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On finitely generated birational flat
extensions of integral domains

Susumu Oda

1 Introduction

In this paper, all rings and their extensions are commutative with a unit
element.

It is well-known that birational, integral, flat extensions of integral do-
mains are trivial.

Our objective is to extend this fact to a result that birational, finitely
generated, flat extensions of integral domains are open-immersions. In addi-
tion, we show that their complementary closed sets are of grade one if not
empty.

We use the following notation unless otherwise specified: R is an integral
domain with quotient field K and A is a birational extension of R in K.

2 Results

Lemma 2.1: Assume that A is flat over R and that the canonical morphism
Spec(A) → Spec(R) is surjective. Then R = A.

Proof: Take a ∈ A with a = y/x (x, y ∈ R). A is faithfully flat over R by
[3, (7.2)]. So it follows that y = ax ∈ xA ∩ R = xR (cf. [3, (7.5)]). Hence
a = y/x ∈ R. Therefore R = A.

Proposition 2.2: Let A be a birational extension of R. If A is integral and
flat over R, then A = R.

Proof: Since A is integral over R, the canonical map Spec(A) → Spec(R)
is surjective. Hence our conclusion follows from Lemma 2.1.
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Lemma 2.3: Assume that A is flat over R. Then for any P ∈ Spec(A),
AP = RP∩R. Moreover, AP∩R = RP∩R.

Proof: Put p = P ∩R. Then Rp → AP is flat. As a flat extension of rings
satisfies the Going-Down Theorem (cf. [2, (5.D)]), Spec(AP ) → Spec(Rp) is
surjective. Hence AP = Rp by Lemma 2.1. The last statement follows from
the factorization Rp ↪→ Ap ↪→ AP .

Theorem 2.4: Let R be an integral domain with quotient field K and let A
be a birational extension of R in K. Put

IR(A) := {a ∈ R | a 6= 0, A[1/a] = R[1/a]} ∪ {0}.

Assume that A is finitely generated over R. Then
(i) IR(A) is a radical ideal of R and IR(A) 6= (0).
(ii) For p ∈ Spec(R), IR(A) 6⊆ p ⇐⇒ Ap = Rp.

Proof: Put A = R[α1, . . . , αn] and let αi = ai/b (ai, b ∈ R, b 6= 0).
(i) Since A[1/b] = R[1/b], we have b ∈ IR(A) and so IR(A) 6= (0). Let

a, b ∈ IR(A). Since A[1/a] = R[1/a] and A[1/b] = R[1/b], there exists an
integer ` >> 0 such that a`αi ∈ R and b`αi ∈ R for every 1 ≤ i ≤ n. Thus
we have (a + b)2`αi ∈ R and hence A[1/(a + b)] = R[1/(a + b)], which shows
that a + b ∈ IR(A). For any r(6= 0) ∈ R, it is obvious that ra ∈ IR(A).
Therefore, IR(A) is a non-zero ideal of R. The ideal IR(A) is a radical ideal
by definition.

(ii) If there exists a ∈ IR(A) \ p with p ∈ Spec(R), then Ap = A[1/a]p =
R[1/a]p = Rp. Conversely, suppose that Ap = Rp for p ∈ Spec(R). Put
αi = ci/ti, ci ∈ R, ti ∈ R \ p and let t = t1 · · · tn ∈ R \ p. Since αi ∈ R[1/t],
we have A ⊆ R[1/t], that is, A[1/t] = R[1/t] with t 6∈ p, which means that
t ∈ IR(A) but t 6∈ p. Thus IR(A) 6⊆ p.

Theorem 2.5: Let R be an integral domain with quotient field K and let A be
a birational extension of R in K. If (0) 6= IR(A) 6= R, then grade(IR(A)) = 1,
i.e. IR(A) contains only a regular sequence of one element.

Proof: Suppose that there exists a regular sequence {x, y} in IR(A). Take
an element α ∈ A \R (such an element exists because IR(A) 6= R). Then for
a large integer ` ∈ N, we have x`α = a ∈ R and y`α = b ∈ R. Then in K,
x`/y` = a/b, that is, x`b = y`a in R. Since {x`, y`} is also a regular sequence,
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we have a = x`c for some c ∈ R. So we have x`α = a = x`c. Since R is an
integral domain, we have α = c ∈ R, which is a contradiction.

Remark 2.6: A is finitely generated over R =⇒ IR(A) 6= (0), as was seen
above, but the reverse implication does not always hold. Let R = k[X, Y ]
be a polynomial ring over a field k and let A = k[Y, {X/Y `}`∈N]. Then it
is obvious that A is a birational, infinitely generated extension of R. But
R[1/Y ] = A[1/Y ] and hence IR(A) 3 Y .

Theorem 2.7: Let R be an integral domain with quotient field K and let
A be an extension of R. Assume that A is a birational, finitely generated
extension of R in K and that A is flat over R. Then the canonical morphism
Spec(A) → Spec(R) is an open-immersion. Moreover, Spec(A) ∼= Spec(R) \
V (IR(A)) is canonically an isomorphism of schemes.

Proof: We claim that IR(A)A = A. In fact, suppose that there exists
P ∈ Spec(A) such that IR(A)A ⊆ P . Put p = P ∩ R so that p ⊇ IR(A).
Now AP is faithfully flat over Rp. Thus AP = Ap = Rp by Lemma 2.3.
Hence IR(A) 6⊆ p by Theorem 2.4, a contradiction. Therefore, we have
shown IR(A)A = A and Spec(A) → Spec(R) \ V (IR(A)) is defined. Next we
will show that this map is surjective by using the fact that a flat birational
extension of integral domains R → A verifies the following property: if p
is a prime ideal of R, then either pA = A or Rp → Ap is an isomorphism.
Suppose that there exists p ∈ Spec(R) \ V (IR(A)) such that pA = A. Then
IR(A) 6⊆ p implies that there exists a(6= 0) ∈ IR(A) \ p. So R[1/a] =
A[1/a]. Thus Rp = R[1/a]p = A[1/a]p = Ap, which is a contradiction.
Thus Spec(A) → Spec(R) \ V (IR(A)) is surjective. Now let P, P ′ ∈ Spec(A)
with P ∩ R = P ′ ∩ R := p. Then AP = Rp = AP ′ , all of which are local
rings. Hence P = P ′. So Spec(A) → Spec(R) \ V (IR(A)) is injective. Since
for any P ∈ Spec(A), AP = RP∩R, Spec(A) → Spec(R) \ V (IR(A)) is a
homeomorphism. Hence Spec(A) → Spec(R) is an open-immersion.

Corollary 2.8: Let R be an integral domain with quotient field K and let
A be an extension of R. Assume that A is a birational, finitely generated
extension of R in K and that A is flat over R. Let (P) be any local-global
property (e.g. regular, normal, . . . ). If R has (P), so does A.
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Proof: Since Spec(A) → Spec(R) is an open-immersion by Theorem 2.7,
our conclusion is obvious.

Lemma 2.9: Let R be a UFD, and let P be a prime ideal of R with
grade(P ) = 1. Then ht(P ) = 1.

Proof: Suppose that ht(P ) ≥ 2. Then there exists a prime element x ∈ P .
Since P 6= (x), take y ∈ P \ (x). Then {x, y} is a regular sequence in P ,
which means that grade(P ) ≥ 2, a contradiction. Hence ht(P ) = 1.

Proposition 2.10: Let R be a UFD, and let I be an ideal of R with
grade(I) = 1. Then ht(I) = 1 and hence V (I) = V (a) ⊆ Spec(R) for
some a ∈ R.

Proof: Let P be a minimal prime ideal containing I. Then
√

IRP = PRP .
Since grade(I) = 1 implies grade(

√
I) = 1, we have 1 = grade(

√
IRP ) =

grade(PRP ). Noting that RP is a UFD, ht(PRP ) = 1 by Lemma 2.9. Since
I ⊆ P , ht(I) = 1. Since R is a UFD,

√
I = P1∩ · · ·∩Pn for some ht(Pi) = 1.

Indeed, if I is an ideal whose minimal prime ideals are finitely generated, then
I has only finitely many minimal prime ideals [1, Theorem]. Put Pi = (ai)
with ai ∈ I. Hence in Spec(R), V (I) = V (

√
I) = V (P1 ∩ · · · ∩ Pn) =

V (P1 · · ·Pn) = V (a1 · · · an) = V (a), where a = a1 · · · an.

Theorem 2.11: Let R be an integral domain with quotient field K and let
A be an extension of R. Assume that A is a birational, finitely generated
extension of R in K and that A is flat over R. If R is a UFD (a unique
factorization domain), then A = R[1/a] for some a ∈ R.

Proof: We may assume that IR(A) 6= R. Then grade(IR(A)) = 1 by
Theorem 2.5. Since R is a UFD, V (IR(A)) = V (a) for some a ∈ R. So by the
last statement of Theorem 2.7, Spec(A) ∼= Spec(R) \ V (a) = Spec(R[1/a]).
Therefore, A = R[1/a].

Theorem 2.12: Let R be an integral domain with quotient field K and let
A be an extension of R. Assume that A is a birational, finitely generated
extension of R in K and that A is flat over R. If R is a UFD, then A is also
a UFD.

Proof: If R is a UFD, then a localization R[1/a] with a ∈ R \ (0) is a
UFD. So our conclusion follows from Theorem 2.11.
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Added in Proof.

Professor Gabriel Picavet informed the author of the following in a letter.
We write it here with his permission:

“ During the sixties, Pr. Samuel organized in Paris a seminar about epi-
morphisms of the category of commutative rings. Daniel Lazard was finishing
his thesis about flatness whose reference is “ Autour de la platitude, Bull.
Soc. Math. France, (97), 1969, 81-128 ”.

A classical example of flat epimorphism is a localization with respect to
a multiplicative subset. Hence, if A is an integral domain with quotient field
K, then A → K is a flat epimorphism.

Now there is a fundamental result (Corollaire 3.2) in chapter IV of Lazard’s
paper: let A → C → B a composite of ring morphisms be such that A → B
is a flat epimorphism and C → B is injective. Then C → B is a flat epimor-
phism and if A → C is flat, then A → C is an epimorphism.

Hence, if R → A is birational and flat, R → A is a flat epimorphism.
Now faithfully flat epimorphisms are isomorphisms (Lazard, Lemme 1.2)

and we find Lemma 2.1 and Proposition 2.2. Moreover, if A → B is a ring
morphism, then A → B is a flat epimorphism if and only if AP → BQ is
an isomorphism for each Q ∈ Spec(B) and P := f−1(Q) and Spec(B) →
Spec(A) is injective.

Thus the local-global principle (Corollary 2.8) is an easy consequence.
If we read the E.G.A of Dieudonné and Grothendieck, we may see that

an open immersion of affine schemes is nothing but a flat epimorphism of
finite presentation (as an algebra). Moreover, by a paper of Michel Raynaud
and Laurent Gruson,“ Critères de platitude et projectivité, Invent. Math.
(13), 1971, 1-89 ”, a flat ring morphism of finite type A → B where A is an
integral domain is of finite presentation.

Now, Chevalley’s theorem states that a flat morphism of finite presenta-
tion A → B is Zariski open (even if A and B are not noetherian).

It follows that we have a result more general than Theorem 2.7. More
generally, if A → B is a flat epimorphism, Spec(B) → Spec(A) is a homeo-
morphism onto its image (Lazard, Corollaire 2.2). ”

Thus the part of Theorem 2.7 that Spec(A) → Spec(R) is an open-
immersion has been known. But we would like to emphasize that our proof
is elementary and simpler because we do not use the notion of epimorphism.

39



S. Oda

Moreover, note the explicit computation of the open set introduced in The-
orem 2.7 and the interesting property of its complement V (IR) (cf. Theo-
rem 2.5).

Finally the author wishes to express his deep appreciation for Professor
Picavet’s kind co-operation.
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