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ANNALES MATHEMATIQUES BLAISE PAscAL 10, 245-260 (2003)

On Strong Going-Between, Going-Down, And
Their Universalizations, 11

David E. Dobbs
Gabriel Picavet

Abstract

We consider analogies between the logically independent proper-
ties of strong going-between (SGB) and going-down (GD), as well as
analogies between the universalizations of these properties. Transfer
results are obtained for the (universally) SGB property relative to
pullbacks and Nagata ring constructions. It is shown that if A C B
are domains such that A is an LFD universally going-down domain
and B is algebraic over A, then the inclusion map A[X7, ..., X,] —
B[X1, ..., X,] satisfies GB for each n > 0. However, for any nonzero
ring A and indeterminate X over A, the inclusion map A — A[X] is
not universally (S)GB.

1 Introduction

All rings considered below are commutative with identity; all ring extensions
and ring homomorphisms are unital. Our goal is to further the work that
was begun in [9] on the interplay between the going-down (GD) and the
strong going-between (SGB) properties of ring homomorphisms. To ease
the discussion, we adapt the notation in [15, p. 28], by letting GD and
GU denote the going-down and going-up properties, respectively, for ring
homomorphisms; we also let Spec(A) denote the set of prime ideals of a ring
A.) Following [18], we say that a ring homomorphism f : A — B satisfies
SGB in case the following condition is satisfied: if P, C P, C P3 in Spec(A)
and Q; C Qs in Spec(B) are such that f~1(Q;) = P, and f~(Q3) = P3, then
there exists Q2 in Spec(B) such that Q; C Q2 C Q3 and f~(Q3) = P». This
terminology was chosen in order to avoid confusion with the different “going-
between' (GB) property introduced by Ratliff [19]: a ring homomorphism
f: A — B satisfies GB in case, whenever ()1 C (Y3 are prime ideals in B such
that there exists a prime ideal P, in A such that f~1(Q;) C P, C f~1(Q3),
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D. E. DoBBS AND G. PICAVET

then there exists a prime ideal Q)3 in B such that ;1 C Q2 C @s. For
motivational purposes, it is useful to observe that SGB = GB.

The most basic fact regarding the interplay between GD and SGB is that
these two properties are logically independent. Explicit examples were given
in [9, Proposition 2.4] to show this logical independence. In view of the
somewhat ad hoc nature of those examples, we think it appropriate to re-
establish this fact by appealing to the fundamental structure of the category
of commutative rings. For this reason, the logical independence of GD and
SGB is proved in Proposition 2.2 by using a realization theorem of Hochster
[14, Theorem 6 (a)] for surjective spectral maps of spectral sets.

One of the examples in [9] depended on a result [9, Remark 2.5 (e)] on
the transfer behavior of the SGB property relative to the classical D + M
construction (in the sense of [12]). This is generalized in Theorem 2.3, which
gives a transfer result for SGB in a pullback context that is in the spirit of
[10, Section 2] and is, thus, more general than that of the classical D + M
construction. Section 2 adds further to the SGB/GD analogy, by giving an
additional transfer result (Proposition 2.4) for SGB in the context of Nagata
rings. As explained there, this result is motivated by known transfer results
for going-down domains [1] and for GB-rings ([19], [20]).

In view of the preceding comment, it is timely to recall from [4] and [§]
that GD has been used to introduce a class of (commutative integral) domains
that includes all Priifer domains and all domains of (Krull) dimension at most
1. Indeed, according to [8, Theorem 1], a domain A, with quotient field K,
is a going-down domain if and only if A — B satisfies GD for all domains B
that contain A (resp., for all overrings B of A; resp., for all valuation overrings
B of A; resp., for all rings of the form B = Afu],u € K). It was shown in
[9, Corollary 2.3] that the analogy between SGB and GD can be extended
as follows: if one replaces “GD" with “SGB" in each of the preceding four
conditions, the resulting conditions are still equivalent and still characterize
going-down domains. In other words, what might be called an “SGB-domain"
is precisely the same as a going-down domain. (For additional motivation,
note that the class of GB-rings was introduced in [19] and studied further in
papers such as [20].)

It was shown in [7, Theorem 2.6] that if one replaces “GD" with “uni-
versally going-down' in each of the above four conditions from [8, Theorem
1], the resulting conditions are still equivalent and characterize what is there
called “universally going-down domains". It thus seems natural to ask if
the “universally SGB" property can be used to similarly characterize the
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ON STRONG GOING-BETWEEN

universally going-down domains. The answer, as given in [9, Corollary 3.2,
Corollary 3.9], is essentially “yes and no": “yes" if one restricts attention to
overrings B of A; “no" if one considers test extension domains B that are not
algebraic over A. As explained below, the work in Section 3 deepens these
results from [9] in two ways.

First, [9, Corollary 3.9] is re-obtained in Corollary 3.5, as a consequence
of a result (Lemma 3.3) that seems more direct, albeit somewhat intricate,
than the method used in [9]. As a pleasant bonus, we note, after the proof
of Corollary 3.5, that our present approach actually establishes more, in par-
ticular, that there does not exist a domain A such that A < B is universally
GB for each domain B containing A. This is apparently the first result on
“universally GB" in the literature. Second, continuing in the “universally
GB" vein, we develop a positive result in Theorem 3.6 that addresses the
following question: if A is a universally going-down domain, is it possible
to enlarge (beyond the arena of overrings) the class of “test domains' B
appearing in the statement of [9, Corollary 3.2]7 The proof of Theorem 3.6
depends, in part, on a result concerning the “universally catenarian" property
[3, Corollary 6.3].

Our final result, Proposition 3.8, merges several of the above themes by
establishing that the universally SGB property transfers to the induced map
on Nagata rings.

For the sake of motivation and ease of reference, some results from [9]
are restated in this paper. Finally, in addition to the notational conventions
indicated above, we mention the following. If A is a ring, then dim(A)
denotes the Krull dimension of A; ht(P) = ht(P) denotes the height (in
A) of P € Spec(A); and A,y denotes A/v/A, the reduced ring canonically
associated to A. If A is a domain, with quotient field K, then A’ denotes
the integral closure of A (in K); and by an overring of A, we mean any
ring B such that A C B C K. If h : A — B is a ring homomorphism,
then “h denotes the canonical map Spec(B) — Spec(A),Q — h™(Q); and
heq denotes the induced ring homomorphism A,.q — By eq. Any unexplained
material is standard, as in [12], [13], [15].

2 Logical independence and transfer results

We begin by stating some known connections between the SGB and GD
properties. The following definitions are needed for Proposition 2.1 (b), (c).
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As recalled in the Introduction, a domain A is called a going-down domain
in case A C B satisfies GD for each domain B containing A. Following [5],
aring A is called a going-down ring in case A/P is a going-down domain for
each P € Spec(A).

Proposition 2.1: Let f: A — B be a ring homomorphism.

(a) [18, Propositions 5.2 and 5.7] The following conditions are equivalent:
(1) f satisfies SGB;
(2) The induced map Ap — Bg satisfies GU for all Q) € Spec(B) and
P:= f_l(Q);
(3) The induced map A/P — B/Q satisfies GD for all Q € Spec(B)
and P = f~4Q);
(4) The induced map freq : Area — Brea satisfies SGB;
(5) The induced map A/P — B/Q satisfies SGB for all Q € Spec(B)
and P:= f74Q).

(b) [9, Corollary 2.2 (a)] If B is a domain and f is injective and satisfies
SGB, then f satisfies GD.

(c) 9, Corollary 2.2 (b)] If A is a going-down ring, then [ satisfies SGB.

Despite the assertions in parts (b) and (c) of Proposition 2.1, we show
next that neither SGB nor GD implies the other, even for ring extensions of
a domain.

Proposition 2.2: The SGB and GD properties are logically independent. In
fact:

(a) There exists an inclusion map A — B that satisfies SGB but does not
satisfy GD. It can be arranged that A is a quasilocal one-dimensional
domain and that B is a zero-dimensional reduced ring with exactly two
prime ideals (that is, B is isomorphic to the direct product of two fields).

(b) There exists an inclusion map A — B that satisfies GD but does not
satisfy SGB. It can be arranged that A is a quasilocal two-dimensional
treed domain and that B is a quasilocal two-dimensional ring with ez-
actly two minimal prime ideals.

PRrROOF: (a) An ad hoc approach, in the spirit of [9, Proposition 2.4 (a)], is
available. Indeed, let X be an indeterminate over a field k, and consider A :=
E[X](x) and B := k x k(X). Of course, A is a (quasi)local one-dimensional
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domain with unique maximal ideal M := X A, and since A = k+ M, one can
identify A/M = k. Also, the only prime ideals of B are k x 0 and 0 x k(X),
which are incomparable. Then the monomorphism ¢ : A — B, given by
a— (a+ M,a), is easily seen to have the asserted properties, in view of the
facts that “i(k x 0) = 0 and %(0 x k(X)) = M. We next present a more
categorical approach to the assertion in (a).

Consider a two-element set Y := {Q, N} with the trivial partial order;
that is, ) and N are unrelated. Also, consider a two-element linearly ordered
set X := {P,M} with P < M. It is easy to see directly that both Y and
X are spectral sets (in the sense that each is order-isomorphic to the prime
spectrum of some ring). However, we appeal here to a useful more general
method, namely, the fact that any finite partially ordered set is a spectral
set [16, Theorem 2.10]. Identify Y = Spec(D) and X = Spec(C') for some
rings D and C'; equip the spectral spaces Y and X with the corresponding
Zariski topology.

Consider the surjective function g : Y — X given by Q — Pand N — M.
We claim that g is a spectral map (in the sense of [14, p. 43]), namely, that g
is continuous and ¢g~1(U) is quasi-compact open in Y for each quasi-compact
open set U in X. As X and Y are each finite, the “quasi-compact" conditions
can be ignored here. It suffices to consider the only nontrivial open subset of
X, namely U := {P}. (According to the usual description of the open sets
in the Zariski topology [2, p. 99], this set is the basic open set determined by
any element of M \ P.) Evidently, g~'({P}) = {Q}, which is Zariski-open
in Y, since Y\ {Q} = V() is closed by virtue of the maximality of N [2,
Definition 4, p. 99]. This proves the claim.

According to a realization result of Hochster [14, Theorem 6 (a)], Spec is
invertible on the subcategory of spectral spaces and surjective spectral maps.
Since we have shown that ¢ is a surjective spectral map, there exist a ring
homomorphism A : £ — F and homeomorphisms « : X — Spec(E), 3:Y —
Spec(F) such that (“h) o = awog. As noted in [14], homeomorphisms of
spectral spaces induce order-isomorphisms. Therefore, it is now easy to see
that h satisfies SGB but does not satisfy GD (the point being that g was
constructed to satisfy the corresponding order-theoretic conclusion).

Next, note via standard homomorphism theorems (and the surjectivity of
g) that there is a natural bijection between Spec(im(h)) and Spec(£). Thus,
by abus de langage, we can now replace h : E — F with im(h) — F'; that
is, h : E — F is now an inclusion map. Therefore, h,.q : A — B is also an
injection, where A := E,.q and B := F,.q. Moreover, h,.q inherits from h
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the property of satisfying SGB (resp., of not satisfying GD) by condition (4)
in the statement of Proposition 2.1 (a) (resp., by [6, Lemma 3.2 (a)]). Then
hreq has the asserted properties. Indeed, since Spec(A) is order-isomorphic
to X, we see that A is quasilocal and one-dimensional; and since A is a
reduced ring with a unique minimal prime ideal, A is a domain. Finally,
since Spec(B) is order-isomorphic to Y, we see that B is a zero-dimensional
reduced ring with exactly two (incomparable) prime ideals, say ¢ and n.
Hence, g +n = B and ¢ Nn = 0, and so the Chinese Remainder Theorem
yields that B = B/q x B/n, a direct product of two fields, to complete the
proof.

(b) An ad hoc example is available: see [9, Proposition 2.4 (b)]. We next
sketch how to use the order-theoretic machinery featured in the proof of (a)
in order to prove (b).

To that end, consider a four-element set Y := { Py, P2, Q1, M1} with the
partial order induced by requiring that P, < M; and P, < Q1 < M;. Also,
consider a three-element linearly ordered set X := {P,Q, M} with P < @Q <
M. By [16, Theorem 2.10], Y and X are spectral sets, and so we can identify
Y = Spec(D) and X = Spec(C) for some rings D and C; equip the spectral
spaces Y and X with the corresponding Zariski topology.

Consider the surjective function g : ¥ — X given by P, — P, P, —
P Qy— Q, and My — M. We claim that g is a spectral map. As in the
proof of (a), it is enough to show that ¢g~!(U) is open in Y for each open
set U in X. It suffices to treat the nontrivial Zariski-open subsets U of X,
namely U; := {P} and U, := {P,Q}. Evidently, g~*(U;) = {Py, P»}, which
is Zariski-open in Y, since Y\ { P, P>} = V(Q1) is Zariski-closed. It remains
only to observe that ¢~ (Uy) = {Py1, P, Q1} =Y \ V(M) is Zariski-open in
Y. This proves the claim.

The rest of the proof now proceeds essentially as in the proof of (a). In
other words, one appeals to the realization result of Hochster, then replaces
h with im(h) < F, then replaces h with h,.; : A — B, and then concludes
via the order-isomorphisms between Spec(A) (resp., Spec(B)) and X (resp.,
Y). D
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We close the section by considering the transfer of the SGB property in
certain pullback constructions and for Nagata rings. To motivate Theorem
2.3, note that [9, Remark 2.5 (e)] concluded with a transfer result on SGB for
the special pullbacks of the classical D+ M form, while going-down-theoretic
results have been obtained for more general pullbacks (cf. [5, Proposition
2.2]). Finally, to motivate Proposition 2.4, recall that Ratliff has obtained
several transfer results for the GB-ring property relative to Nagata rings (cf.
[19, Proposition 5.1], [20, Corollary 2.7 and Proposition 6.3]).

Theorem 2.3 generalizes the above-mentioned result on the classical D +
M construction [9, Remark 2.5 (e)] by treating the more general type of
pullback featured in [10, Section 2].

Theorem 2.3: Let V' be a quasilocal ring with nonzero mazimal ideal M and
residue class field K :=V/M; let ¢ : V. — K denote the canonical projection
map. Let D C E be subrings of K, and consider the pullbacks A := o~1(D)
and B := ¢~ 1(E). Then A — B satisfies SGB if and only if D — E satisfies
SGB.

PROOF: Observe the canonical isomorphisms D = A/M and E = B/M.
Therefore, the “only if" assertion is immediate from condition (5) in Propo-
sition 2.1 (a). For the converse, suppose that D < FE satisfies SGB. Our
task is to show that if P, C P, C Pj in Spec(A) and Q1 C Q3 in Spec(B) are
such that f~1(Q;) = Py and f~1(Q3) = P, then there exists Q2 in Spec(B)
such that Q; € Qy € Q3 and f~1(Q2) = P

Before proceeding further, we next summarize the order-theoretic impact
of the “amalgamated sum" topological description [10, Theorem 1.4] of the
prime spectra of the pullbacks A and B. For instance, Spec(A) can be viewed
order-theoretically as the quotient space of the disjoint union of Spec(V') and
Spec(D) in which M € Spec(V) is identified with 0 € Spec(D). In particular,
each prime ideal of A is comparable with M, and the set of prime ideals of
A that contain (resp., are contained in) M is order-isomorphic to the prime
spectrum of D (resp., V). Of course, Spec(B) admits a similar description.
There are now three cases to consider.

If P, € im(Spec(D) — Spec(A)), then all the P; (resp., ;) are canonical
images of prime ideals of D (resp., F) in view of the above comments, and
so the existence of a suitable () follows since D — FE satisfies SGB. In
the second case, P; € im(Spec(V) — Spec(A)); then all the P, and (), are
canonical images of prime ideals of V' in view of the above comments, and
so the existence of a suitable ()5 follows from the triviality that the identity
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map on V satisfies SGB. In the final case, P, C M C P3. If M C P (resp.,
P, C M), argue as in the first (resp., second) case, attending to the chain
M C P, C Py (resp., P, C P, C M) in Spec(A). The proof is complete.

Recall that if A is a ring and X is an indeterminate over A, then the
Nagata ring A(X) is defined to be the localization of the polynomial ring
A[X] at the multiplicatively closed set consisting of all the polynomials in
A[X] with unit content. Observe that any ring homomorphism A — B in-
duces a ring homomorphism A[X] — B[X] and, hence, a ring homomorphism
A(X) — B(X). Proposition 2.4 records a pair of elementary transfer results
for the SGB property that involve Nagata rings. For these assertions, recall
that a domain is called a quasi-Prifer domain in case its integral closure is a
Priifer domain. For additional background on quasi-Priifer domains, see [11,
Section 6.5, especially Corollary 6.5.14].

Proposition 2.4: (a) Let f : A — B be a ring homomorphism, where A
and B are each quasi-Prifer domains. Let g : A(X) — B(X) be the ring
homomorphism induced by f. Then f satisfies SGB (resp., GD) if and only
if g satisfies SGB (resp., GD).

(b) If A is both a quasi-Prifer domain and a going-down domain, then
any ring homomorphism A(X) — B satisfies SGB.

PROOF: (a) Since A and B are each quasi-Priifer domains, it follows from
[1, Theorem 2.7] that the canonical functions Spec(A(X)) — Spec(A) and
Spec(B(X)) — Spec(B) are each order-isomorphisms (in fact, homeomor-
phisms). The assertions (for SGB, GD, and analogously for any other order-
theoretic property of the prime spectra, such as GU) now follow by easy
analyses of diagrams.

(b) By [1, Corollary 2.12], the hypothesis on A ensures (actually, is equiv-
alent to the fact) that A(X) is a going-down domain. Accordingly, an appli-
cation of Proposition 2.1 (c¢) completes the proof. For an alternate proof, note
first via Proposition 2.1 (c¢) that the composite function A — A(X) — B
satisfies SGB, and then invoke the fact [1, Theorem 2.7] that Spec(A(X)) —
Spec(A) is an order-isomorphism. O
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3 On the universalizations of GB, SGB and GD

We devote the present section to analogies between “universally SGB" and
“universally going-down," with particular emphasis on homomorphisms in-
volving domains. Propositions 3.1 and 3.2 collect some relevant information.
Notice that Proposition 3.1 (a) shows that “universalization" of SGB-GD in-
terplay does not always lead to valid results, for [9, Remark 2.5 (f)] provided
an example of an overring extension of domains that satisfies GD but does
not satisfy SGB.

Proposition 3.1: (a) [9, Theorem 3.1 (c)] Let A be a domain and let B be
an overring of A. Then A — B is universally SGB if and only if A — B is
universally going-down.

(b) [9, Theorem 3.1 (d)] If B is a flat overring of a domain A, then
A — B is universally SGB.

Next, it is convenient to recall a definition from [7]. A domain A is called
a universally going-down domain if A — B is universally going-down for each
overring B of A. Proposition 3.2 (b) presents a partial “universalization" of
Proposition 3.2 (a) and, thus, a partial analogue of [7, Theorem 2.6].

Proposition 3.2: Let A be a domain with quotient field K. Then:
(a) [9, Corollary 2.3] The following conditions are equivalent:
1) A C Alu] satisfies SGB for each u € K;
) A C B satisfies SGB for each valuation overring B of A;
) A C B satisfies SGB for each domain B containing A;
) A is a going-down domain.
, Corollary 3.2] The following conditions are equivalent:
(1) A — Alu] is universally SGB for each u € K;
(2) A — B is universally SGB for each valuation overring B of A;
(3) A — B is universally SGB for each overring B of A;
(4) A is a universally going-down domain.
(c) [9, Corollary 3.3] A is a Prifer domain if and only if A is integrally
closed and A — B is universally SGB for each overring B of A.

It is natural to consider the “universal" analogue of condition (3) in Propo-
sition 3.2 (a). However, despite Proposition 3.2 (b), it is not the case that a
universally going-down domain A has the property that A <— B is universally
SGB for each domain B containing A. In fact, we establish in Corollary 3.5
that no domain A has this property! The crux of the argument is isolated in
Lemma 3.3 below.
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In view of the above remarks, one should emphasize that some non-
overring extensions of domains do satisfy the universally SGB property. In
fact, if a ring homomorphism f : A — B is radiciel (in the sense of [13,
Définition 3.7.2, p. 248]) and universally going-down, then f is universally
SGB.

For the proof of Lemma 3.3, we need to recall the following material
from [15, p. 26] and [3]. A domain A is called an S(eidenberg)-domain in
case ht,x)(PA[X]) = 1 for all P € Spec(A) such that ht4(P) = 1. If A
is a one-dimensional S-domain, then [3, Corollary 6.3] ensures that A is a
stably strong S-domain (in the sense that for each nonnegative integer n,
the polynomial ring A[X7, ..., X,,] has the property that each of its factor
domains is an S-domain). Combining this information with [15, Theorem 27],
we see that if A is a one-dimensional S-domain, then dim(A[X, ..., X,]) =
n + 1 for each nonnegative integer n.

The proof of Lemma 3.3 also assumes familiarity with the basic facts
about “uppers' in a polynomial ring (cf. [15, p. 25]) and the very convenient
< P, > notation introduced for them in [17, Notation, p. 707].

Lemma 3.3: Let A be a one-dimensional S-domain and X,Y algebraically
independent indeterminates over A. Then A[X]| — A[X,Y] does not satisfy
SGB.

PrOOF: It suffices to produce prime ideals P, C P, C Ps of A[X] and
adjacent prime ideals @1 C @3 of A[X,Y] (identified with (A[X])[Y]) such
that @1 N A[X] = P, and Q3 N A[X] = P;. Let K denote the quotient
field of A. Fix a nonzero (necessarily height 1 and maximal) prime ideal
M of A. We begin the construction of the desired prime ideals by letting
PL=0,FP =<0,X >and P;; =< M, X >. It follows easily from the
definition of the notation for uppers cited above that P, = A[X]| N XK[X]
and P; = M + XA[X]. Therefore, since M # 0, we have arranged that
P, C P, = XA[X]| C P;. Moreover, ht(P3;) = 2 since the above comments
about one-dimensional S-domains ensure that dim(A[X]) = dim(A)+1 = 2.

We turn next to the definition of Q3. We let Q3 = P3[Y] = (M +
XAX)Y] = MA[Y] + XA[X,Y]. Of course, Q3 N A[X] = P;. In addi-
tion, ht(Q3) > ht(P;) = 2. In fact, the existence of uppers of Pj yields
that ht(Q3) = 2, since (3 is not a maximal ideal of A[X,Y] and the above
comments about one-dimensional S-domains ensure that dim(A[X,Y]) =
dim(A[X])+1=3.

The construction of (), is more intricate. For this purpose, fix any nonzero
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element m € M, consider the polynomial p :=Y —m™'X € K(X)[Y], and
let @1 =< 0,p >. By the definition of the notation for uppers cited above,
O = {g € AX]Y] | plg in K(X)[Y]}. Using the Factor Theorem, we
obtain a convenient description of this prime ideal, namely, @1 = {g(X,Y) €
AX,Y] | g(X,m™X) =0}. Of course, Q1 NA[X] =0= P, and ht(Q;) = 1,
since ()1 is an upper of 0. It remains only to verify that (); C @3, for then
consideration of heights will guarantee that )7 and @3 are adjacent.

We proceed by an indirect argument. Supposing that the assertion fails,
choose (a necessarily nonzero element) f € Q) \ @3 whose degree in Y, say
n, is minimal. Note that n > 1 since f # 0. Now, write

F=FXY) = fo(X)V" + AV 4 o+ fua(XY + ful(X)

with each f; € A[X]. Since f € @1, we have that

0= f(X,m'X)= Zfz mtX)"

n

Multiplying this expression by m™ and then solving for fo(X)X", we infer
that fo(X)X™ € mA[X]. Consequently, fo € mA[X], and so we can write
fo = mhy for some uniquely determined hy € A[X].

Consider the polynomial

g = (Xho(X)+A(X)Y" 1+ fo(X)Y" 2+ fu 1 (X)Y+[u(X) € A[X, Y],

Observe that g € Q1. (This can be accomplished by a straightforward calcu-
lation, using the facts that f(X,m™'X) =0 and ho/m" ! = fy/m™.) As the
degree in Y of g is at most n — 1, it follows from the minimality of n that
g € Q3. In other words,

g=(Xho(X)+ fi(X))Y" "+ L(X)Y" 2+ -+ + fu(X) € Q3

where Q3 = MA[Y] + XA[X,Y]. Substituting X +— 0 reveals that the
constant terms of Xhg + fi, f2, ..., fn_1 and f, are all in M. However, the
constant term of X hg + fi is the same as the constant term of f;. Moreover,
the constant term of fj is also in M, since fy € mA[X] C M A[X]. Thus, the

constant terms of fy, f1, fo, ..., fn_1 and f, are in M. It follows from the
way that we wrote f that f € MA[Y]+ XA[X,Y] = @3, contradicting the
choice of f. The proof is complete. 0O
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Theorem 3.4: If A is a nonzero ring and X is an indeterminate over A,
then A — A[X] is not universally SGB.

PrOOF:  Deny. Since A # 0, we can choose a maximal ideal M of A.
Put k := A/M. If T is another indeterminate, algebraically independent
from X, then the canonical map k[T|) — K[T]r) ®k k[X] is universally
SGB. Thus, R := k[T is such that R — R[X] is universally SGB. This
contradicts Lemma 3.3, since R, being a DVR, is a one-dimensional S-domain
[15, Theorem 68 or Theorem 149]. O

Next, we record a way in which the behavior of “universally SGB" is
fundamentally different from that of “universally going-down."

Corollary 3.5: There does not exist a domain A such that A — B is
universally SGB for each domain B that contains A.

PRrOOF: Domains are nonzero rings. Apply Theorem 3.4. 0

In the Introduction, we raised the following question. If A is a universally
going-down domain, is it possible to enlarge the class of “test domains' B
[with universally SGB behavior| appearing in the statement of Proposition
3.2 (b)? Theorem 3.6 establishes some related behavior with a “universally
GB'" flavor. This is especially relevant, since a careful reading of the above
material reveals that one can replace “does not satisfy SGB" (resp., “not ...
universally SGB") with the stronger conclusion “does not satisfy GB" (resp.,
“not ... universally GB") in the statement(s) of Lemma 3.3 (resp., Theorem
3.4 and Corollary 3.5).

Recall from [3] that a domain A is said to be locally finite-dimensional
(LFD) in case ht4(P) < oo for each P € Spec(A).

Theorem 3.6: Let A C B be domains such that A is an LFD universally
going-down domain and B is algebraic over A.

Then the inclusion map A[X, ..., X,] — B[X\, ... ,X,] satisfies GB for
each nonnegative integer n.

PROOF:  Suppose, for the moment, that the assertion is known in case
A is integrally closed (i.e., an LFD Priifer domain [7, Corollary 2.3]). We
show next how this enables one to handle the general case. Since A is a
universally going-down domain, [7, Theorem 2.4] ensures that C' := A’ is
a Priifer domain; and by the “incomparable" property of integrality [15,
Theorem 44], C' inherits the LFD property from A. Next, note via the
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“algebraic" hypothesis that C is A-algebra isomorphic to a subring of the
algebraic closure of the quotient field of B. Consequently, we may view
D := CB as a well-defined extension domain of C' (and of B). Moreover,
D is algebraic over C' (since B is algebraic over A); and D is integral over
B (since C' is integral over A). In particular, the case that has been as-
sumed guarantees that, for each nonnegative integer n, C[Xy, ..., X,] —
D[X;y, ..., X,] satisfies GB. Moreover, Proposition 3.2 (c) yields that A — C'
is universally SGB, and so A[Xy, ..., X,] — C[X\, ..., X,] also satisfies
(S)GB. Since it is evident that the GB property is preserved by composi-

tion (of inclusion maps), we have that A[Xy, ..., X,] — D[Xy, ..., X,]
satisfies GB. In addition, since it is an integral extension, B[X;, ..., X,] —
D[Xy, ..., X,] satisfies the lying-over, going-up and incomparable proper-

ties [15, Theorem 44]. It is now straightforward, by inspecting the tower
AlXy, ..., X, = B[Xy, ..., X, — D[Xy, ..., X,], to conclude that the
inclusion map A[X7y, ..., X,] — B[Xi, ..., X,] satisfies GB, as desired.

It remains to settle the case in which A is an LFD Priifer domain. As
above, it follows from the lying-over, going-up and incomparable properties
that we may replace B with B’. In other words, without loss of generality,
B is integrally closed. It follows that if we define E to be the integral closure
of Ain B, then F is actually the integral closure of A in the quotient field of
B. Consequently, by Priifer’s ascent result [15, Theorem 101], E' is a Priifer
domain. In addition, by incomparability, £ inherits the LFD property from
A. Moreover, we see via algebraicity (by clearing denominators) that B is an
overring of F. Hence, by Proposition 3.2 (¢), £ < B is universally SGB. In
particular, for each nonnegative integer n, E[X, ..., X, ] — B[Xi, ..., X,]
satisfies GB. As GB is preserved by composition, it is therefore enough to
show that A[Xy, ..., X,] — E[X\, ..., X,] satisfies GB. In other words,
without loss of generality, we have reduced to the case in which A and B
are each LFD Priifer domains and B is an integral extension of A. The key
upshot of this reduction is a consequence of a result of Nagata, namely, that
both A and B are universally catenarian integral domains (cf. [3, Theorem
6.2]).

Suppose that the assertion fails, so that A[X7, ..., X,,] — B[Xy, ..., X,]
does not satisfy GB. Then (cf. [19, 2.2.1]), there exist prime ideals P, C P, C
P3 of A[Xy, ..., X,] and adjacent prime ideals @; C Q3 of B[Xy, ..., X,]
such that @; N A[X, ..., X,] = P, for i = 1,3. Now, since A is a Priifer
domain, B is A-flat, and so A — B is universally going-down. In par-
ticular, A[Xy, ... ,X,] — B[X\, ..., X,] satisfies GD. Being integral, this
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extension also satisfies the incomparability property. It follows easily that
ht(Q;) = ht(F;) for ¢ = 1,3. However, universal catenarity of A (resp.,
B), ensures that ht(Q3/Q1) = ht(Q3)— ht(Q1) (resp., ht(Ps/P;) = ht(P3)—
ht(Pl)) ThCI’CfOI'C, 1= ht(Qg/Ql) = ht(Qg)— ht(Ql) = ht(Pg)— ht(P]_) =
ht(Ps/P;) > 2. This (desired) contradiction completes the proof. 0O

We do not know if it is possible to delete the “LFD" hypothesis from The-
orem 3.6. On the other hand, one cannot delete the “algebraic" hypothesis
in Theorem 3.6. To see this, let A be a one-dimensional S-domain that is
also a universally going-down domain (for instance, take A to be any DVR),
and let X and Y be algebraically independent indeterminates over A. Then,
by the above comments sharpening Lemma 3.3, B := A[Y] is such that
A[X] — B[X] does not satisfy GB.

In closing, we show that the universally SGB property is inherited by
maps induced on Nagata rings. First, it is convenient to record the follow-
ing companion for Proposition 3.1 (b): any ring of fractions A — Ag is
universally SGB.

Lemma 3.7: Let A be a ring and let S be a multiplicatively closed subset of
A. Then the canonical structure map A — Ag is universally SGB.

Proor: By [18, Corollary 4.11], the problem reduces to showing that
AlXy, o0, Xy = Al Xy, oo, X 2 A[X, L., X s satisfies SGB for each
nonnegative integer n. This, in turn, follows from the fact [18, Lemma 5.6
(3)] that any ring of fractions B — By satisfies SGB. 0

Proposition 3.8: Let f : A — B be a ring homomorphism, and let g :
A(X) — B(X) be the ring homomorphism induced by f. If f is universally
SGB, then g is universally SGB.

PROOF: Let S (resp., T') denote the set of all the polynomials in A[X] (resp.,
B[X]) with unit content. Then, by definition, A(X) = A[X]s and B(X) =
B[X]r. Let h : A[X] — B[X] denote the ring homomorphism induced by f.
Since f is universally SGB, so is the induced map A(X) = A[X]s — B[X]s.
Of course, B[X|g = B[X]js). Now, let U denote the canonical image of
T in B[X]ys). Since h(S) C T, it follows from a basic fact about rings of
fractions [2, Proposition 7 (i), p. 65] that B(X) = B[X|r = (B[X]us))u. As
the universally SGB property is evidently preserved by composition (by [18,
Corollary 4.11 and Lemma 4.5 (1)]), the assertion concerning g will follow if
we show that the canonical map B[X]ys) — (B[X]n(s))v is universally SGB.
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However, Lemma 3.7 established that any ring of fractions is universally

SGB, and so the proof is complete. 0O
References
[1] D. F. Anderson, D. E. Dobbs, and M. Fontana. On treed Nagata rings.

2]
3]

[4]

[10]

[11]

[12]

J. Pure Appl. Algebra, 61:107-122, 1989.
N. Bourbaki. Commutative Algebra. Addison-Wesley, Reading, 1972.

A. Bouvier, D. E. Dobbs, and M. Fontana. Universally catenarian inte-
gral domains. Adv. in Math., 72:211-238, 1988.

D. E. Dobbs. On going-down for simple overrings, II. Comm. Algebra,
1:439-458, 1974.

D. E. Dobbs. Going-down rings with zero-divisors. Houston J. Math.,
23:1-12, 1997.

D. E. Dobbs and M. Fontana. Universally going-down homomorphisms
of commutative rings. J. Algebra, 90:410-429, 1984.

D. E. Dobbs and M. Fontana. Universally going-down integral domains.
Arch. Math., 42:426-429, 1984.

D. E. Dobbs and I. J. Papick. On going-down for simple overrings, III.
Proc. Amer. Math. Soc., 54:35-38, 1976.

D. E. Dobbs and G. Picavet. On strong going-between, going-down, and
their universalizations. In Rings, Modules, Algebras and Abelian Groups.
Dekker, New York, to appear.

M. Fontana. Topologically defined classes of commutative rings. Ann.
Mat. Pura Appl., 123:331-355, 1980.

M. Fontana, J. A. Huckaba, and I. J. Papick. Priifer Domains. Dekker,
New York, 1997.

R. Gilmer. Multiplicative Ideal Theory. Dekker, New York, 1972.

259



D. E. DoBBS AND G. PICAVET

[13] A. Grothendieck and J. A. Dieudonné. Eléments de Géométrie Al-
gébrique. Springer-Verlag, Berlin, 1971.

[14] M. Hochster. Prime ideal structure in commutative rings. Trans. Amer.
Math. Soc., 142:43-60, 1969.

[15] 1. Kaplansky. Commutative Rings, rev. ed. Univ. Chicago Press,
Chicago, 1974.

[16] W. J. Lewis. The spectrum of a ring as a partially ordered set. J.
Algebra, 25:419-434, 1973.

[17] S. McAdam. Going down in polynomial rings. Can. J. Math., 23:704—
711, 1971.

[18] G. Picavet. Universally going-down rings, 1-split rings and absolute
integral closure. Comm. Algebra, 31:4655-4685, 2003.

[19] L. J. Ratliff, Jr. Going-between rings and contractions of saturated
chains of prime ideals. Rocky Mountain J. Math., 7:777-787, 1977.

[20] L. J. Ratliff, Jr. A(X) and GB-Noetherian rings. Rocky Mountain J.
Math., 9:337-353, 1979.

Davip E. DoBBs GABRIEL PICAVET
UNIVERSITY OF TENNESSEE UNIVERSITE BLAISE PASCAL
DEPARTMENT OF MATHEMATICS LABORATOIRE DE MATHEMATIQUES PURES

KNOXVILLE, TENNESSEE 37996-1300 63177 AUBIERE CEDEX

U.S.A. FRANCE
dobbs@math.utk.edu Gabriel.Picavet@math.univ-bpclermont.fr

260



	Introduction
	Logical independence and transfer results
	On the universalizations of GB, SGB and GD

