[x^r c, x^n g] = [x^r c, g] = [x, c g]^r$; so $[x, c g]^r d = 1$.

Now $[x, c g]$ belongs to the torsion-free group A, so $[x, c g] = 1$. It follows that x is a right Engel element of G. Since G is Abelian-by-finite and finitely generated, it satisfies the maximal condition on subgroups; so the set of right Engel elements of G coincides with its hypercentre which is equal to $Z_i (G)$, the $(i + 1)$-th term of the upper central series of G, for some integer $i > 0$ [17, Theorem 7.21]. Hence, $A \leq Z_i (G)$; and since A is of finite index in G, $G/Z_i (G)$ is finite. Thus, by a result of Baer [10, Theorem 1], G is finite-by-nilpotent. \hfill \Box

Lemma 2.2. Let G be a finitely generated Abelian-by-finite group. If G is in the class $\mathcal{E}(\infty)$, then it is finite-by-nilpotent.

Proof. Let G be an infinite finitely generated Abelian-by-finite group in $\mathcal{E}(\infty)$, and let A be an Abelian normal subgroup of finite index in G. It is clear that all infinite subsets of G contains two different elements x, y such that $x A = y A$; so $y = x a$ for some a in A and $\langle x, y \rangle = \langle x, a \rangle$. Thus $\langle x, y \rangle$ is a finitely generated metabelian group in the class $\mathcal{E}(\infty)$. It follows by the result of Longobardi and Maj [15, Theorem 1], that $\langle x, y \rangle$
A condition on infinite subsets

is finite-by-nilpotent. Hence G is in the class (\mathcal{FN}, ∞). Now, by Lemma 2.1, G is finite-by-nilpotent; as required.

Lemma 2.3. A finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$ is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$. Since $\mathcal{E}(\infty)$ is a quotient closed class of groups and since finitely generated nilpotent-by-finite groups are finitely presented, we may assume that G is not nilpotent-by-finite but every proper homomorphic image of G is in the class \mathcal{NF}. Since G is hyper-(Abelian-by-finite), G contains a non-trivial normal subgroup H such that H is finite or Abelian; so we have G/H is in \mathcal{NF}. If H is finite then G is nilpotent-by-finite, a contradiction. Consequently H is Abelian and so G is Abelian-by-(nilpotent-by-finite) and therefore it is (Abelian-by-nilpotent)-by-finite. Hence, G is a finite extension of a soluble group; there is therefore a normal soluble subgroup K of G of finite index. Now, K is a finitely generated soluble group in the class $\mathcal{E}(\infty)$; it follows, by the result of Longobardi and Maj [15, Theorem 1], that K is finite-by-nilpotent. By a result of P. Hall [10, Theorem 2], K is nilpotent-by-finite and so G is nilpotent-by-finite, a contradiction. Now, the Lemma is shown.

Since finitely generated nilpotent-by-finite groups satisfy the maximal condition on subgroups, Lemma 2.3 has the following consequence:

Corollary 2.4. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$. Then G satisfies the maximal condition on subgroups.

Proposition 2.5. A finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$ is finite-by-nilpotent.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in $\mathcal{E}(\infty)$. According to Corollary 2.4, G satisfies the maximal condition on subgroups. Now, since $\mathcal{E}(\infty)$ is a quotient closed class, we may assume that every proper homomorphic image of G is in \mathcal{FN}, but G itself is not in \mathcal{FN}. Our group G being hyper-(Abelian-by-finite), contains a non-trivial normal subgroup H such that H is finite or Abelian; so by hypothesis G/H is in the class \mathcal{FN}. If H is finite, then G is finite-by-nilpotent, a contradiction. Consequently H is Abelian and so G is in the class $A(\mathcal{FN})$, hence G is in $(A\mathcal{F})\mathcal{N}$. Now, since G satisfies the maximal condition on
subgroups, it follows from Lemma 2.2, that \(G \) is in \(\mathcal{F}(\mathcal{N}) \mathcal{N} \), so it is in \(\mathcal{F}(\mathcal{N}) \mathcal{N} \). Consequently, there is a finite normal subgroup \(K \) of \(G \) such that \(G/K \) is soluble. The group \(G/K \), being a finitely generated soluble group in the class \(\mathcal{E}(\infty) \), is in \(\mathcal{F} \mathcal{N} \mathcal{N} \), by the result of Longobardi and Maj [15, Theorem 1]. So \(G \) is in the class \(\mathcal{F} \mathcal{N} \), which is a contradiction and the Proposition is shown. \(\square \)

The remainder of the proof of Theorem 1.1 is adapted from that of Lennox’s Theorem [11, Theorem 3]

Lemma 2.6. Let \(G \) be a finitely generated hyper-(Abelian-by-finite) group in the class \((\Omega, \infty)^*\). If \(G \) is residually nilpotent, then \(G \) is in the class \(\mathcal{F} \mathcal{N} \).

Proof. Let \(G \) be a finitely generated hyper-(Abelian-by-finite) group in the class \((\Omega, \infty)^*\) and assume that \(G \) is residually nilpotent. Let \(X \) be an infinite subset of \(G \), there are two distinct elements \(x \) and \(y \) of \(X \) such that \(\langle x, x^y \rangle \in \Omega \). It follows that there exists a positive integer \(k \) such that \(\gamma_k(\langle x, x^y \rangle) = \gamma_{k+1}(\langle x, x^y \rangle) \). The group \(\langle x, x^y \rangle \), being a subgroup of \(G \), is residually nilpotent, so \(\bigcap_{i \in \mathbb{N}} \gamma_i(\langle x, x^y \rangle) = 1 \). Hence \(\gamma_k(\langle x, x^y \rangle) = \bigcap_{i \in \mathbb{N}} \gamma_i(\langle x, x^y \rangle) = 1 \). Since \(\langle x, x^y \rangle = \langle [y, x], x \rangle; \gamma_k([y, x], x) = 1 \), thus \([y, x] = 1 \). We deduce that \(G \) is a finitely generated hyper-(Abelian-by-finite) group in the class \(\mathcal{E}(\infty) \). It follows, by Proposition 2.5, that \(G \) is in the class \(\mathcal{F} \mathcal{N} \), as required. \(\square \)

Lemma 2.7. If \(G \) is a finitely generated hyper-(Abelian-by-finite) group in the class \((\Omega, \infty)^*\), then it is nilpotent-by-finite.

Proof. Let \(G \) be a finitely generated hyper-(Abelian-by-finite) group in \((\Omega, \infty)^*\). Since finitely generated nilpotent-by-finite groups are finitely presented and \((\Omega, \infty)^*\) is a quotient closed class of groups, by [17, Lemma 6.17], we may assume that every proper quotient of \(G \) is nilpotent-by-finite, but \(G \) itself is not nilpotent-by-finite. Since \(G \) is hyper-(Abelian-by-finite), it contains a non-trivial normal subgroup \(K \) such that \(K \) is finite or Abelian; so \(G/K \) is in \(N \mathcal{F} \). In this case, \(K \) is Abelian and so \(G \) is in the class \(\mathcal{A}(N \mathcal{F}) \) and therefore it is in the class \((\mathcal{A}N) \mathcal{F} \). Consequently, \(G \) has a normal subgroup \(N \) of finite index such that \(N \) is Abelian-by-nilpotent. Moreover, \(N \) being a subgroup of finite index in a finitely generated group, is itself finitely generated, and so \(N \) is a finitely generated Abelian-by-nilpotent group. It follows, by a result of Segal [19,
Corollary 1], that \(N \) has a residually nilpotent normal subgroup of finite index. Thus, \(G \) has a residually nilpotent normal subgroup \(H \), of finite index. Therefore, \(H \) is residually nilpotent and it is a finitely generated hyper-(Abelian-by-finite) group in the class \((\Omega, \infty)^*\). So, by Lemma 2.6, \(H \) is in the class \(\mathcal{FN} \), hence \(H \) is in the class \(\mathcal{NF} \). Thus \(G \) is in the class \(\mathcal{NF} \), a contradiction which completes the proof. \(\square \)

Lemma 2.8. Let \(G \) be a finitely generated group in the class \((\Omega, \infty)^*\) which has a normal nilpotent subgroup \(N \) such that \(G/N \) is a finite cyclic group. Then \(G \) is in the class \(\mathcal{FN} \).

Proof. We prove by induction on the order of \(G/N \) that \(G \) is in the class \(\mathcal{FN} \). Let \(n = |G/N| \); if \(n = 1 \), then \(G = N \) and \(G \) is nilpotent. Now suppose that \(n > 1 \) and let \(q \) be a prime dividing \(n \). Since \(G/N \) is cyclic, it has a normal subgroup of index \(q \). Thus \(G \) has a normal subgroup \(H \) of index \(q \) containing \(N \). Since \(|H/N| < |G/N| \), then by the inductive hypothesis, \(H \) is in the class \(\mathcal{FN} \). Let \(T \) be the torsion subgroup of \(H \). Since \(H \) is finitely generated, \(T \) is finite. So \(H/T \) is a finitely generated torsion-free nilpotent group. Therefore, by Gruenberg [18, 5.2.21], \(H/T \) is residually a finite \(p \)-group for all primes \(p \) and hence, in particular, \(H/T \) is residually a finite \(q \)-group. But \(H \) has index \(q \) in \(G \) from which we get that \(G/T \) is residually a finite \(q \)-group [20, Exercise 10, page 17]. This means that \(G/T \) is residually nilpotent. It follows, by Lemma 2.6, that \(G/T \) is in the class \(\mathcal{FN} \). So \(G \) itself is in \(\mathcal{FN} \). \(\square \)

Proof of Theorem 1.1. Let \(G \) be a finitely generated hyper-(Abelian-by-finite) group in the class \((\Omega, \infty)^*\). Hence, by Lemma 2.7, \(G \) is in the class \(\mathcal{NF} \). Let \(K \) be a normal nilpotent subgroup of \(G \) such that \(G/K \) is finite. Since \(K \) is a finitely generated nilpotent group, it has a normal torsion-free subgroup of finite index [18, 5.4.15 (i)]. Thus, \(G \) has a normal torsion-free nilpotent subgroup \(N \) of finite index. Let \(x \) be a non-trivial element of \(G \). Since \(N \) is finitely generated, \(\langle N, x \rangle \) is a finitely generated hyper-(Abelian-by-finite) group in the class \((\Omega, \infty)^*\). Furthermore, \(\langle N, x \rangle /N \) is cyclic. Therefore, by Lemma 2.8, \(\langle N, x \rangle \) is in the class \(\mathcal{FN} \). Consequently, there is a finite normal subgroup \(H \) of \(\langle N, x \rangle \) such that \(\langle N, x \rangle /H \) is nilpotent. Therefore \(\gamma_{k+1}(\langle N, x \rangle) \leq H \) for some positive integer \(k \); so \(\gamma_{k+1}(\langle N, x \rangle) \) is finite. Hence, there is a positive integer \(m \) such that \([g, k x]^m = 1 \), for all \(g \in N \). Since \([g, k x] \) is an element of the torsion-free group \(N \), we get that \([g, k x] = 1 \). Thus, \(g \) is a right Engel element of \(G \); so \(N \subseteq R(G) \),
where $R(G)$ denotes the set of right Engel elements of G. Moreover, since G is a finitely generated nilpotent-by-finite group, it satisfies the maximal condition on subgroups. Therefore, from Baer [17, Theorem 7.21], $R(G)$ coincides with the hypercentre of G which equal to $Z_n(G)$ for some positive integer n. Thus $N \leq Z_n(G)$, so $Z_n(G)$ is of finite index in G. It follows, by a result of Baer [10, Theorem 1], that G is in the class \mathcal{FN}.

Proof of Corollary 1.2. (i) Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega_k, \infty)^*$; from Theorem 1.1, G is in the class \mathcal{FN}. Let H be a normal finite subgroup of G such that G/H is nilpotent. It is clear that G/H is in the class $(\Omega_k, \infty)^*$. Let \bar{X} be an infinite subset of G/H; there are therefore two distinct elements $\bar{x} = xH$, $\bar{y} = yH$ $(x, y \in G)$ of \bar{X} such that $\langle \bar{x}, \bar{y} \rangle \in \Omega_k$, so $\gamma_k(\langle \bar{x}, \bar{y} \rangle) = \gamma_{k+1}(\langle \bar{x}, \bar{y} \rangle)$. Now, since $\langle \bar{x}, \bar{y} \rangle$ is nilpotent, there is an integer i such that $\gamma_i(\langle \bar{x}, \bar{y} \rangle) = 1$; so $\gamma_k(\langle \bar{x}, \bar{y} \rangle) = 1$. Since $\langle \bar{x}, \bar{y} \rangle = \langle [\bar{y}, \bar{x}], \bar{x} \rangle$, we have $\gamma_k(\langle [\bar{y}, \bar{x}], \bar{x} \rangle) = 1$ and thus $[\bar{y}, k \bar{x}] = 1$. Consequently, G/H is in the class $\mathcal{E}_k(\infty)$ of groups in which every infinite subset contains two distinct elements g, h such that $[g, kh] = 1$. The group G/H, being a finitely generated soluble group in the class $\mathcal{E}_k(\infty)$; it follows by a result of Abdollahi [2, Theorem 3], that there is an integer $c = c(k)$, depending only on k, such that $(G/H)/Z_c(G/H)$ is finite. By a result of Baer [10, Theorem 1], $\gamma_{c+1}(G/H) = \gamma_{c+1}(G)H/H$ is finite; and since H is finite, $\gamma_{c+1}(G)$ is finite. According to a result of P. Hall [10, 1.5], $G/Z_c(G)$ is finite.

(ii) If G is in the class $(\Omega_2, \infty)^*$, then by Theorem 1.1 G is finite-by-nilpotent. Therefore, G has a finite normal subgroup H such that G/H is nilpotent. Since G/H is in the class $(\Omega_2, \infty)^*$, it is in the class $\mathcal{E}_2(\infty)$. Hence, by Abdollahi [1, Theorem], $(G/H)/Z_2(G/H)$ is finite, so $\gamma_3(G/H)$ is finite. Since H is finite, $\gamma_3(G)$ is finite. It follows, by P. Hall [10, 1.5], that $G/Z_2(G)$ is finite.

(iii) Now if G is in the class $(\Omega_3, \infty)^*$, then by Theorem 1.1 G has a finite normal subgroup H such that G/H is nilpotent. Since G/H is in the class $(\Omega_3, \infty)^*$, it is in the class $\mathcal{E}_3(\infty)$. Hence, by Abdollahi [2, Theorem 1] G/H is in the class $\mathcal{FN}_3^{(2)}$; consequently G is in the class $\mathcal{FN}_3^{(2)}$. □

3. Proofs of Theorem 1.3 and Corollary 1.4

We start by showing a weaker version of Theorem 1.3:
A condition on infinite subsets

Lemma 3.1. A finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{M}N, \infty)^*$ is finite-by-nilpotent.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{M}N, \infty)^*$, and let X be an infinite subset of G. There are therefore two distinct elements x, y of X such that $\langle x, x^y \rangle$ is in the class $\mathcal{M}N$, so there exists a normal subgroup N of $\langle x, x^y \rangle$ such that N is in \mathcal{M} and $\langle x, x^y \rangle / N$ is nilpotent. Now, $\gamma_{i+1}(\langle x, x^y \rangle) \leq N$ for some positive integer i, therefore $\gamma_{i+1}(\langle x, x^y \rangle) \geq \gamma_{i+2}(\langle x, x^y \rangle) \geq \ldots$ is an infinite descending sequence of normal subgroups of N; however N is in \mathcal{M}, therefore there exists a positive integer $n \geq i + 1$ such that $\gamma_n(\langle x, x^y \rangle) = \gamma_{n+1}(\langle x, x^y \rangle)$. Hence, G is in the class $(\Omega, \infty)^*$; it follows, by Theorem 1.1, that G is finite-by-nilpotent.

Lemma 3.2. A finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{M}E, \infty)^*$ is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{M}E, \infty)^*$. Since $(\mathcal{M}E, \infty)^*$ is a closed quotient class of groups and since finitely generated nilpotent-by-finite groups are finitely presented, we may assume that G is not nilpotent-by-finite, but every proper homomorphic image of G is nilpotent-by-finite. Since G is hyper-(Abelian-by-finite), there exists a non-trivial normal subgroup H of G such that H is finite or Abelian; so we have G/H is nilpotent-by-finite. If H is finite then G is nilpotent-by-finite, a contradiction. Consequently H is Abelian and so G is Abelian-by-(nilpotent-by-finite) and therefore it is (Abelian-by-nilpotent)-by-finite. Hence, G is a finite extension of a soluble group. Let K be a normal soluble subgroup of G of finite index. Clearly, K is in $(\mathcal{M}E, \infty)^*$, and since all soluble Engel group coincides with its Hirsch-Plotkin radical which is locally nilpotent [17, Theorem 7.34], we deduce that K is in the class $(\mathcal{M}N, \infty)^*$; it follows by Lemma 3.1 that K is finite-by-nilpotent. According to a result of P. Hall [10, Theorem 2], K is nilpotent-by-finite. Thus, G is nilpotent-by-finite, a contradiction. The proof is now complete.

Since finitely generated nilpotent-by-finite groups satisfy the maximal condition on subgroups, Lemma 3.2 has the following consequence:

Corollary 3.3. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{M}E, \infty)^*$. Then G satisfies the maximal condition on subgroups.
Proof of Theorem 1.3. It is clear that all finite-by-nilpotent groups are in the class \((\mathcal{ME}, \infty)^*\). Conversely, let \(G\) be a finitely generated hyper-(Abelian-by-finite) group in \((\mathcal{ME}, \infty)^*\). According to Corollary 3.3, \(G\) satisfies the maximal condition on subgroups. Since Engel groups satisfying the maximal condition on subgroups are nilpotent \([18, 12.3.7]\), we deduce that \(G\) is in the class \((\mathcal{MN}, \infty)^*\). It follows, by Lemma 3.1, that \(G\) is in the class \(\mathcal{FN}\); as required. \(\square\)

Proof of Corollary 1.4. (i) Let \(G\) be a finitely generated hyper-(Abelian-by-finite) group in the class \((\mathcal{ME}_k, \infty)^*\); from Theorem 1.3, \(G\) is in the class \(\mathcal{FN}\). Let \(N\) be a normal finite subgroup of \(G\) such that \(G/N\) is nilpotent. Since \(G/N\) is nilpotent and finitely generated, its torsion subgroup \(T/N\) is finite, so \(T\) is finite and \(G/T\) is a torsion-free nilpotent group. Clearly, the property \((\mathcal{ME}_k, \infty)^*\) is inherited by \(G/T\), and since \(G/T\) is torsion-free and soluble, it belongs to \((\mathcal{E}_k, \infty)^*\) \([17, \text{Theorem 5.25}]\). Let \(\bar{X}\) be an infinite subset of \(G/T\); there are therefore two distinct elements \(\bar{x} = xT, \bar{y} = yT\) \((x, y \in G)\) of \(\bar{X}\) such that \(\langle \bar{x}, \bar{y}\rangle\) is a \(k\)-Engel group. Since \(\langle \bar{x}, \bar{y}\rangle = \langle [\bar{y}, \bar{x}], \bar{x}\rangle\), we have \([\bar{y}, k+1 \bar{x}] = [[\bar{y}, \bar{x}], k \bar{x}] = 1\). Hence, \(G/T\) is in the class \(\mathcal{E}_{k+1}(\infty)\). The group \(G/T\), being a finitely generated soluble group in the class \(\mathcal{E}_{k+1}(\infty)\); it follows by a result of Abdollahi \([2, \text{Theorem 3}]\), that there is an integer \(c = c(k)\), depending only on \(k\), such that \((G/T)/Z_c(G/T)\) is finite. By a result of Baer \([10, \text{Theorem 1}]\), \(\gamma_{c+1}(G/T) = \gamma_{c+1}(G)T/T\) is finite; and since \(T\) is finite, \(\gamma_{c+1}(G)\) is finite. According to a result of P. Hall \([10, 1.5]\), \(G/Z_c(G)\) is finite.

(ii) If \(G\) is in the class \((\mathcal{MA}, \infty)^* = (\mathcal{ME}_1, \infty)^*\), then by Theorem 1.3, \(G\) is finite-by-nilpotent. We proceed as in (i) until we obtain that \(G/T\) is in the class \(\mathcal{E}_2(\infty)\). Hence, by Abdollahi \([1, \text{Theorem}]\), \((G/T)/Z_2(G/T)\) is finite, so \(\gamma_3(G/T)\) is finite. Since \(T\) is finite, \(\gamma_3(G)\) is finite. It follows, by P. Hall \([10, 1.5]\), that \(G/Z_2(G)\) is finite.

(iii) Now if \(G\) is in the class \((\mathcal{ME}_2, \infty)^*\), we proceed as in (i) until we obtain that \(G/T\) is in the class \(\mathcal{E}_3(\infty)\). Hence, by Abdollahi \([2, \text{Theorem 1}]\) \(G/T\) is in the class \(\mathcal{FN}_3(2)\); consequently \(G\) is in the class \(\mathcal{FN}_3(2)\). \(\square\)

References

A condition on infinite subsets

