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Existence of solutions of degenerated
unilateral problems with L1 data

Lahsen Aharouch
Youssef Akdim

Abstract

In this paper, we shall be concerned with the existence result of
the Degenerated unilateral problem associated to the equation of the
type

Au + g(x, u,∇u) = f − divF,

where A is a Leray-Lions operator and g is a Carathéodory func-
tion having natural growth with respect to |∇u| and satisfying the
sign condition. The second term is such that, f ∈ L1(Ω) and F ∈
ΠN
i=1L

p′(Ω, w1−p′
i ).

1 Introduction
Let Ω be a bounded open set of RN , p be a real number such that 1 < p <∞
and w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions on Ω, i.e.
each wi(x) is a measurable a.e. strictly positive function on Ω, satisfying
some integrability conditions (see section 2). Now we consider the obstacle
problem associated to the following differential equations

Au+ g(x, u,∇u) = f − divF. (1.1)

WhereA is a Leray-Lions operator fromW 1,p
0 (Ω, w) into its dualW−1,p′(Ω, w∗)

defined by Au = −diva(x, u,∇u) and where g is a nonlinear lower order
term having natural growth (order p) with respect to |∇u|, with respect
to |u|, we do not assume any growth restrictions, but we assume only the
”sign-condition"

g(x, s, ξ)s ≥ 0.

As regards the second member, we suppose that f ∈ L1(Ω) and that

F ∈ ΠN
i=1L

p′(Ω, w1−p′
i ).
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In the case where F = 0, an existence theorem has been proved in [2] with
f ∈ W−1,p′(Ω, w), and in [3] with f ∈ L1(Ω) and where the nonlinearity g
satisfies further the following coercivity condition

|g(x, s, ξ)| ≥ β
N∑
i=1

wi|ξi|p for |s| > γ. (1.2)

Our purpose, in this paper, is to prove an existence result for degenerated
unilateral problems associated to (1.1) in the case where F 6= 0 and without
assuming the coercivity condition (1.2). So that, we generalize The previous
results given in [3].
Let us point out that another work in the Lp case can be found in [6, 12] in
the case of equation, and in [11] in the case of obstacle problems.
This paper is organized as follows, sections 2 containe some preliminaries and
some technical lemmas, section 3 is concerned with main results and basic
assumptions, in section 4, we prove main results and we study the stability
and the positivity of solution.

2 Preliminaries
Let Ω be a bounded open subset of RN(N ≥ 1). Let 1 < p < ∞, and let
w = {wi(x); i = 1, ..., N} ,
0 ≤ i ≤ N be a vector of weight functions i.e. every component wi(x) is a
measurable function which is strictly positive a.e. in Ω. Further, we suppose
in all our considerations that for 0 ≤ i ≤ N

wi ∈ L1
loc(Ω) and w

− 1
p−1

i ∈ L1
loc(Ω). (2.1)

We define the weighted space with weight γ in Ω as

Lp(Ω, γ) = {u(x) : uγ
1
p ∈ Lp(Ω)},

which is endowed with, we define the norm

‖u‖p,γ = (

∫
Ω

|u(x)|pγ(x) dx)
1
p .

We denote by W 1,p(Ω, w) the space of all real-valued functions u ∈ Lp(Ω, w0)
such that the derivatives in the sense of distributions satisfy

∂u

∂xi
∈ Lp(Ω, wi) for all i = 1, ..., N.
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Solutions of degenerated unilateral problems

This set of functions forms a Banach space under the norm

‖u‖1,p,w =

(∫
Ω

|u(x)|pw0 dx+
N∑
i=1

∫
Ω

| ∂u
∂xi

|pwi(x) dx

) 1
p

. (2.2)

To deal with the Dirichlet problem, we use the space

X = W 1,p
0 (Ω, w),

defined as the closure of C∞
0 (Ω) with respect to the norm (2.2). Note that,

C∞
0 (Ω) is dense in W 1,p

0 (Ω, w) and (X, ‖.‖1,p,w) is a reflexive Banach space.
We recall that the dual space of the weighted Sobolev spaces W 1,p

0 (Ω, w) is
equivalent to W−1,p′(Ω, w∗), where w∗ = {w∗

i = w1−p′
i }, i = 1, ..., N and p′

is the conjugate of p i.e. p′ = p
p−1

. For more details we refer the reader to
[10].
We now introduce the functional spaces we will need later.
For p ∈ (1,∞), τ 1,p

0 (Ω, w) is defined as the set of measurable functions u :
Ω → R such that for k > 0 the truncated functions Tk(u) ∈ W 1,p

0 (Ω, w).
We gives the following lemma this is a generalization of Lemma 2.1 [4] in
weighted spaces.

Lemma 2.1: For every u ∈ τ 1,p
0 (Ω, w), there exists a unique measurable

function v : Ω → R such that

∇Tk(u) = vχ{|v|<k}.

Lemma 2.2: Let λ ∈ R and let u and v be two measurable functions defined
on Ω which are finite almost everywhere, and which are such that Tk(u),
Tk(v) and Tk(u+ λv) belong to W 1,p

0 (Ω, w) for every k > 0 then

∇(u+ λv) = ∇(u) + λ∇(v) a.e. in Ω

where ∇(u), ∇(v) and ∇(u+ λv) are the gradients of u, v and u+ λv intro-
duced in Lemma 2.1.

The proof of this lemma is similar to the proof of Lemma 2.12 [9] for the
non weighted case.
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Now, we state the following assumptions.
(H1)-The expression

‖u‖X =

(
N∑
i=1

∫
Ω

| ∂u
∂xi

|pwi(x) dx

) 1
p

, (2.3)

is a norm defined on X and is equivalent to the norm (2.2). (Note that
(X, ‖u‖X) is a uniformly convex (and reflexive) Banach space.
-There exist a weight function σ on Ω and a parameter q, 1 < q <∞, such
that

1 < q < p+ p′ (2.4)

and
σ1−q′ ∈ L1

loc(Ω). (2.5)

with q′ = q
q−1

and such that the Hardy inequality

(∫
Ω

|u|qσ(x) dx

) 1
q

≤ C

(
N∑
i=1

∫
Ω

| ∂u
∂xi

|pwi(x) dx

) 1
p

, (2.6)

holds for every u ∈ X with a constant C > 0 independent of u. Moreover,
the imbeding

X ↪→ Lq(Ω, σ) (2.7)

determined by the inequality (2.6) is compact.
Now, we state the following technical lemmas which are needed later.

Lemma 2.3:[1] Let g ∈ Lr(Ω, γ) and let gn ∈ Lr(Ω, γ), with ‖gn‖Ω,r ≤ c, 1 <
r <∞. If gn(x) → g(x) a.e. in Ω, then gn ⇀ g weakly in Lr(Ω, γ).

Lemma 2.4:[1]: Assume that (H1) holds. Let F : R → R be unifomly
Lipschitzian, with F (0) = 0. Let u ∈ W 1,p

0 (Ω, w). Then F (u) ∈ W 1,p
0 (Ω, w).

Moreover, if the set D of discontinuity points of F ′ is finite, then

∂(F ◦ u)
∂xi

=

{
F ′(u) ∂u

∂xi
a.e. in {x ∈ Ω : u(x) /∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

The previous lemma, we deduce the following.
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Solutions of degenerated unilateral problems

Lemma 2.5:[1]: Assume that (H1) holds. Let u ∈ W 1,p
0 (Ω, w), and let

Tk(u), k ∈ R+, be the usual truncation then Tk(u) ∈ W 1,p
0 (Ω, w). Moreover,

we have
Tk(u) → u strongly in W 1,p

0 (Ω, w).

3 Main results

Let A be a nonlinear operator from W 1,p
0 (Ω, w) into its dual W−1,p′(Ω, w∗)

defined as
Au = −div(a(x, u,∇u)),

where a : Ω × R × RN → RN is a Carathéodory function satisfying the
following assumptions:
(H2)

|ai(x, s, ξ)| ≤ w
1
p

i (x)[k(x) + σ
1
p′ |s|

q
p′ +

N∑
j=1

w
1
p′
j (x)|ξj|p−1] for i = 1, ..., N

(3.1)
[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0 for all ξ 6= η ∈ RN , (3.2)

a(x, s, ξ)ξ ≥ α
N∑
i=1

wi(x)|ξi|p, (3.3)

where k(x) is a positive function in Lp
′
(Ω) and α is a positive constants.

(H3) g(x, s, ξ) is a Carathéodory function satisfying

g(x, s, ξ).s ≥ 0 (3.4)

|g(x, s, ξ)| ≤ b(|s|)(
N∑
i=1

wi(x)|ξi|p + c(x)), (3.5)

where b : R+ → R+ is a nonnegative increasing function and c(x) is a positive
function which in L1(Ω).
Let

Kψ = {u ∈ W 1,p
0 (Ω, w)/ u ≥ ψ a.e. in Ω},
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where ψ : Ω → R is a measurable function on Ω such that

ψ+ ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω). (3.6)

Finally, we assume that
f ∈ L1(Ω), (3.7)

and
F ∈ ΠN

i=1L
p′(Ω, w1−p′

i ). (3.8)

We defined, for s and k in R, k ≥ 0, Tk(s) = max(−k,min(k, s)).
For the nonlinear Dirichlet boundary value problem (1.1), we state our main
result as follows.

Theorem 3.1:: Assume that the assumption (H1) − (H3) and (3.6) − (3.8)
hold, then, there exists at least one solution of (1.1) in the following sense:

(P )



u ≥ ψ, g(x, u,∇u) ∈ L1(Ω)

Tk(u) ∈ W 1,p
0 (Ω, w),∫

Ω

a(x, u,∇u)∇Tk(u− v) dx+

∫
Ω

g(x, u,∇u)Tk(u− v) dx

≤
∫

Ω

fTk(u− v) dx+

∫
Ω

F∇Tk(u− v) dx

∀ v ∈ Kψ ∩ L∞(Ω) ∀ k > 0.

Remarks 3.2:

1. We obtain the same results of our theorem if we suppose that the signe
condition (3.4) is only near infinity.

2. The statement of Theorem 3.1 generalizes in weighted case the analo-
gous one in [12] and [11].

4 Proof of main results
We recall the following lemma wich play an important rôle in the proof of
our main result,
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Solutions of degenerated unilateral problems

Lemma 4.1:[1] Assume that (H1) and (H2) are satisfied, and let (un) be a
sequence in W 1,p

0 (Ω, w) such that un ⇀ u weakly in W 1,p
0 (Ω, w) and∫

Ω

[a(x, un,∇un)− a(x, un,∇u)]∇(un − u) dx→ 0

then, un → u in W 1,p
0 (Ω, w).

Proof of Theorem 3.1
For the prove of the existence theorem we proceed by steps.
Step 1. A priori estimates
Let us defined the following sequence of the unilaterals problems

un ∈ Kψ, g(x, un,∇un) ∈ L1(Ω), g(x, un,∇un)un ∈ L1(Ω)

〈Aun, un − v〉+

∫
Ω

g(x, un,∇un)(un − v) dx

≤
∫

Ω

fn(un − v) dx+

∫
Ω

Fn∇(un − v) dx,

∀ v ∈ Kψ ∩ L∞(Ω).

(4.1)

where fn and Fn are a regular functions such that fn strongly converges to f
in L1(Ω) and Fn strongly converges to F in ΠN

i=1L
p′(Ω, w1−p′

i ). By Theorem
3.1 of [2], there exists at least one solution of (4.1).
Taking v ∈ Kψ and choosing h ≥ ‖ψ+‖∞ so as w̃ = Th(un − Tk(un − v)) ∈
Kψ∩L∞(Ω). The choice of w̃ as a test function in (4.1) and letting h→ +∞,
we obtain

(Pn)


〈Aun, Tk(un − v)〉+

∫
Ω

g(x, un,∇un)Tk(un − v) dx

≤
∫

Ω

fnTk(un − v) dx+

∫
Ω

Fn∇Tk(un − v) dx,

∀ v ∈ Kψ.

The use of v = ψ+ as test function in (Pn) gives∫
Ω

a(x, un,∇un)∇Tk(un − ψ+) dx+

∫
Ω

g(x, un,∇un)Tk(un − ψ+) dx

≤
∫

Ω

fnTk(un − ψ+) dx+

∫
Ω

Fn∇Tk(un − ψ+) dx,
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since g(x, un,∇un)Tk(un − ψ+) ≥ 0, then∫
{|un−ψ+|≤k}

a(x, un,∇un)∇Tk(un − ψ+) dx

≤ Ck +

∫
{|un−ψ+|≤k}

Fn∇Tk(un − ψ+) dx

by Young’s inequality and (3.3), one easily has

α

2

∫
Ω

N∑
i=1

|∂Tk(un)
∂xi

|pwi(x) dx ≤ c1k ∀ k > 1. (4.2)

Now, as in [5], we prove that un converges to some function u locally in
measure (and therefore, we can aloways assume that the convergence is a.e.
after passing to a suitable subsequence). We shall show that un is a Cauchy
sequence in measure in any ball BR.
Let k > 0 large enough, we have

k meas({|un| > k} ∩BR) =

∫
{|un|>k}∩BR

|Tk(un)| dx ≤
∫
BR

|Tk(un)| dx

≤
(∫

Ω

|Tk(un)|qσ dx
) 1

q
(∫

BR

σ1−q′ dx

) 1
q′

≤ cR

(∫
Ω

N∑
i=1

|∂Tk(un)
∂xi

|pwi(x) dx

) 1
p

≤ c1k
1
p

which implies

meas({|un| > k} ∩BR) ≤ c1

k1− 1
p

∀ k > 1. (4.3)

We have, for every δ > 0,

meas({|un − um| > δ} ∩BR) ≤ meas({|un| > k} ∩BR)
+meas({|um| > k} ∩BR) +meas{|Tk(un)− Tk(um)| > δ}. (4.4)

Since Tk(un) is bounded in W 1,p
0 (Ω, w), there exists some vk ∈ W 1,p

0 (Ω, w),
such that

Tk(un) ⇀ vk weakly in W 1,p
0 (Ω, w)

Tk(un) → vk strongly in Lq(Ω, σ) and a.e. in Ω.
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Consequently, we can assume that Tk(un) is a Cauchy sequence in measure
in Ω.
Let ε > 0, then, by (4.3) and (4.4), there exists some k(ε) > 0 such that
meas({|un − um| > δ} ∩ BR) < ε for all n,m ≥ n0(k(ε), δ, R). This proves
that (un) is a Cauchy sequence in measure in BR, thus converges almost
everywhere to some measurable function u. Then

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω, w),

Tk(un) → Tk(u) strongly in Lq(Ω, σ) and a.e. in Ω.

Which implies, by using (3.1), for all k > 0 there exists a function hk ∈
ΠN
i=1L

p′(Ω, wi), such that

a(x, Tk(un),∇Tk(un)) ⇀ hk weakly in ΠN
i=1L

p′(Ω, wi). (4.5)

Step 2. Strong convergence of truncation
Let k > 0 large enough such that k > ‖ψ+‖∞, we consider the function
φ(t) = teγt

2 , with γ > ( b(k)
2α

)2 (this function is introduce by [7, 8]). Thanks
to Lemma 1 of [8], we have the following inequality

φ′(s)− b(k)

α
|φ(s)| ≥ 1

2
(4.6)

hold for all s ∈ R.
Here, we define wn = T2k(un − Th(un) + Tk(un)− Tk(u)) where h > 2k > 0.
For η = exp(−4γk2), we define the following function as

vn,h = un − ηφ(wn). (4.7)

The use of vn,h as test function in (Pn), we obtain, for all l > 0

〈A(un), Tl(ηφ(wn))〉+

∫
Ω

g(x, un,∇un)Tl(ηφ(wn)) dx

≤
∫

Ω

fnTl(ηφ(wn)) dx+

∫
Ω

Fn∇Tl(ηφ(wn)) dx,

we take also l large enough, we have

〈A(un), φ(wn)〉+

∫
Ω

g(x, un,∇un)φ(wn) dx

≤
∫

Ω

fnφ(wn) dx+

∫
Ω

Fn∇φ(wn) dx.
(4.8)
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Note that, ∇wn = 0 on the set where {|un| > h+4k}, therefore, setting M =
4k + h, and denoting by ε1

h(n), ε2
h(n), ... various sequences of real numbers

which converge to zero as n tends to infinity for any fixed value of h, we get,
by (4.8),

∫
Ω

a(x, TM(un),∇TM(un))∇wnφ′(wn) dx+

∫
Ω

g(x, un,∇un)φ(wn) dx

≤
∫

Ω

fnφ(wn) dx+

∫
Ω

Fn∇wnφ′(wn) dx.

(4.9)
since φ(wn)g(x, un,∇un) ≥ 0 on the subset {x ∈ Ω : |un(x)| > k}, we deduce
from (4.9) that

∫
Ω

a(x, TM(un),∇TM(un))∇wnφ′(wn) dx+

∫
{|un|≤k}

g(x, un,∇un)φ(wn) dx

≤
∫

Ω

fnφ(wn) dx+

∫
Ω

Fn∇wnφ′(wn) dx.

(4.10)
Splitting the first integral on the left hand side of (4.10) where |un| ≤ k and
|un| > k, we can write, by using (3.3):

∫
Ω

a(x, TM(un),∇TM(un))∇wnφ′(wn) dx

≥
∫

Ω

a(x, Tk(un),∇Tk(un))[∇Tk(un)−∇Tk(u)]φ′(wn) dx

−Ck
∫
{|un|>k}

|a(x, TM(un),∇TM(un))||∇Tk(u)| dx,

(4.11)
where Ck = φ′(2k). Since, when n tends to infinity, we have
for all i = 1, ..., N, ∂(Tk(u))

∂xi
χ{|un|>k} tends to 0 strongly in Lp(Ω, wi) while,

(ai(x, TM(un),∇TM(un)))n is bounded in Lp
′
(Ω, w1−p′

i ) hence the last term
in the previous inequality tends to zero for every h fixed as n tends to infinity.
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Now, observe that

∫
Ω

a(x, Tk(un),∇Tk(un))[∇Tk(un)−∇Tk(u)]φ′(wn) dx

=

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×[∇Tk(un)−∇Tk(u)]φ′(wn) dx

+

∫
Ω

a(x, Tk(un),∇Tk(u))[∇Tk(un)−∇Tk(u)]φ′(wn) dx.

(4.12)
By the continuity of the Nymetskii operator, we have for all i = 1, ..., N

ai(x, Tk(un),∇Tk(u))φ′(wn)) → ai(x, Tk(u),∇Tk(u))φ′(T2k(u− Th(u))

strongly in Lp
′
(Ω, w1−p′

i ) and since ∂(Tk(un))
∂xi

⇀ ∂(Tk(u))
∂xi

weakly in Lp(Ω, wi),
the second term of the right hand side of (4.12) tends to 0 as n→∞.
So that (4.11) yields

∫
Ω

a(x, TM(un),∇TM(un))[∇Tk(un)−∇Tk(u)]φ′(wn) dx

≥
∫

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×[∇Tk(un)−∇Tk(u)]φ′(wn) dx+ ε2
h(n).

(4.13)
For the second term of the left hand side of (4.10), we can estimate as follows

∫
{|un|≤k}

g(x, un,∇un)φ(wn) dx

≤
∫
{|un|≤k}

b(k)(c(x) +
N∑
i=1

wi|
∂Tk(un)

∂xi
|p|φ(wn)| dx

≤ b(k)

∫
Ω

c(x)|φ(wn)| dx

+ b(k)
α

∫
Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)|φ(wn)| dx,

(4.14)
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remark that, we have∫
Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)|φ(wn)| dx

=

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×[∇Tk(un)−∇Tk(u)]|φ(wn)| dx

+

∫
Ω

a(x, Tk(un),∇Tk(un))∇Tk(u)|φ(wn)| dx

+

∫
Ω

a(x, Tk(un),∇Tk(u))[∇Tk(un)−∇Tk(u)]|φ(wn)| dx.

(4.15)
By the Lebesgue’s Theorem, we have

∇Tk(u)|φ(wn)| → ∇Tk(u)|φ(T2k(u− Th(u)))| strongly in ΠN
i=1L

p(Ω, wi).

Moreover, in view of (4.5) the second term of the right hand side of (4.15)
tends to ∫

Ω

hk∇Tk(u)|φ(T2k(u− Th(u)))| dx.

The third term of the right hand side of (4.15) tends to 0 since for all
i = 1, ..., N
ai(x, Tk(un),∇Tk(u))|φ(wn)| → ai(x, Tk(u),∇Tk(u))|φ(T2k(u−Th(u)))| strongly
in Lp

′
(Ω, w1−p′

i ), while

∂(Tk(un))

∂xi
⇀

∂(Tk(u))

∂xi
weakly in Lp(Ω, wi).

From (4.14) and (4.15), we obtain∫
{|un|≤k}

g(x, un,∇un)φ(wn) dx

≤
∫

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×[∇Tk(un)−∇Tk(u)]|φ(wn)| dx

+ε3
h(n) +

∫
Ω

hk∇Tk(u)|φ(T2k(u− Th(u)))| dx

+b(k)

∫
Ω

c(x)|φ(wn)| dx.

(4.16)
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Solutions of degenerated unilateral problems

Now, by the strongly convergence of fn and Fn and in fact that

wn ⇀ T2k(u− Th(u)) weakly in W 1,p
0 (Ω, w) and weakly- ∗ in L∞(Ω),

(4.17)
moreover, combining (4.13) and (4.16), we conclude that∫

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×[∇Tk(un)−∇Tk(u)](φ′(wn)− b(k)
α
|φ(wn)|) dx

≤
∫

Ω

hk∇Tk(u)|φ(T2k(u− Th(u)))| dx+ ε5
h(n)

+b(k)

∫
Ω

c(x)φ(T2k(u− Th(u))) dx+

∫
Ω

fφ(T2k(u− Th(u))) dx

+

∫
Ω

F∇T2k(u− Th(u))φ
′(T2k(u− Th(u))) dx.

which and using (4.6), implies that∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)] dx

≤ 2

∫
Ω

hk∇Tk(u)|φ(T2k(u− Th(u)))| dx+ ε5
h(n)

+2b(k)

∫
Ω

c(x)φ(T2k(u− Th(u))) dx+ 2

∫
Ω

fφ(T2k(u− Th(u))) dx

+2

∫
Ω

F∇T2k(u− Th(u))φ
′(T2k(u− Th(u))) dx.

Hence, passing to the limit over n, we get

lim sup
n→∞

∫
Ω

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)] dx

≤ 2

∫
Ω

hk∇Tk(u)|φ(T2k(u− Th(u)))| dx

+2b(k)

∫
Ω

c(x)φ(T2k(u− Th(u))) dx+ 2

∫
Ω

fφ(T2k(u− Th(u))) dx

+2

∫
Ω

F∇T2k(u− Th(u))φ
′(T2k(u− Th(u))) dx.

(4.18)
It remains to show, for our purposes, that the all term on the right hand
side of (4.18) converge to zero as h goes to infinity. The only difficulty that
exists is in the last term. For the other terms it suffices to apply Lebesgue’s

59



L. Aharouch, Y. Akdim

theorem.
We deal now with this term. Let us observe that, if we take un−ηφ(T2k(un−
Th(un))) as test function in (Pn), we obtain by using (3.3):

α

∫
{h≤|un|≤2k+h}

N∑
i=1

|∂un
∂xi

|pwiφ′(T2k(un − Th(un))) dx

+

∫
Ω

g(x, un,∇un)φ(T2k(un − Th(un))) dx

≤
∫
{h≤|un|≤2k+h}

Fn∇unφ′(T2k(un − Th(un))) dx

+

∫
Ω

fnφ(T2k(un − Th(un))) dx.

Since g(x, un,∇un)φ(T2k(un − Th(un))) ≥ 0, We have

α

∫
{h≤|un|≤2k+h}

N∑
i=1

|∂un
∂xi

|pwiφ′(T2k(un − Th(un))) dx

≤
∫
{h≤|un|≤2k+h}

Fn∇unφ′(T2k(un − Th(un))) dx

+

∫
Ω

fnφ(T2k(un − Th(un))) dx,

which yields, thanks to Young’s inequalities

α
2

∫
{h≤|un|≤2k+h}

N∑
i=1

|∂un
∂xi

|pwiφ′(T2k(un − Th(un))) dx

≤
∫

Ω

fnφ(T2k(un − Th(un))) dx+ ck

∫
{h≤|un|}

|w
−1
p Fn|p

′
dx,

consequently, thanks to the strong convergence of |w
−1
p Fn|p

′ and fn, in L1(Ω)
and letting firstly n→∞ after h tend to infinity, we obtain

lim sup
h→∞

∫
{h≤|un|≤2k+h}

N∑
i=1

| ∂u
∂xi

|pwiφ′(T2k(u− Th(u))) dx = 0,

so that
lim
h→∞

∫
Ω

F∇T2k(u− Th(u))φ
′(T2k(u− Th(u))) dx = 0.
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Therefore by (4.18), letting h go to infinity, we conclude,

lim
n→∞

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

·[∇Tk(un)−∇Tk(u)] dx = 0,

which implies that by using Lemma 4.1

Tk(un) → Tk(u) strongly in W 1,p
0 (Ω, w) ∀ k > 0. (4.19)

Step 3. Passing to the limit
We take v ∈ Kψ ∩ L∞(Ω) as test function in (Pn), we can write∫

Ω

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇Tk(un − v) dx

+

∫
Ω

g(x, un,∇un)Tk(un − v) dx

≤
∫

Ω

fnTk(un − v) dx+

∫
Ω

Fn∇Tk(un − v) dx.

(4.20)

By Fatou’s lemma and in fact that

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un)) ⇀ a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u))

weakly in ΠN
i=1L

p′(Ω, w1−p′
i ). It is easily see that∫

Ω

a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u))∇Tk(u− v) dx

≤ lim inf
n→∞

∫
Ω

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇Tk(un − v) dx.

(4.21)
On the other hand, by using the strong convergence of Fn and

∇Tk(un − v) ⇀ ∇Tk(u− v) weakly in ΠN
i=1L

p(Ω, wi),

we deduce that the integral∫
Ω

Fn∇Tk(un − v) dx→
∫

Ω

F∇Tk(u− v) dx as n→∞.

Now, we need to prove that

g(x, un,∇un) → g(x, u,∇u) strongly in L1(Ω), (4.22)
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in particular it is enough to prove the equiintegrable of g(x, un,∇un). To
this purpose, we take Tl+1(un)− Tl(un) as test function in (Pn), we obtain∫

{|un|>l+1}
|g(x, un,∇un)| dx =

∫
{|un|>l}

|fn| dx.

Let ε > 0. Then there exists l(ε) ≥ 1 such that∫
{|un|>l(ε)}

|g(x, un,∇un)| dx < ε/2. (4.23)

For any measurable subset E ⊂ Ω, we have∫
E

|g(x, un,∇un)| dx ≤
∫
E

b(l(ε))

(
c(x) +

N∑
i=1

wi|
∂(Tl(ε)(un))

∂xi
|p
)
dx

+

∫
{|un|>l(ε)}

|g(x, un,∇un)| dx.

In view of (4.19), there exists η(ε) > 0 such that∫
E

b(l(ε))

(
c(x) +

N∑
i=1

wi|
∂(Tl(ε)(un))

∂xi
|p
)
dx < ε/2 (4.24)

for all E such that |E| < η(ε).
Finally, by combining (4.23) and (4.24) one easily has∫

E

|g(x, un,∇un)| dx < ε for all E such that |E| < η(ε),

which allows us, by using (4.21) and (4.22), we can pass to the limit in (4.20).
This completes the proof of Theorem 3.1.

Remark 4.2: Note that, we obtain the existence result withowt assuming
the coercivity condition. However one can overcome this difficulty by in-
troduced the function wn = T2k(un − Th(un) + Tk(un) − Tk(u)) in the test
function (4.7).

Corollary 4.3: Let 1 < p < ∞. Assume that the hypothesis (H1) −
(H3), (3.6) and (3.7) holds, let fn any sequence of function in L1(Ω) con-
verge to f weakly in L1(Ω) and let un the solution of the following unilateral
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problem

(P ′
n)



un ≥ ψ a.e. in Ω.

Tk(un) ∈ W 1,p
0 (Ω, w), g(x, un,∇un) ∈ L1(Ω)∫

Ω

a(x, un,∇un)∇Tk(un − v) dx+

∫
Ω

g(x, un,∇un)Tk(un − v) dx

≤
∫

Ω

fnTk(un − v) dx,

∀ v ∈ Kψ ∩ L∞(Ω), ∀ k > 0.

Then, there exists a subsequence of un still denoted un such that un converges
to u almost everywhere and Tk(un) ⇀ Tk(u) weakly in W 1,p

0 (Ω, w), further u
is a solution of the unilateral problem (P ) (with F = 0).

Proof. We give the proof brievely.
Step 1. A priori estimates
We proceed as previous, we take v = ψ+ as test function in (P ′

n), we get

∫
Ω

N∑
i=1

wi|
∂Tk(un)

∂xi
|p dx ≤ C1. (4.25)

Hence, by the same method used in the first step in the proof of Theorem
3.1 there exists a function u (with Tk(u) ∈ W 1,p

0 (Ω, w) ∀ k > 0) and a
subsequence still denoted by un such that

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω, w), ∀ k > 0.

Step 2. Strong convergence of truncation
The choice of v = Th(un − ηφ(wn)), h > ‖ψ+‖∞ as test function in (P ′

n), we
get, ∀ l > 0∫

Ω

a(x, un,∇un)∇Tl(un − Th(un − ηφ(wn)))

+

∫
Ω

g(x, un,∇un)Tl(un − Th(un − ηφ(wn)) dx

≤
∫

Ω

fnTl(un − Th(un − ηφ(wn))) dx.
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Which implies that∫
{|un−ηφ(wn)|≤h}

a(x, un,∇un)∇Tl(ηφ(wn))

+

∫
Ω

g(x, un,∇un)Tl(un − Th(un − ηφ(wn))) dx

≤
∫

Ω

fnTl(un − Th(un − ηφ(wn))) dx.

Letting h tends to infinity and choosing l large enough, we deduce∫
Ω

a(x, un,∇un)∇φ(wn) +

∫
Ω

g(x, un,∇un)φ(wn) dx ≤
∫

Ω

fnφ(wn) dx,

the rest of the proof of this step is the same as in step 2 of the proof of
Theorem 3.1.
Step 3. Passing to the limit
This step is similarly to the step 3 of the proof of Theorem 3.1, by using the
Egorov’s theorem in the last term of (P ′

n).

Remark 4.4: In the case where F = 0, if we suppose that the second
mumber are nonnegative, then we obtain a nonnegative solution.

Indeed. If we take v = Th(u
+) (with h ≥ ‖ψ‖∞) in (P ), we have∫

Ω

a(x, u,∇u)∇Tk(u− Th(u
+)) dx+

∫
Ω

g(x, u,∇u)Tk(u− Th(u
+)) dx

≤
∫

Ω

fTk(u− Th(u
+)) dx.

Since g(x, u,∇u)Tk(u− Th(u
+)) ≥ 0, we deduce∫

Ω

a(x, u,∇u)∇Tk(u− Th(u
+)) dx ≤

∫
Ω

fTk(u− Th(u
+)) dx,

we remark also, using f ≥ 0∫
Ω

fTk(u− Th(u
+)) dx ≤

∫
{u≥h}

fTk(u− Th(u)) dx.

On the other hand, by using (3.3), we conclude

α

∫
Ω

N∑
i=1

wi|
∂Tk(u

−)

∂xi
|p dx ≤

∫
{u≥h}

fTk(u− Th(u)) dx.

Letting h tend to infinity, we can easily conclude that, Tk(u−) = 0, ∀ k > 0,
which implies u ≥ 0.
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