Amel Dilmi
Groups whose proper subgroups are locally finite-by-nilpotent

<http://ambp.cedram.org/item?id=AMBP_2007__14_1_29_0>
Groups whose proper subgroups are locally finite-by-nilpotent

AMEL DILMI

Abstract

If \(X \) is a class of groups, then a group \(G \) is said to be minimal non-\(X \)-group if all its proper subgroups are in the class \(X \), but \(G \) itself is not an \(X \)-group. The main result of this note is that if \(c > 0 \) is an integer and if \(G \) is a minimal non \((LF)N\) (respectively, \((LF)N_c\))-group, then \(G \) is a finitely generated perfect group which has no non-trivial finite factor and such that \(G/Frat(G) \) is an infinite simple group; where \(N \) (respectively, \(N_c, LF \)) denotes the class of nilpotent (respectively, nilpotent of class at most \(c \), locally finite) groups and \(Frat(G) \) stands for the Frattini subgroup of \(G \).

Résumé

Si \(X \) est une classe de groupes, alors un groupe \(G \) est dit minimal non-\(X \)-groupe si tous ses sous-groupes propres sont dans la classe \(X \), alors que \(G \) lui-même n’est pas un \(X \)-groupe. Le principal résultat de cette note affirme que si \(c > 0 \) est un entier et si \(G \) est un groupe minimal non \((LF)N\) (respectivement, \((LF)N_c\))-groupe, alors \(G \) est un groupe parfait, de type fini, n’ayant pas de facteur fini non trivial et tel que \(G/Frat(G) \) est un groupe simple infini ; où \(N \) (respectivement, \(N_c, LF \)) désigne la classe des groupes nilpotents (respectivement, nilpotents de classe égale au plus \(c \), localement finis) et \(Frat(G) \) est le sous-groupe de Frattini de \(G \).

1. Introduction

If \(X \) is a class of groups, then a group \(G \) is said to be minimal non-\(X \) if all its proper subgroups are in the class \(X \), but \(G \) itself is not an \(X \)-group. Many results have been obtained by many authors on minimal non \(X \)-groups for various classes of groups \(X \), for example see [1], [2],

Keywords: Locally finite-by-nilpotent proper subgroups, Frattini factor group.

In particular, in [13] it is proved that if G is a finitely generated minimal non $\mathcal{F}\mathcal{N}$-group, then G is a perfect group which has no non-trivial finite factor and such that $G/\text{Frat}(G)$ is an infinite simple group; where \mathcal{N} (respectively, \mathcal{F}) denotes the class of nilpotent (respectively, finite) groups and $\text{Frat}(G)$ stands for the Frattini subgroup of G. The aim of the present note is to extend the above results to minimal non $(\mathcal{L}\mathcal{F})\mathcal{N}$ (respectively, $(\mathcal{L}\mathcal{F})\mathcal{N}_c$)-groups, and to prove that there are no minimal non $(\mathcal{L}\mathcal{F})\mathcal{N}$ (respectively, $(\mathcal{L}\mathcal{F})\mathcal{N}_c$)-groups which are not finitely generated; where $c > 0$ is an integer and \mathcal{N}_c (respectively, $\mathcal{L}\mathcal{F}$) denotes the class of nilpotent groups of class at most c (respectively, locally finite groups). More precisely we shall prove the following results.

Theorem 1.1. If G is a minimal non $(\mathcal{L}\mathcal{F})\mathcal{N}$-group, then G is a finitely generated perfect group which has no non-trivial finite factor and such that $G/\text{Frat}(G)$ is an infinite simple group.

Using Theorem 1.1, we shall prove the following result on minimal non $(\mathcal{L}\mathcal{F})\mathcal{N}_c$-groups.

Theorem 1.2. Let $c > 0$ be an integer and let G be a minimal non $(\mathcal{L}\mathcal{F})\mathcal{N}_c$-group. Then G is a finitely generated perfect group which has no non-trivial finite factor and such that $G/\text{Frat}(G)$ is an infinite simple group.

Note that if \mathcal{X}_1 and \mathcal{X}_2 are two classes of groups such that $\mathcal{X}_1 \subseteq \mathcal{X}_2$, then a minimal non \mathcal{X}_1-group is either a minimal non \mathcal{X}_2-group or an \mathcal{X}_2-group. From Xu’s results [13, Theorem 3.5], an infinitely generated minimal non $\mathcal{F}\mathcal{N}$-group is a locally finite-by-nilpotent group. So one might expect, as we shall prove in Proposition 2.1, that there are no infinitely generated minimal non $(\mathcal{L}\mathcal{F})\mathcal{N}$-group.

Note that minimal non $(\mathcal{L}\mathcal{F})\mathcal{N}$ (respectively, non $(\mathcal{L}\mathcal{F})\mathcal{N}_c$)-groups exist. Indeed, the group constructed by Ol’shanskii [7] is a simple torsion-free finitely generated group whose proper subgroups are cyclic.

2. Minimal non $(\mathcal{L}\mathcal{F})\mathcal{N}$-groups

A part of Theorem 1.1 is an immediate consequence of the following Proposition:
Proposition 2.1. Let \(G \) be a group whose proper subgroups are in the class \((\mathcal{LF})\mathcal{N}\). Then \(G \) belongs to \((\mathcal{LF})\mathcal{N}\) if it satisfies one of the following two conditions:

(i) \(G \) is finitely generated and has a proper subgroup of finite index,
(ii) \(G \) is not finitely generated.

Proof. (i) Suppose that \(G \) is finitely generated and let \(N \) be a proper subgroup of finite index in \(G \). By [10, Theorem 1.6.9] we may assume that \(N \) is normal in \(G \). So \(N \) is in \((\mathcal{LF})\mathcal{N}\) and it is also finitely generated. Hence \(\gamma_k+1(N) \) is locally finite for some integer \(k \geq 0 \). Since \(N \) is of finite index in \(G \), \(G/\gamma_k+1(N) \) is a finitely generated group in the class \(\mathcal{NF} \), so that it satisfies the maximal condition on subgroups. Therefore every proper subgroups of \(G/\gamma_k+1(N) \) is in \(\mathcal{FN} \). Now Lemma 4 of [3] states that a finitely generated locally graded group whose proper subgroups are finite-by-nilpotent is itself finite-by-nilpotent. Since groups in the class \(\mathcal{NF} \) are clearly locally graded, we deduce that \(G/\gamma_k+1(N) \) is in \(\mathcal{FN} \), so \(G \) is in \((\mathcal{LF})\mathcal{N}\).

(ii) Suppose that \(G \) is not finitely generated and let \(x_1, ..., x_n \) be \(n \) elements of finite order in \(G \). Since the subgroup \(\langle x_1, ..., x_n \rangle \) is proper in \(G \), it is in \((\mathcal{LF})\mathcal{N}\), hence it is finite. This means that the elements of finite order in \(G \) form a locally finite subgroup \(T \). If \(G/T \) is not finitely generated, then it is locally nilpotent and its proper subgroups are nilpotent as \(G/T \) is torsion-free. Now Theorem 2.1 of [11] states that a torsion-free locally nilpotent group with all proper subgroups nilpotent is itself nilpotent. Therefore \(G/T \) is nilpotent, so \(G \) is in \((\mathcal{LF})\mathcal{N}\). Now if \(G/T \) is finitely generated, then there exists a finitely generated subgroup \(H \) such that \(G = HT \). Since \(G \) is not finitely generated, \(H \) is proper in \(G \), so \(H \) is in \((\mathcal{LF})\mathcal{N}\). Since \(G/T \simeq H/H \cap T \), we deduce that \(G/T \) is in \((\mathcal{LF})\mathcal{N}\), hence \(G/T \) is nilpotent since it is torsion-free. Therefore \(G \) is in \((\mathcal{LF})\mathcal{N}\). \(\square \)

Since finitely generated locally graded groups have proper subgroups of finite index, the previous Proposition admits the following consequence:

Corollary 2.2. Let \(G \) be a locally graded group whose proper subgroups are in the class \((\mathcal{LF})\mathcal{N}\). Then \(G \) is in the class \((\mathcal{LF})\mathcal{N}\).

Corollary 2.3. Let \(G \) be a non perfect group whose proper subgroups are in the class \((\mathcal{LF})\mathcal{N}\). Then \(G \) is in the class \((\mathcal{LF})\mathcal{N}\).

Proof. If \(G \) is not finitely generated, then \(G \) is in \((\mathcal{LF})\mathcal{N} \) from (ii) of Proposition 2.1. Now suppose that \(G \) is finitely generated. Therefore \(G/G' \),
being a non trivial finitely generated locally graded group, has a non trivial finite image. So G has a proper subgroup of finite index. Thus we deduce from (i) of Proposition 2.1 that G is in $(\mathcal{LF})\mathcal{N}$.

\begin{flushright}
\textbf{\textit{Proof of Theorem 1.1.}} Let G be a minimal non $(\mathcal{LF})\mathcal{N}$-group. It follows from Proposition 2.1 and Corollary 2.3 that G is a finitely generated perfect group which has no non trivial finite factor. Now we prove that $G/F\text{rat}(G)$ is an infinite simple group. Since finitely generated groups have maximal subgroups, $G/F\text{rat}(G)$ is non trivial and therefore infinite. Let N be a proper normal subgroup of G properly containing $F\text{rat}(G)$. Then N is in $(\mathcal{LF})\mathcal{N}$ and there is an $x \in N$ such that $x \notin F\text{rat}(G)$. Hence there is a maximal subgroup M of G such that $x \notin M$, so N is not contained in M. Then $G = NM$ and we have $\gamma_{k+1}(M)$ is locally finite for some integer $k \geq 0$. Since G is perfect, then

$$G = \gamma_{k+1}(G) = \gamma_{k+1}(NM).$$

We show by induction on k that $\gamma_{k+1}(NM) \subseteq N\gamma_{k+1}(M)$. If $k = 0$, then the result follows immediately. Now let $k > 0$, suppose inductively that $\gamma_{k}(NM) \subseteq N\gamma_{k}(M)$ and let g be an element of $\gamma_{k+1}(NM)$. Hence g can be written as a finite product of elements of the form $[x_1y_1, ..., x_{k+1}y_{k+1}]$ with $x_i \in N$ and $y_i \in M$ for every $1 \leq i \leq k + 1$. It follows by the inductive hypothesis that the commutator $v = [x_1y_1, ..., x_ky_k]$ of weight k is in $N\gamma_{k}(M)$. So we get $[v, x_{k+1}y_{k+1}] = [xy, x_{k+1}y_{k+1}]$ with $x \in N$ and $y \in \gamma_{k}(M)$. Therefore

$$[xy, x_{k+1}y_{k+1}] = [x, y_{k+1}]^y[y, y_{k+1}][x, x_{k+1}]^y[y, x_{k+1}]^{y_{k+1}}.$$

We have that $[y, y_{k+1}]$ is in $\gamma_{k+1}(M)$ and since N is normal in G, we have that $[x, y_{k+1}]$ and $([x, x_{k+1}]^y[y, x_{k+1}])^{y_{k+1}}$ belong to N. Thus $[x_1y_1, ..., x_{k+1}y_{k+1}]$ is in $N\gamma_{k+1}(M)$ and consequently g belongs to $N\gamma_{k+1}(M)$. Hence the inclusion $\gamma_{k+1}(NM) \subseteq N\gamma_{k+1}(M)$ hold. We deduce $G = N\gamma_{k+1}(M)$. Thus $G/N' = (N/N')(\gamma_{k+1}(M)N'/N')$. Since $\gamma_{k+1}(M)N'/N'$ is locally finite, G/N' is in $A(\mathcal{LF})$, where A denotes the class of abelian groups; so G/N' is a locally graded group. We deduce from Corollary 2.2 that G/N' is in $(\mathcal{LF})\mathcal{N}$. Now Theorem 1.2 of [4] states that if $N \lhd G$ such that N and G/N' are in $(\mathcal{LF})\mathcal{N}$, then G is in $(\mathcal{LF})\mathcal{N}$. So G is in $(\mathcal{LF})\mathcal{N}$, a contradiction. This means that $G/F\text{rat}(G)$ is a simple group. \qed
3. Minimal non \((\mathcal{L}\mathcal{F})\mathcal{N}_c\)-group

Lemma 3.1. Let \(G\) be a group and let \(F\) be the locally finite radical of \(G\). If \(G/F\) is nilpotent, then \(G/F\) is torsion-free.

Proof. Put \(\overline{G} = G/F\) and suppose that \(\overline{G}\) is nilpotent and let \(\overline{x}\) be an element of finite order in \(\overline{G}\). First of all, we show that the normal closure \(\overline{x}\overline{G}\) is locally finite; to this end, let \(\langle \overline{h}_1, \overline{h}_2, ..., \overline{h}_n \rangle\) be a finitely generated subgroup of \(\overline{x}\overline{G}\). Since every element \(\overline{h}_i\), where \(1 \leq i \leq n\), can be written as a finite product of elements \(\overline{x}\overline{g}_j\), there is an integer \(s > 0\) such that \(\langle \overline{h}_1, \overline{h}_2, ..., \overline{h}_n \rangle\) is a subgroup of \(\langle \overline{x}\overline{g}_1, \overline{x}\overline{g}_2, ..., \overline{x}\overline{g}_s \rangle\) for some \(\overline{g}_j \in \overline{G}\), with \(1 \leq j \leq s\). Moreover \(\langle \overline{x}\overline{g}_1, \overline{x}\overline{g}_2, ..., \overline{x}\overline{g}_s \rangle\) being nilpotent and generated by finitely many elements of finite order, is finite. So \(\langle \overline{h}_1, \overline{h}_2, ..., \overline{h}_n \rangle\) is finite and consequently \(\overline{x}\overline{G}\) is locally finite. Now since \(\overline{G}\) has no non trivial locally finite normal subgroup, then \(\overline{x}\overline{G}\) is trivial. Thus \(\overline{x} = 1\), hence \(\overline{G}\) is torsion-free. \(\Box\)

Proposition 3.2. Let \(c > 0\) be an integer and let \(G\) be a group whose proper subgroups are in the class \((\mathcal{L}\mathcal{F})\mathcal{N}_c\). Then \(G\) is in the class \((\mathcal{L}\mathcal{F})\mathcal{N}_c\) if it satisfies one of the following two conditions:

(i) \(G\) is finitely generated and has a proper subgroup of finite index,

(ii) \(G\) is not finitely generated.

Proof. Suppose that \(G\) satisfies one of the conditions (i) or (ii). Since \((\mathcal{L}\mathcal{F})\mathcal{N}_c\) is included in \((\mathcal{L}\mathcal{F})\mathcal{N}\), it follows from Proposition 2.1 that \(G\) is in \((\mathcal{L}\mathcal{F})\mathcal{N}\). So there is a normal subgroup \(N\) such that \(N\) is locally finite and \(G/N\) is nilpotent. Thus \(N\) is contained in \(F\), the locally finite radical of \(G\), and therefore \(G/F\) is nilpotent. Clearly, we may assume that \(G\) is not locally finite, so \(G/F\) is non trivial and by Lemma 3.1, it is torsion-free. If \(G/F\) is finitely generated, then as \(G/F\) is clearly locally graded, \(G/F\) has a proper normal subgroup of finite index. So \(G/F\) belongs to \(((\mathcal{L}\mathcal{F})\mathcal{N}_c)\mathcal{F}\), hence \(G/F\) is in \(\mathcal{N}_c\mathcal{F}\) as it is torsion-free. Therefore \(G/F\), being a nilpotent torsion-free group in the class \(\mathcal{N}_c\mathcal{F}\), is in \(\mathcal{N}_c\) by Lemma 6.33 of [9]. Consequently \(G\) is in \((\mathcal{L}\mathcal{F})\mathcal{N}_c\). Now suppose that \(G/F\) is not finitely generated and let \(a_1, ..., a_{c+1}\) be elements of \(G/F\). Since \(\langle a_1, ..., a_{c+1} \rangle\) is proper in \(G/F\), it is in \((\mathcal{L}\mathcal{F})\mathcal{N}_c\) and consequently it is in \(\mathcal{N}_c\) because \(G/F\) is torsion-free. So \([a_1, ..., a_{c+1}] = 1\), hence \(G/F\) is in \(\mathcal{N}_c\). Therefore \(G\) is in \((\mathcal{L}\mathcal{F})\mathcal{N}_c\). \(\Box\)
Since finitely generated locally graded groups have proper subgroups of finite index, Proposition 3.2 admits the following consequence:

Corollary 3.3. Let \(c > 0 \) be an integer and let \(G \) be a locally graded group whose proper subgroups are in the class \((\mathcal{LF})N_c\). Then \(G \) is in the class \((\mathcal{LF})N_c\).

Proof of Theorem 1.2. Let \(G \) be a minimal non \((\mathcal{LF})N_c\)-group. It follows that every proper subgroup of \(G \) is in \((\mathcal{LF})N\). Now suppose that \(G \) is in \((\mathcal{LF})N\), so there exists a normal subgroup \(N \) of \(G \) such that \(N \) is locally finite and \(G/N \) is nilpotent. By Corollary 3.3, \(G/N \) is in \((\mathcal{LF})N_c\), consequently we deduce that \(G \) is in \((\mathcal{LF})N_c\) because \(N \) is locally finite; a contradiction. Hence \(G \) is a minimal non \((\mathcal{LF})N\)-group, and by Theorem 1.1, \(G \) is a finitely generated perfect group which has no non-trivial finite factor and such that \(G/Frat(G) \) is an infinite simple group. \(\square \)

Acknowledgments: The author would like to thank the referee for his comments and her supervisor Dr. N. Trabelsi for his encouragements while doing this work.

References

Locally finite-by-nilpotent proper subgroups

Amel Dilmi
Department of Mathematics
Faculty of Sciences
Ferhat Abbas University
Setif 19000
ALGERIA
di_amel@yahoo.fr