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Diamond representations of sl(n)

Didier Arnal
Nadia Bel Baraka

Norman J. Wildberger

Abstract

In [6], there is a graphic description of any irreducible, finite dimensional sl(3)
module. This construction, called diamond representation is very simple and can
be easily extended to the space of irreducible finite dimensional Uq(sl(3))-modules.

In the present work, we generalize this construction to sl(n). We show it is in
fact a description of the reduced shape algebra, a quotient of the shape algebra of
sl(n). The basis used in [6] is thus naturally parametrized with the so called quasi
standard Young tableaux. To compute the matrix coefficients of the representation
in this basis, it is possible to use Groebner basis for the ideal of reduced Plücker
relations defining the reduced shape algebra.

1. Introduction

In this paper, we consider the irreducible finite dimensional representa-
tions of the Lie algebra sl(n) = sl(n, C). Of course these representations
are well known and there are very explicit descriptions for them, for in-
stance in [2].

First, sl(n) acts naturally on Cn, its fundamental representations are
the natural actions on Cn,∧2Cn, . . . ,∧n−1Cn, they have highest weights
ω1, . . . , ωn−1. Each simple sl(n)-module has a highest weight λ and this
highest weight characterizes the module. Note Sλ this module, it is a
submodule of the tensor product

Syma1(Cn)⊗ Syma2(∧2Cn)⊗ · · · ⊗ Syman−1(∧n−1Cn),

if λ = a1ω1 + · · ·+ an−1ωn−1.

The direct sum S• of all the simple modules has a natural realization as
the shape algebra of sl(n), i.e. as the algebra C[SL(n)]N

+ of polynomial
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functions on the group SL(n), which are invariant under the right mul-
tiplication by upper triangular matrices. Let g be an element in SL(n),
denote δ

(s)
i1,...,is

(g) the determinant of the submatrix of g obtained by con-
sidering the s first columns of g and the rows i1 < · · · < is, then S• is
generated as an algebra by the functions δ

(s)
i1,...,is

. More precisely, it is the

quotient of C[δ(s)
i1,...,is

] by the ideal P (δ) generated by the Plücker relations.

Generally a parametrization of a basis for Sλ is given by the set of semi-
standard Young tableaux T of shape λ i.e. with an−1 columns of size n−1,
. . . , a1 columns of size 1.

Using this description, we give here a natural ordering on the set of
variables δ

(s)
i1,...,is

, we determine the Groebner basis of P (δ) for this order-
ing, getting the corresponding basis of the quotient as monomials δT , for
T semi-standard.

Thus the action of upper triangular matrices on this basis can be easily
computed. (See for instance the description given in [4]).

On the other hand, in [6], N. Wildberger gave a really different pre-
sentation of the simple sl(3)-modules. This description is based on the
construction of the diamond cone for sl(3), it is an infinite dimensional
indecomposable module for the Heisenberg Lie algebra with a very explicit
basis. The matrix coefficients are integral numbers and fixing the highest
weight λ, it is easy to build the corresponding representation of sl(3), on
the submodule generated by this vector in the diamond cone.

In this paper, we extend this presentation to sl(n). In fact the diamond
cone module is a quotient of the shape algebra. We call this quotient the
reduced shape algebra. It is the quotient of C[δ(s)

i1,...,is
] by the ideal Pred(δ)

sum of the ideal of Plücker relations and the ideal generated by δ
(s)
1,...,s− 1.

With the same approach as above, we define a new ordering on the vari-
ables δ

(s)
i1,...,is

, with this ordering, we can compute the Groebner basis for
Pred(δ) and the corresponding basis for the quotient : the set of monomials
δT , for some Young tableaux T called here quasi-standard. The action of
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the upper triangular matrices on this basis is easy to compute : this gives
us the diamond cone for sl(n).

In order to refind the complete sl(n)-modules, we have to define a sym-
metry on each Sλ and on the corresponding submodule in the reduced
shape algebra. This symmetry exchanges the role of N+ and N− and we
get the complete sl(n) representation.

Unfortunately, this symmetry corresponds to a modification of the or-
dering on Young tableaux, thus, if n > 3 to a different basis in Sλ. The
n− action on the first base is not so simple as in [6].

2. Usual (algebraic) presentation of the sl(n) simple modules

Let us consider the Lie algebra sl(n) = sl(n, C): it is the set of n × n
traceless matrices, i.e. the Lie algebra of the Lie group SL(n) of n ×
n matrices, with determinant 1. The Cartan algebra h is the space of
diagonal matrices:

h =

H =

θ1 0
. . .

0 θn

 , θj ∈ C, θ1 + · · ·+ θn = 0

 .

We put αi(H) = θi. The root system of sl(n) is the set of linear form
on h generated by the αi − αj , (i 6= j).

The usual basis ∆ for the root system is given by :

∆ = {αi − αi+1, i = 1, 2, . . . , n− 1}

The root space corresponding to the positive root η = αi − αj (i < j) is
generated by the upper triangular matrix:

Xη =



0
. . . 1

. . .
. . .

0


.
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The root space corresponding to −η is generated by lower triangular ma-
trix:

Yη =



0
. . .

. . .

1
. . .

0


= tXη

these matrices generate sl(n) as a Lie algebra.
A weight λ for sl(n) is a linear form :

λ :

θ1 0
. . .

0 θn

 7→
n−1∑
i=1

aiθ1 +
n−1∑
i=2

aiθ2 + · · ·+ an−1θn−1.

If a1, . . . , an−1 are positive integral numbers, we shall say that λ is a
dominant integral weight. This is the case if and only if λ is a linear

combination λ =
n−1∑
j=1

ajωj , with positive integral coefficients aj , of the

fundamental weights:

ωj = α1 + · · ·+ αj :

θ1 0
. . .

0 θn

 7→ θ1 + · · ·+ θj (1 ≤ j ≤ n− 1).

The set of simple sl(n)-modules up to equivalence is isomorphic to the
set of dominant integral weights. More precisely, sl(n) acts naturally on
V = Cn (with canonical basis e1, . . . , en), thus also on the totally anti-
symmetric tensor products ∧jV (j = 1, . . . , n− 1) and on the symmetric
tensor products Symaj (∧jV ) and finally on

Syma1(V )⊗ Syma2(∧2V )⊗ · · · ⊗ Syman−1(∧n−1V ).

For each dominant integral weight λ =
∑

ajωj , the corresponding sim-
ple module Sλ(V ) is the submodule of

Syma1(V )⊗ Syma2(∧2V )⊗ · · · ⊗ Syman−1(∧n−1V ).

generated by the vector:

vλ = (e1)a1 ⊗ (e1 ∧ e2)a2 ⊗ · · · ⊗ (e1 ∧ · · · ∧ en−1)an−1 .
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With this construction, we get each simple sl(n)-module, and two dis-
tinct weights λ, λ′ give rise to inequivalent simple sl(n)-modules.

Of course, this action can be exponentiated to a representation of
SL(n). Let us thus put

Ω =


0 εn

.
.

.
εn 0


where εn = 1 if

[
n
2

]
is even and εn = e

iπ
n if

[
n
2

]
is odd. Then Ω belongs to

SL(n). In fact, this matrix, acting by adjoint action generates the longest
element of the Weyl group of SL(n). It corresponds to a change in the
choice of simple roots and nilpotent subalgebras n+ and n−, if X = [xij ] is
a strictly upper triangular matrix, Ω−1XΩ =

[
x(n+1−i)(n+1−j)

]
is strictly

lower triangular. Let us put:

vλ
− = (en)a1 ⊗ (en ∧ en−1)a2 ⊗ · · · ⊗ (en ∧ · · · ∧ e2)an−1 = ε−|λ|n Ω.vλ,

with |λ| = a1 + 2a2 + · · ·+ (n− 1)an−1. Then vλ
− is a lowest weight vector

in Sλ(V ).

3. The shape algebra: abstract algebraic presentation

Let us put:
S•(V ) =

⊕
λ

Sλ(V ).

Since we have an explicit realization of each highest weight vector, it is
possible to define a natural comultiplication ∆ on S•(V ), just by defining

∆ : Sλ(V ) −→
⊕

µ+ν=λ

Sµ(V )⊗ Sν(V )

as the unique sl(n)-morphism sending vλ on

∆(vλ) =
∑

µ+ν=λ

vµ ⊗ vν .
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∆ is cocommutative. The contragredient module (Sλ)∗ is naturally iden-
tified with Stλ where tλ =

∑
an−iωi if λ =

∑
aiωi. By transposition, ∆

defines a commutative multiplication m on S•(V ):

m = t∆ : S
tµ(V )⊗ S

tν(V ) −→ S
tµ+tν(V ).

By definition, if µ =
∑

j bjωj , ν =
∑

j cjωj ,

m(vµ ⊗ vν) = vµ.vν = vµ+ν = eb1+c1
1 ⊗ · · · ⊗ (e1 ∧ · · · ∧ en−1)bn−1+cn−1 .

Since each isotypic component of the SL(n) module S•(V ) is simple the
multiplication m is characterized by this relation and the condition

m (Sµ(V )⊗ Sν(V )) ⊂ Sµ+ν(V ).

We shall call shape algebra of SL(n) the algebra S•(V ) equipped with
the above multiplication.

By construction the shape algebra is generated as an algebra by the
subspace V ⊕ ∧2V ⊕ · · · ⊕ ∧n−1V . Thus it is a quotient of the algebra
denoted in [2]:

A•(V ) = Sym•
(
V ⊕ ∧2V ⊕ · · · ⊕ ∧n−1V

)
=

⊕
a1,...,an−1

Syman−1(∧n−1V )⊗ · · · ⊗ Syma1(V ).

We define now the ideal of Plücker relations: it is the ideal P of A•(V )
generated by the vectors in Sym2(∧pV ):

(ei1 ∧ · · · ∧ eip).(ej1 ∧ · · · ∧ ejp)+

+
p∑

`=1

(−1)`(ej1 ∧ ei1 ∧ · · · ∧ êi` ∧ · · · ∧ eip).(ei` ∧ ej2 ∧ · · · ∧ ejp)

and by the vectors in ∧pV ⊗ ∧qV (p > q)

(ei1 ∧ · · · ∧ eip).(ej1 ∧ · · · ∧ ejq)+

+
p∑

`=1

(−1)`(ej1 ∧ ei1 ∧ · · · ∧ êi` ∧ · · · ∧ eip).(ei` ∧ ej2 ∧ · · · ∧ ejq).

Theorem 3.1. (Characterization of S•(V )) The shape algebra S•(V ) is
the quotient of A•(V ) by the ideal P .
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This theorem is well known. There is a complete proof in [2] p. 235, this
result is cited by Towber in [4] as a theorem due to Kostant.

We define a symmetry τ in S•(V ) just by putting:

τ(v) = Ω.v if v ∈ S•(V ).

Since the multiplication is a morphism of sl(n) and SL(n) modules, τ(vv′) =
τ(v)τ(v′). Especially, we can define the multiplication just as above by fix-
ing vλ

−.vµ
− = v

(λ+µ)
− .

Now for each matrix A in sl(n), ΩAΩ = τA is the matrix defined by a
central symmetry on the entries of A:

τA = [an+1−i,n+1−j ] if A = [ai,j ]

If A is the matrix Xη for a positive root η = αi − αj , τXη = ΩXηΩ is the
matrix Yτη if τη is the positive root τη = αn+1−j − αn+1−i Then for each
v in S•:

(τ ◦Xη ◦ τ)(v) = ΩXηΩ v = Yτηv

4. The shape algebra: geometric presentation

The shape algebra can also be viewed as an algebra of functions on a
quotient SL(n)/N+ of the Lie group SL(n). Denote N+ the subgroup of

matrices n+ =

1 ∗
. . .

0 1

.

Let us consider the space C[SL(n)] = C[gij ]/(det− 1) of all polynomial
functions f with respect to the entries gij of the matrix g ∈ SL(n). There
is a SL(n)× SL(n) action on this space, defined as follows:

((g1, g2).f)(g) = f(tg1gg2).

Since this space is generated by the invariant finite dimensional sub-
spaces of class of functions with degree less than N (N = 0, 1 . . . ), this ac-
tion is completely reducible in a sum of finite dimensional simple SL(n)×
SL(n) modules. The highest vector for these modules are class of functions
f such that:

f(tn+
1 gn+

2 ) = f(g), n+
1 ∈ N+, n+

2 ∈ N+.
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But, let us consider the restriction of f to the dense set of the elements
g such that, for s = 1, . . . , n, δ

(s)
1,2,...,s(g) 6= 0. On this set, using the Gauss

method, we can reduce g to a diagonal matrix, getting:

g = tn
+
1



δ
(1)
1 (g) 0

δ
(2)
1,2(g)

δ
(1)
1 (g)

. . .
δ
(n−1)
1,2,...,n−1(g)

δ
(n−2)
1,...,n−2(g)

0
1

δ
(n−1)
1,2,...,n−1(g)


n+

2 .

If f is a highest weight vector, its weight is (λ, λ) (λ =
∑

aiωi), then f is
a polynomial function in the variables

δ
(1)
1 (g),

δ
(2)
1,2(g)

δ
(1)
1 (g)

, . . . ,
δ
(n−1)
1,2,...,n−1(g)

δ
(n−2)
1,...,n−2(g)

,
1

δ
(n−1)
1,2,...,n−1(g)

,

homogeneous with degree a1 + · · ·+ an−1, a2 + · · ·+ an−1, . . . , an−1, 0, i.e.
the function f is a multiple of the function:

δλ =
(
δ
(1)
1

)a1
(
δ
(2)
1,2

)a2
. . .

(
δ
(n−1)
1,2,...,n−1

)an−1
.

Acting with only the first factor SL(n) on these functions, we get all the
N+ right invariant polynomial functions on SL(n). Due to the form of the
bi-invariant functions f , these functions are polynomial functions in the
δ-variables :

C[SL(n)]N
+ ' C[δ(s)

i1,...,is
]/P (δ),

where P (δ) is an ideal.

Acting on δλ (λ =
∑

i aiωi) on the left by N− = t(N+), we get polyno-
mial functions which contains only monomials of the form:

n−1∏
s=1

as∏
k=1

δ
(s)

ik1 ,...,iks
.
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Let us call V a1,...,an−1 the space of such functions. In view of our de-
scription, it is a simple module and the isotypic component of type λ in
C[SL(n)]N

+ .
Finally the usual pointwise multiplication of polynomial functions send

V a1,...,an−1 ⊗ V b1,...,bn−1 into V (a1+b1),...,(an−1+bn−1). Thus the above identi-
fication

S•(V ) ' C[SL(n)]N
+
,

characterized by vλ 7→ δλ is a morphism of algebra.

Proposition 4.1. (Geometric description of S•(V )) The shape algebra is
isomorphic to the algebra O(SL(n)/N+) of the regular functions on the
homogeneous space SL(n)/N+.

The ideal P (δ) is the ideal generated by the Plücker relations written
on the δ functions.

Remark 4.2. In this presentation of S•(V ), the SL(n) action on the el-
ements of the shape algebra, viewed as a polynomial function f is very
natural since it is just:

(g.f)(g′) = f(tgg′), g ∈ SL(n), g′ ∈ SL(n).

The symmetry τ can be directly implemented in C[SL(n)]N
+ . Indeed τ

is up to conjugation by Ω, a morphism of SL(n) modules and the formula

τ(e1 ∧ · · · ∧ es) = εs
nen ∧ · · · ∧ en+1−s

becomes here
τ(δ(s)

1,2,...,s) = εs
nδ

(s)
n,(n−1),...,(n+1−s).

But, if we put for any regular function f on SL(n), (θf)(g) = f(Ωg), we
define a bĳection from C[SL(n)]N

+ into itself such that

g.θ(f) = θ(Ω−1gΩ.f) and θ(δ(s)
1,...,s) = εs

nδ
(s)
n,n−1,...,n+1−s.

Thus τ = θ or:
(τf)(g) = f(Ωg).

5. The shape algebra : Combinatorial presentation

The usual basis of Sλ(V ) are parametrized by the semi standard Young
tableaux with shape λ. Let us be more precize:
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We can naturally associate to each δ variable a column C:

δC = δ
(p)
i1,...,ip

−→

i1
i2
...
ip

.

Then if we identify two Young tableaux which differ only by a permutation
of their columns, the set of Young tableaux defines a linear basis for the
algebra C[δ(s)

i1,...,is
]:

δT = δ
(p1)
i1,...,ip1

δ
(p2)
j1,...,jp2

. . . δ
(pk)
`1,...,`pk

−→

. . .

...

. . .

(p1 ≤ p2 ≤ · · · ≤ pk). That means, we read the Young tableau from right
to left, using the following convention: if two different columns C and C ′

have the same height p, we put in the first place in T the column C if

ip = i′p, ip−1 = i′p−1, . . . , ir+1 = i′r+1, and ir < i′r.

The Plücker relations are quadratic in the δ variables, they correspond
to linear combination of Young tableaux with two columns, for instance,
we get for sl(3) the following relation between tableaux:

δ
(2)
12 δ

(1)
3 − δ

(2)
23 δ

(1)
1 + δ

(2)
13 δ

(1)
2 −→ 1 3

2
− 2 1

3
+

1 2
3

In order to describe a basis for the quotient space:

S•(V ) = C[δ(j)
i1,...,ij

]/ P (δ),

we will use the notion of Groebner basis [1].

Let us consider the algebra C[X1, . . . , Xk] of polynomials in the vari-
ables Xi and an ideal I of C[X1, . . . , Xk].

An ordering on the set {Xa = Xa1
1 . . . Xak

k , a ∈ Nk} of monomials is a
monomial ordering if it is a well-ordering and if for all c ∈ Nk, Xa+c >
Xb+c if Xa > Xb. For instance, the lexicographic ordering on the words
a1 . . . ak, which corresponds to the variables ordering X1 > · · · > Xk,
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the graded lexicographic ordering, taking into account a degree on some
variables, are monomial orderings (see [1]).

Suppose we fix a monomial ordering on the set of monomials, then any
polynomial g has an unique leading term LT (g); the greatest monomial
happening in g for this ordering.

Definition 5.1. A finite subset {g1, . . . , gk} of an ideal I is said to be a
reduced Groebner basis for I if and only if the leading term of any element
of I is divisible by one of the leading term of gi, if the coefficient of LT (gi)
is 1 for every i and if for all gi no monomial of gi is divisible by the leading
term of some gj j 6= i.

For each monomial ordering and each ideal I, there is an unique reduced
Groebner basis for I [1]. Moreover, if {g1, . . . , gk} is a reduced Groebner
basis for I, then the set of (classes of) monomials which are not divis-
ible by any monomials LT (gi) (i = 1, . . . , k) is a basis for the quotient
C[X1, . . . , Xk]/I.

Following [2], we know there is in the ideal P (δ) the following elements
for any p ≥ q ≥ r:

δ
(p)
i1,i2,...,ip

δ
(q)
j1,j2,...,jq

+
∑

A ⊂ {i1, . . . , ip}
#A = r

±δ
(p)
({i1,...,ip}\A)∪{j1,...,jr}δ

(p)
A∪{jr+1,...,jq} (∗)

where δ
(p)
({i1,...,ip}\A)∪{j1,...,jr} = 0 if there is a repetition of some index and,

if {k1, . . . , kp} = ({i1, . . . , ip} \A) ∪ {j1, . . . , jr} and k1 < · · · < kp, then

δ
(p)
({i1,...,ip}\A)∪{j1,...,jr} = δ

(p)
k1,...,kp

.

Now if T is a tableau, if T contains `i columns with height i (i =
1, . . . , n− 1), we call shape of T the (n− 1)-uplet

λ(T ) = (`1, . . . , `n−1).
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We first consider the (total) lexicographic ordering on the family of
shapes λ = (`1, . . . , `n−1)) < µ = (m1, . . . ,mn−1)) if and only if:

`1 <m1

or
`1 =m1 and `2 < m2

. . .

or
`1 =m1, `2 = m2, . . . , `n−2 = mn−2 and `n−1 < mn−1.

For later use, let us now say that a shape λ = (`1, . . . , `n−1) is included
in a shape µ = (m1, . . . ,mn−1) (λ ⊂ µ) if for each i, `i ≤ mi. This defines
a partial ordering on shapes and of course λ ≤ µ if λ ⊂ µ.

If we identify the shape λ of a Young tableau with the highest weight
of the representation V λ containing δT , then the ordering λ ⊂ µ coincides
with the usual (partial) ordering on the dual h∗ of the Cartan algebra h
defined by our choice of positive roots.

Moreover, we put an ordering on the variables δ
(p)
i1,...,ip

by the following
relations:

δ(1)
... > δ(2)

... > δ(n−1)
...

and δ
(p)
i1,...,ip

> δ
(p)
j1,...,jp

if ip = jp, . . . , ir+1 = jr+1 and ir < jr.
We then put the following weighted lexicographic ordering on the mono-

mials δT : δT < δT ′ if and only if λ(T ) < λ(T ′) or λ(T ) = λ(T ′) and
δT < δT ′ for the lexicographic ordering induced by the ordering of their
variables. Since lexicographic ordering is a monomial ordering, our order-
ing is also a monomial ordering.

Remark 5.2. In [2], an ordering << on Young tableaux having the same
shape is defined,in fact our ordering is the reverse ordering since:

δT < δT ′
if and only if T ′ << T.

Later on, we shall simply write T < T ′ instead of δT < δT ′ .

Recall that a Young tableau is semi standard if its entries are increas-
ing along each row (and strictly increasing along each column). It is well
known that the set of semi standard Young tableau gives a basis for
C[δ(p)

i1,...,ip
]/P (δ) (see [2] for instance).
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Our ordering defines an unique Groebner basis for P (δ). We shall now
build this basis.

For any non semi standard Young tableau T with 2 columns, there
exists an element QT in P (δ) of the form (∗). This relation can be written
as:

QT = δT +
n∑

j=1

±δTj with δTj < δT ∀j.

Each Tj has the same shape as T (λ(Tj) = λ(T )) but some of them can be
non semi standard. We repeat the construction for each non semi standard
Tj and finally we get, for each non semi standard T with 2 columns, an
element Qred

T in P (δ) such that the leading term of Qred
T is δT and all the

monomials of Qred
T have the form aδT ′ with T ′ semi standard and δT ′

< δT .

Theorem 5.3. (The non semi standard Groebner basis)
The set

G =
{
Qred

S , S non semi standard with 2 columns
}

is the reduced Groebner basis of P (δ) for our ordering.

Proof. First denote by NS the set of all monomials δT with T non semi
standard. Since each non semi standard T has 2 consecutive columns such
that the sub tableau defined by these 2 columns is non semi standard, δT

is divisible by one of the δS , i.e. by one of the leading term of Qred
S .

Thus the ideal < δS > generated by the leading terms of G contains
the vector space span(NS).

Conversely let T be a semi standard Young tableau. Suppose T belongs
to the ideal < LT (P (δ)) > generated by the leading terms of all the Q in
P (δ). That means:

δT = Q−
∑

T ′<T

aT ′δT ′
.

If any T ′ is semi standard we keep this relation. If some of the T ′ are non
semi standard, then δT ′ is in < δS > thus in < LT (P (δ)) > and we repeat
the construction for δT ′ . We get finally:

δT = Q0 −
∑

T ′′<T
T ′′semi standard

aT ′′δT ′′
, Q0 ∈ P (δ).
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This implies that
δT +

∑
T ′′

aT ′′δT ′′ ∈ P (δ).

But this is impossible, since the set {δT , T semi standard} is a basis for
C[δ(p)

i1,...,ip
]/P (δ) Thus:

< LT (P (δ)) >= span(NS).

Moreover, since any monomial in Qred
S is either δS or aT δT with T semi

standard, it cannot be divisible by a δS′ with S′ 6= S, S′ non semi standard
with two columns. This proves our theorem. �

The usual basis of the shape algebra S•(V ) by semi standard Young
tableaux can thus be described as a natural basis of the quotient of the
polynomial algebra C[δ(p)

i1,...,ip
] by the ideal of Plücker relations, if we put

the ordering < on the monomials δT .

Especially, we can write the action of any element of the Lie algebra
sl(n) on any polynomial function with variables δ

(s)
i1,...,ip

, for instance, if

Xα = Eij i 6= j then Xα acts on C[δ(p)
i1,...,ip

] as the derivation:

Xαf =
d

ds
|s=0f(exp stXα.) =

∑
{i1,...,ip}∩{i,j}={j}

±δ
(p)
({i1,...,ip}\{j})∪{i}

∂f

∂δ
(p)
i1,...,ip

.

Finally, the Cartan algebra acts on f as the derivation

Hf =
d

ds
|s=0f(exp stH.) =

∑
(θi1 + · · ·+ θip)δ

(p)
i1,...,ip

∂f

∂δ
(p)
i1,...,ip

,

if H =

θ1 0
. . .

0 θn

. This action defines the action on the quotient by

P (δ), since we have a Groebner basis for the ideal P (δ), the quotient
action on the basis of semi standard Young tableaux reduces to compute
the canonical form of the polynomial Xαf or Hf , this is easy to do with
some usual computer software.

As an illustration, we give on Figure 1 a graphic description of the N+

part of the adjoint representation Sω1+ω2(C3) of sl(3) (see [3] for similar
presentation).
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Figure 1. The N+ part of the adjoint representation
Sω1+ω2(C3) of sl(3)

If we change our Weyl chamber, we can repeat this construction, defin-
ing first anti semi standard tableaux as Young tableaux with entries
strictly decreasing in each column and decreasing in each row. Then we de-
fine an ordering on the set of variables δ

(s)
i1,...,is

(now with i1 > i2 > · · · > is)
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by putting:
δ(1)
... > δ(2)

... > · · · > δn−1
...

and
δ
(p)
i1,...,ip

> δ
(p)
j1,...,jp

if ip = jp . . . ir+1 = jr+1 and ir > jr.

Let T be any anti semi standard tableau. We can associate to T a
monomial:

δT = δ
(c1)

a1
1...a1

c1

δ
(c2)

a2
1...a2

c2

. . .

= ±δ
(c1)

a1
c1

...a1
1
δ
(c2)

a2
c2

...a2
1
. . .

and exchange the variables corresponding to columns with equal height,
then we get another Young tableau T ′ such that δT = δT ′ .
For instance:

T =
4 2
3 1

, δ
(2)
43 δ

(2)
21 = δ

(2)
12 δ

(2)
34 , T ′ =

1 3
2 4

or:

T =
4 1
3
2

, δ
(3)
432δ

(1)
1 = −δ

(3)
234δ

(1)
1 , T ′ =

2 1
3
4

.

As this example shows, if n > 2, T ′ is generally not semi standard thus
our change of ordering on the variables δ defines a new Groebner basis on
the shape algebra if n > 2.

Now, the symmetry τ corresponds to the following operation on tableaux
since:

τ(δ(s)
i1,...,is

) = εs
nδ

(s)
n+1−i1,...,n+1−is

We can define τ directly on Young tableaux by replacing each entry ai
j of

T by n + 1 − ai
j . The anti semi standard tableaux are exactly the image

by τ of the semi standard ones.

6. The reduced shape algebra : Algebraic presentation

Let us keep our notations: V = Cn is a complex vector space with dimen-
sion n. From now one, we shall study a quotient of the shape algebra S•(V ).
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Definition 6.1. Let R+ be the ideal in the shape algebra generated by
the vλ − 1:

R+ = 〈v
∑

ajωj − 1 = (e1)a1(e1 ∧ e2)a2 . . . (e1 ∧ · · · ∧ en−1)an − 1〉
= 〈e1 − 1, e1 ∧ e2 − 1, . . . , e1 ∧ · · · ∧ en−1 − 1〉.

We call reduced shape algebra the quotient

S•red(V ) =S•(V ) /R+ .

This reduced shape algebra is not a natural sl(n) module. Since the
ideal R+ is invariant under the action of the solvable group HN+ consist-
ing of upper triangular matrices in SL(n), the quotient is only a HN+

module. The action of the Cartan group H is still diagonal, let us study
the N+ (or n+) action on S•red(V )+.

Proposition 6.2. (S•red(V )+ is an indecomposable module) Denote by
π+ the canonical projection from S•(V ) to S•red(V )+. Then

• i) The space of vectors u ∈ S•red(V )+ such that n+u = 0 is C1.

• ii) S•red(V )+ is an indecomposable module.

• iii) For any λ, the n+ module Sλ(V ) is equivalent to the submodule
π+

(
Sλ(V )

)
of S•red(V )+.

• iv) For any µ ⊂ λ, π+ (Sµ(V )) is a submodule of π+
(
Sλ(V )

)
.

Proof. i) We know ([5] p. 317 for instance) that, in each Sλ(V ), the space
of vectors u such that n+u = 0 is exactly Cvλ. This gives i) in the quotient
S•red(V )+.

ii) Let u be a non zero vector in S•red(V )+, the n+ module W generated
by u is finite dimensional since u is a finite sum of image through π+ of
weights vectors. The n+ action is locally nilpotent on S•(V ), thus it is also
locally nilpotent on S•red(V )+, as a consequence W contains a non trivial
vector annhilated by n+. This vector is a multiple of 1. Thus any n+ sub-
module of S•red(V )+ contains 1, S•red(V )+ is an indecomposable n+ module.
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iii) Let π+
λ be the restriction of π+ to Sλ(V ). It is a morphism of n+ mod-

ules. If its kernel is not vanishing, thanks to Lie theorem, the n+ module
Ker(π+

λ ) contains a non zero vector annihilated by n+, this vector is a
multiple of vλ, but π+(vλ) = 1 6= 0. Thus π+

λ is an isomorphism of n+

modules.

iv) The relation µ ⊂ λ is equivalent to say there is a dominant integral
weight ν such that λ = µ + ν. In S•(V ), the multiplication by vν sends
Sµ(V ) into Sλ(V ). In the quotient, this operation becomes the identity
mapping: π+(uvν) = π+(u) for any u in Sµ(V ). �

Similarly, we define S•red(V )− as the quotient of S•(V ) by the ideal R−

generated by {en∧· · ·∧en+1−s−1, s = 1, . . . , n−1}. It is a HN− module.
If we denote π− the canonical morphism, we get the same proposition with
′′−′′ instead of ′′+′′ everywhere.

7. The reduced shape algebra, Geometrical presentation

As above, we can write everything in term of the functions δ
(p)
i1,...,ip

. If

R(δ)+ is the ideal generated by δ
(p)
1,...,p − 1, we get:

S•red(V )+ 'C[SL(n, C)]N
+

/R(δ)+ =C[δ(p)
i1,...,ip

]
/(R(δ)+ + P (δ)).

Suppose now f is a polynomial function, invariant with respect to the
right multiplication by N+. Then f is characterized by its restriction to
the dense open subset of SL(n) whose elements are the matrices g such
that δ

(p)
1,...,p(g) 6= 0 for all p. On this set, by the use of the Gauss method,

we can write:

g =


g′11 0 0 . . . 0
g′21 g′22 0 . . . 0
g′31 g′32 g′33 . . . 0

. . .
g′n1 g′n2 g′n3 . . . g′nn




1 a12 a13 . . . a1n

0 1 a23 . . . a2n

0 0 1 . . . a3n

. . .
0 0 0 . . . 1

 .
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With, for all k < j:

g′jk =
δ
(k)
1,2,...,k−1,j(g)

δ
(k−1)
1,2,...,k−1(g)

, g′jj =
δ
(j)
1,2,...,j(g)

δ
(j−1)
1,2,...,j−1(g)

.

By N+ right invariance, we get

f(g) =

=
1∏

(δ(j)
1,...,j(g))bj

Φ(δ(k)
1,2,...,k−1,j(g), δ(j)

1,...,j(g))

=
1∏

(δ(j)
1,...,j(g))bj

∑
(c1,...,cn−1)

Φc1,...,cn−1(δ
(k)
1,2,...,k−1,j(g))

∏
j

(
δ
(j)
1,...,j(g)− 1

)cj

=
1∏

(δ(j)
1,2,...,j(g))bj

∑
(c1,...,cn−1)

Fc1,...,cn−1(g)
∏
j

(
δ
(j)
1,...,j(g)− 1

)cj
.

By definition, the functions Φc1,...,cn−1 and Fc1,...,cn−1 are polynomial,
Fc1,...,cn−1 is right invariant by N+ and

F0,...,0 − f =
(∏

(δ(j)
1,...,j)

bj − 1
)

f −
∑

c1+···+cn−1>0

Fc1,...,cn−1

∏
j

(
δ
(j)
1,...,j − 1

)cj

belongs to R(δ)+. For any g in N−, any k < j, we have δ
(k)
1,...,k−1,j(g) = gjk

and f(g) = F0,...,0(g). The restriction of f to N− characterizes the function
F0,...,0. F0,...,0 and f are in the same class modulo R(δ)+. Conversely, any
polynomial function F (gjk) on N− defines an unique function

f(g) = F (δ(k)
1,...,k−1,j(g))

in C[SL(n, C)]N
+ . The restriction mapping is an isomorphism of algebra

between S•red(V )+ and C[N−].

Remark 7.1. In this presentation of S•red(V )+, the N+ action on the ele-
ments of the reduced shape algebra is very natural since it is:

(g.f)(g′) = f(tgg′), g ∈ N+, g′ ∈ N−, f ∈ C[N−].

But since C[δ(p)
i1,...,ip

]
/R(δ)+ is simply C[δ(p)

i1,...,ip
(ip > p)], we have also:

S•red(V )+ 'C[δ(p)
i1,...,ip

(ip > p)]
/Pred(δ)+
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where Pred(δ)+ is the ideal generated by the reduced Plücker relations i.e.
the Plücker relations in which we replace the functions δ

(p)
1,...,p by 1.

Especially, if Xα = Eij i < j then Xα acts on C[δ(p)
i1,...,ip

(ip > p)] as the
derivation:

Xαf =
d

ds
|s=0f(exp stXα.)

= ± ∂f

∂δ
(p)
({1,...,p}\{i})∪{j}

+
∑

{i1,...,ip}∩{i,j}={j}
{i1,...,ip}\{j})∪{i}6={1,...,p}

±δ
(p)
({i1,...,ip}\{j})∪{i}

∂f

∂δ
(p)
i1,...,ip

.

The same construction for S•red(V )− gives:

R−(δ) = θ
(
R+(δ)

)
is the ideal generated by the set {δ(p)

n,...,(n−p+1) − εp
n}, S•red(V )− is the quo-

tient of C[SL(n)]N
+ (which is stabilized by θ) by R−(δ). The Gauss for-

mula allows to write:

g =


g′11 g′1n

.
.

.
g′n1 0



1 a1n

.
.

.
0 1


if δ

(p)
n,...,(n−p+1)(g) 6= 0 for any p.
And any f is characterized modulo R(δ)− by its restriction to:


g′ij 1

.
.

.
1 0




= εnN+Ω =




1 g′ij

.
.

.
0 1




0 εn

.
.

.
εn 0




Finally, if we put f(εnn+Ω) = h(n+), we get S•red(V )− ' C[N+] with
the natural N− action:

(g.h)(g1) = h(tgg1).
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Theorem 7.2. (The reduced shape algebras) The reduced shape algebras
are isomorphic to the algebra of polynomial functions on N− (respextively
N+):

S•red(V )+ ' C[N−] = C[n−]
S•red(V )− ' C[N+] = C[n+].

The last assertions of the theorem come from the observation that the
exponential mapping from the Lie algebra n− (resp. n+) onto the Lie
group N− (resp. N+) is a polynomial bĳection with a polynomial inverse
mapping.

8. The reduced shape algebra: Combinatorial presentation

8.1. Super and quasi standard Young tableaux

In order to describe the restricted shape algebra and the restricted Plücker
relations, we have to perform the quotient of the preceding construction
by the ideal generated by {δ(s)

12...s − 1}. On the Young tableaux this oper-
ation can be viewed as an ‘extraction of trivial columns’.

A column whose height is c in a tableau is trivial if its entries are
1, 2, . . . , c, a Young tableau T is trivial if each column of T is trivial. Now
let T be a Young tableau (semi standard or not), we define the extraction
of trivial columns in T in the following manner:

Denote aij the entries of T (aij is in the row i and the column j, for
any j, aij < a(i+1)j and the heights c1, . . . , ct of the columns in T are
decreasing). We say that the tableau T is reducible if

• there is a column j whose the s top entries are 1, 2, . . . , s (ai,j = i
for 1 ≤ i ≤ s),

• on the right of the column j, there is a column j′ with height s in
T (there is j′ ≥ j such that cj′ = s),

• for any k > j, if ck−1 > s and ck ≥ s, as+1,k−1 > as,k.

Let T be a reducible Young tableau, let j the smallest index and s the
largest index for which the above conditions hold. Let us suppress the
trivial top part of the column j and shift to the left the right parts of the
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s first rows (i.e. we shift to the left every aik with 1 ≤ i ≤ s and j < k),
then we get a Young tableau R1: the entries of R1 are bk` with

bk` =


ak(`+1) if 1 ≤ k ≤ s and j ≤ ` ≤ t− 1

ak` if s < k or ` < j.

If the number of column of T was t, then R1 has t − 1 column, more
precisely if the heights of the columns of T were: (c1, . . . , ct) and the
columns of heights s had the number j′, . . . , j′′, then the heights of the
columns of R1 are (c′1, . . . , c

′
t−1) with

c′k = ck if 1 ≤ k < j′′

c′k = ck+1 if j′′ ≤ k ≤ t− 1.

Simultaneously, we define L1 as the Young tableau with only one trivial
column with entries 1, . . . , s.

Now if R1 is reducible, we repeat the above operation, extracting a
second trivial column from R1, getting two Young tableaux a trivial one
with two columns L2 and a Young tableau R2 with t− 2 columns.

Repeating this construction, after m steps, we get a trivial Young
tableau Lm with m columns and a Young tableau Rm with t−m columns.

This construction stops when the Young tableau Rm is not reducible
we say Rm is irreducible and call Rm the residue of T .

Definition 8.1. (Super, left and right Young tableaux) A super Young tableau
is a pair S = (L,R) of two Young tableaux, the left one L is a trivial Young
tableau, the right one, R is an irreducible Young tableau. L or R can be
the empty tableau without any column.

Our construction defines a mapping f (the extraction mapping) from
the set Y of Young tableaux into the set SUY of super Young tableaux

f(T ) = S = (L,R).

If λ is the shape of T and µ, ν the shapes of L and R, they corresponds
to some highest weights still denoted λ, µ and ν. We have:

λ = µ + ν.
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Lemma 8.2. (f is surjective) The map f is a surjective mapping from Y
onto SUY.

Proof. Starting with an irreducible Young tableau R, we can insert to
it any family of trivial columns, say L = {D1, . . . , D`}, getting a new
tableau T . We insert these columns in the following way: if the height of
Di is di, we insert D1, . . . , Di such that any column of T , after Di has
height strictly less then di, the columns of T before Di are the columns of
R with length at least di, with their ordering and the column Dj (j < i).
Then T is a Young tableau. Of course, if ` > 0, T is reducible.

If (L,R) is a super Young tableau, if {D1, . . . , D`} are the columns of
L, we shall write:

T = h(L,R).
Let us now try to extract a trivial column from this T . Among the

columns of L, the first one is D1 with height d1. In T , this column is the
column p. Suppose the first trivial column extracted from T is the s top
elements of the column j, with j < p. Since R is irreducible, there is a
k > j such that cR

k−1 > s, cR
k ≥ s and aR

s+1,k−1 ≤ aR
s,k (we denote cR

k the
height of the column k and aR

i,j the i, j-entry in R). We choose the smallest
such k. Since we can now extract the trivial column from T , there is, in
T , at least one new column, say D between the two columns k − 1, k in
R, which are now columns k1, k2 in T . We choose for D the last one: D
is the column k2 − 1 in T . The height of D is cT

k2−1 = d > cT
k2

= cR
k ≥ s

and we get:

aT
s+1,k2−1 = s + 1 ≤ aR

s+1,k−1 ≤ aR
s,k = aT

s,k2
.

We cannot extract the trivial column consisting of the s top elements of
the column j, with j < p. Of course, we can extract all the column p
of T . Thus, in the computing of f(T ), the first step is just to eliminate
the column D1 from T , repeating this construction, we get f(T ) = (L,R)
where L is the trivial tableau (D1, . . . , D`). Thus

f ◦ h(L,R) = (L,R)

and f is a surjective mapping. �

Definition 8.3. (Quasi standard tableaux) A super Young tableau S =
(L,R) is said quasi-standard if its right tableau R is semistandard.
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A Young tableau T is said quasi-standard if it is irreducible and semi-
standard.

Let us denote by QSY (resp. QY) the set of quasi standard super
Young tableaux (resp. quasi standard Young tableaux). Denote SY the
set of semistandard Young tableaux.

Lemma 8.4. (f is a bĳection from SY onto QSY) The mapping f , when
restricted to SY is a one-to-one onto mapping from SY onto QSY.

Proof. First it is clear that if T is semistandard, then each tableau in the
sequence R1, . . . , Rm defined above is still semistandard, then f is a map
from SY to QSY.

Now let S = (L,R) be an element of QSY. Denote the rows of L by
(L′

1, . . . , L
′
u), their lengths being `′1, . . . , `

′
u. Similarly, denote (L′′

1, . . . , L
′′
v)

the rows of R, their lengths being `′′1, . . . , `
′′
v . We define the new tableau

T = g(S) as the tableau with the row i contains (from left to right) `′i
entries i, then the `′′i entries of the row i of R. In fact, T is a Young tableau
since if aT

i,j is an entry of T , it is either i or an entry of R (aT
i,j = aR

i,j−`′i
if

aR
r,s are the entries of R). In any case, aT

i,j ≥ i.
If aT

i,j = i, then aT
i,j = i < i+1 ≤ aT

i+1,j . If aT
i,j = aR

i,j−`′i
, since `′i ≥ `′i+1,

aT
i+1,j = aR

i+1,j−`′i+1
and aT

i,j = aR
i,j−`′i

< aR
i+1,j−`′i

≤ aR
i+1,j−`′i+1

= aT
i+1,j .

T is semistandard: by construction each row in T is a increasing se-
quence of entries. g is a map from QSY to SY.

The map g is the inverse mapping of f |SY . Indeed if T is semistandard,
if a column C of T begins by a trivial part, then all the columns before C
begin with the same trivial part and suppressing the top of the first column
or the top of C is the same operation, thus to construct the sequence
R1, . . . , Rm, we just have to consider the first column at each step.

Starting with T = g(S), we can extract at each step a trivial column
having the height of the corresponding column of L, but no more, since R
is irreducible. Thus f ◦ g(S) = S, for any S ∈ QSY.

Conversely, starting with a semistandard T , we build first f(T ) = (L,R)
and by construction the rows of L are the left part of the rows of T , thus
g ◦ f(T ) = T . �
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8.2. Quasi standard Young tableaux and Groebner basis

In this section we shall repeat the construction of section 5 but for the
ideal R(δ)+ and the quasi standard Young tableaux.

First, we choose the following elimination order on the variables δ: defin-
ing the degree deg(δ(s)

i1...is
) as 1 if is > s (δ(s)

i1...is
is not trivial) and 0 if is = s

(δ(s)
i1...is

is trivial), the degree of δT is the sum of degree of each variables
and T > T ′ if and only if:

deg(δT ) > deg(δT ′
)

or
deg(δT ) = deg(δT ′

) and T > T ′ for the preceding ordering.

This ordering is a monomial ordering. Now we look for the leading terms
of elements in R(δ)+, for this ordering. We saw that the leading terms
of elements in P (δ) for the preceding ordering were non semistandard
monomials.

Lemma 8.5. (The set 〈LT (R(δ)+)〉) For this ordering, the set of leading
terms for elements in R(δ)+ is exactly the set:

〈LT (R(δ)+)〉 = {δT , T non quasi standard}.

Proof. Let T be a non quasi standard tableau.

Case 1: T is non semi standard.

Then T contains a non semistandard tableau with two columns T 0:
δT = δUδT 0 . For T 0, we saw there is a Plücker relation PT 0 in P (δ) whose
leading term for the ordering of section 5 was T 0.

Case 1.1: T 0 contains a trivial column Ci, since T 0 is non semistandard,
it is its second column. δT 0

= δ
(s)
1,...,sδ

(c)
a1,...,ac . But δ

(s)
1,...,s is the leading

term of the element Vs = δ
(s)
1,...,s − 1 in R(δ)+. δT is the leading term

of PT = δUδ
(c)
a1,...,acVs which is in R(δ)+.

Case 1.2: T 0 does not contain any trivial column. δT 0
= δ

(s)
b1,...,bs

δ
(c)
a1,...,ac

with c ≥ s, there is j such that aj > bj , we choose the largest such j, due
to our conventions of writing, if c = s then j < s and ac > c, bs > s.
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Thus the relation PT 0 has the following form:

PT 0 = δT 0 −
∑

A⊂{a1,...,ac}
#A=j

±δ
(s)
A∪{bj+1,...,bs}δ

(c)
({a1,...,ac}\A)∪{b1,...,bj}

= δT 0 −
∑

S<T 0

S semi standard

±δ(S).

If a tableau S in this relation contains a trivial column, i.e S = C1C2 with
C1 trivial, we replace S by C2 since

δS − δC2 = Vs.δ
C2 .

The expression PT 0 becomes P red
T 0 and δT is the leading term of

PT = δUP red
T 0

which is in R(δ)+. Let us remark that the non leading monomials aSδS in
PT satisfy δS < δT and λ(S) ⊂ λ(T ) if λ(S) is the shape of the tableau S.

Case 2: T is semi standard.

If T has only one column, this column is trivial. T is the leading term
of some PT = δT − 1 in R(δ)+.

Since T is semi standard the construction of the super Young tableau
f(T ) begins with the extraction of the top s elements 1, . . . , s of the first
column of T . Let us look to the two first columns of T , CT

1 and CT
2 . By

hypothesis, δCT
1 = δ

(c1)
1,...,s,as+1,...,ac1

, δCT
2 = δ

(c2)
b1,...,bs,bs+1,...,bc2

and bs < as+1.
Let us define ∂T as the tableau with the following first columns C∂T

1

and C∂T
2 :

δC∂T
1 = δ

(c1)
b1,...,bs,as+1,...,ac1

, δC∂T
2 = δ

(c2)
1,...,s,bs+1,...,bc2

,
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the other columns of ∂T being C∂T
i = CT

i (i ≥ 3). Let us write the Plücker
relation corresponding to these two columns and s:

δT − δ∂T−∑
A⊂{1,...,s,as+1,...,ac1}

A6={1,...,s}
#A=s

±
∏
i≥3

δCT
i δ

(c2)
A∪{bs+1,...,bc2}

δ
(c1)
({1,...,s,as+1,...,ac1}\A)∪{b1,...,bs}

= δT − δ∂T −
∑
A

±δTA .

Each term δTA in the sum has a second column containing ai with i > s,
thus ai ≥ as+1 > bs and δ

(c2)
A∪{bs+1,...,bc2}

< δCT
2 , δTA < δT .

If c2 = s, deg(δ∂T ) < deg(δT ), δT is the leading term of an element in
R(δ)+. If c2 > s, we repeat this construction for ∂T , forgotting its first
column. We get the following element of R(δ)+:

δ∂T − δ∂2T−∑
B⊂{1,...,s,bs+1,...,bc2}

B 6={1,...,s}
#B=s

±
∏
i≥4

δCT
i δ

(c3)
B∪{cs+1,...,cc3}

δ
(c2)
({1,...,s,bs+1,...,bc2}\B)∪{c1,...,cs}δ

C∂T
1

= δ∂T − δ∂2T −
∑
B

δTB .

Each term δTB in the sum has a third column containing bi with i > s,
thus bi ≥ bs+1 > cs and δ

(c3)
B∪{cs+1,...,cc3}

< δCT
3 , δTB < δT .

Repeating this operation we finally get an element in R(δ)+ of the form:

δT − δ∂kT −
∑
j

δTj

with δTj < δT , λ(Tj) ⊂ λ(T ) for all j, the column k + 1 of ∂kT is trivial,
deg(δ∂kT ) < deg(δT ) and δT is the leading term of an element of R(δ)+.

�

Remark 8.6. The tableau ∂kT considered here is (perhaps up to a re-
ordering of the columns with height s) the tableau h(C,R1) if C is the
first trivial column:

δC = δ
(s)
1...s
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and R1 the first step in the extraction process for T .

We got an element of R(δ)+:

δT − δR1 −
∑

±δTj (R1 < T, Tj < T, λ(Tj) ⊂ λ(T ))

If R1 is quasi standard, we stop the process. If it is not the case, we
continue the extraction, getting new tableaux T ′

k < R1 < T . Finally we
get: T = g(L,R) with L 6= ∅ and δT − δR −

∑
k akδ

T
k belonging to R(δ)+,

R is quasi standard R < T , Tk < T and λ(Tk) ⊂ λ(T ). We repeat this
operation for each non quasi standard Tk; getting an element PT = δT −
δR −

∑
akδ

Tk with Tk < T , λ(Tk) ⊂ λ(T ) and Tk quasi standard. This
element PT is in R(δ)+.

We proved that each non quasi standard Young tableau is the lead-
ing term of an explicit element PT of R(δ)+. Let us now prove that any
quasi standard Young tableau is not a leading term of an element in R(δ)+.

Let λ be a highest weight for sl(n) and V λ the corresponding sim-
ple module. We saw that V λ is naturally a sub-module of S•red(V ). More
precisely, V λ is the space spanned by the classes modulo R(δ)+ of the
monomials δT for all Young tableaux T of shape λ. A basis for V λ is given
by the classes of the monomials δT for T semi standard with shape λ in
the quotient C[δ]/R(δ)+. Let us consider the subspace W λ of V λ spanned
by the quasi standard and semi standard Young tableaux of shape λ.

Let us start with the usual basis of V λ: the set of classes modulo R(δ)+

of δT , with T semi standard, with shape λ. This basis contains the basis
of W λ: the set of classes modulo R(δ)+ of δT , with T semi standard
and quasi standard, with shape λ. The other tableaux are T = g(L,R),
L 6= ∅. We saw δT − δR =

∑
akδ

Tk modulo R(δ)+ with Tk quasi standard
Tk < T and R is semi standard and quasi standard with shape µ ⊂ λ.
This proves that V λ is a subspace of

∑
µ⊂λ

Wµ. But since g is injective,

dimV λ =
∑

µ⊂λ
dim(Wµ) thus

V λ =
⊕
µ⊂λ

Wµ.

Let now T be a quasi standard Young tableau of shape λ. Suppose δT

is the leading term of an element T +
∑

k akδ
Tk in R(δ)+, then using the
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first part of the proof, we can replace each δTk with a non quasi standard
Tk, by a linear combination of δTj with quasi standard Tj modulo R(δ)+.
Finally we get an element in R(δ)+ of the form T +

∑
j bjδ

Tj with any
Tj quasi standard and strictly smaller than T and λ(Tj) ⊂ λ. But this is
impossible since the sum

∑
µ⊂λ

Wµ is direct.

Finally, as in section 5, for each non quasi standard Young tableau, we
got an element in R(δ)+ of the form:

P red
T = δT −

∑
j

ajδ
Tj

with δTj strictly smaller than δT and quasi standard.

Let T be a non quasi standard tableau with shape λ. We shall say that
T is minimal if it does not contain any non quasi standard tableau with
shape µ $ λ. For instance a semi standard non quasi standard tableau
with one column or with 2 columns without trivial column are minimal.

If n ≤ 3 there are no other semi standard, minimal, non quasi standard
tableaux, but if n ≥ 4 there is semi standard, minimal, non quasi standard
tableau with at least 3 columns for instance:

1 2 3
3 4

Theorem 8.7. (The non quasi standard Groebner basis) The set

G = {P red
S , S semi standard minimal non quasi standard or S non

semi standard with 2 columns, without any trivial column}

is the reduced Groebner basis of R(δ)+ for our ordering.

Proof. Let T be a non quasi standard tableau.
If T contains a trivial column C, δT is divisible by δC and C is minimal

semi standard non quasi standard.

Suppose now T does not contain any trivial column.

If T is non semi standard, it contains a non semi standard tableau S
with 2 columns, without any trivial column.
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If T is semi standard then by definition it contains a minimal non quasi
standard tableau S but thus S is semi standard.

Then:

< LT (R(δ)+) > = {δT , T non quasi standard}
= {monomial divisible by an element of G}.

Now each monomial in any P red
S of G which are not the leading term,

has the form aT ′δT ′ with T ′ quasi standard.
But if U ⊂ T ′, then U is also quasi standard. Indeed, U is semi standard,

suppose U non quasi standard then U contains a first column

C1 = (1, 2, . . . , s, as+1, . . . , aC1),

other columns

Ci = (b1, b2, . . . , bs, bs+1, . . . )

a last column

Ct = (c1, c2, . . . , cct) with t ≤ s.

We can extract (1, 2, . . . , s) from U .
Now, we can refind T ′ from U by adding some columns before C1, be-

tween columns of U or after Ct. But T ′ is semi standard. By considering
each case for these new columns, we directly see that the top (1, 2, . . . , s)
of columns C1 can still be extracted from T ′ which is impossible since T ′

is quasi standard.

Thus any monomial of P red
S is not divisible by the leading term of an-

other P red
S′ .

This means that G is the reduced Groebner basis of R(δ)+ for our
ordering. �

The same result holds with the anti standard tableau, image by τ of
the quasi standard tableaux.
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The anti quasi standard tableaux can be defined exactly as the quasi
standard tableaux by extracting ‘trivial’ top of columns like:

n
n− 1

...
n− s

They are still the image by τ of the quasi standard tableaux.

Remark 8.8. In fact, if n ≤ 3, the quasi satndard Groebner basis is invari-
ant under the action of θ. Similarly, with the symmetry τ , if we identify
τ(T ) with ±T ′ with T ′ the Young tableau such that δτ(T ) = δT ′ , then T
quasi standard implies T ′ quasi standard. In the study of sl(4) below, we
shall see this is no more true for n > 3.

On Figure 2 we picture the adjoint representation of sl(3) in S+
red equipped

with its Groebner basis.
Our choice of basis gives rise to a more symmetric graph than the usual

choice described in section 5.

The same representation in S−red equipped with its Groebner basis is
given on Figure 3. We resume our constructions by the two following
diagrams of Figures 4 and 5, where we denote by SY (resp. QY, ASY,
AQY) the set of semi standard (resp. quasi standard, anti standard, anti
quasistandard) tableaux.
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Figure 2. The adjoint representation of sl(3) in S+
red

equipped with its Groebner basis.
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Figure 3. The adjoint representation of sl(3) in S−red
equipped with its Groebner basis.
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9. The sl(2) case

9.1. Representations of sl(2)

The sl(2)-simple modules are characterized by a highest weight a. More
precesely, the basis of sl(2) is:

Xα =
[
0 1
0 0

]
, Hα =

[
1 0
0 −1

]
, Yα =

[
0 0
1 0

]
.

If a is a positive integer, the simple module πa acting on the space V a is
a + 1-dimensional, with a basis vn (0 ≤ n ≤ a) and the matrices of the
action are:

πa(Xα) =


0 1 0 0
0 0 2 0

. . . . . .
a

0 0

 ,

πa(Hα) =


a 0 0
0 a− 2 0

. . .
0 −a

 ,

πa(Yα) =


0 0 0 0
a 0 0 0

. . . . . .
0 1 0

 .

There is only one fundamental representation, associated to the weight
ω1. We realize it in the space generated by the functions δ

(1)
1 (g) = g11,

δ
(1)
2 (g) = g21. The other representations are realized on the space of ho-

mogeneous polynomial functions of degree a in these variables.

9.2. Shape and reduced shape algebra

There are no Plücker relation between g11 and g21, thus the shape algebra
is isomorphic to the algebra

A•(V ) = C[g11, g21] ' S(V ).
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The reduced shape algebra is the quotient by the ideal generated by g11−1.
Let us put:

n− =
{[

0 0
x 0

]}
, N− = exp

(
n−

)
=

{[
1 0
x 1

]}
.

Then:
S•red(V )+ = C[δ1

2 ] = C[X],
The Xα acts on a polynomial function as the operator:

Xα =
∂

∂X
.

We realize the sl(2)-diamond cone as the half line of the entire nodes
0, 1, . . . , a, a + 1, . . . , at each node n, we put the quasi standard Young
tableau 2 . . . 2 or the monomial Xn. We have an explicit basis for
the representation of N+ on the diamond cone defined by the action of
Xα, pictured by the graph:

� �� ��

2 2 20 2 . . . 2

1 2 aa-1

1

For any a ≥ 0, we define the diamond Da as the graph generated by
Xa, the vector space V a as the vector space with basis the nodes of Da.

We saw that the anti semi standard (resp. the anti quasi standard) basis
can be identified with the semi standard (resp. the quasi standard) basis.
More precisely, a being fixed, the action of τ on V a, denoted by τ (a) is
defined as:

τ (a)(Xn) = Xa−n

τ (a)
(

2 . . . 2
)

= 2 . . . 2 .

We can see τ (a) as the succession of four operations:
completion of the tableau T ,
action of τ on the complete tableau,
reordering the new tableau,
cancelling the trivial columns 1 .
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For instance if a = 5, we get

compl
(

2 2 2
)

= 1 1 2 2 2

τ
(

1 1 2 2 2
)

= 2 2 1 1 1

ord
(

2 2 1 1 1
)

= + 1 1 1 2 2

cancell
(

1 1 1 2 2
)

= 2 2 .

We put:

Yα(Xn) = (τ (a) ◦Xα ◦ τ (a))(Xn) = (a− n)Xn+1

and Hα = [Xα, Yα] or:

Hα(Xn) = [(n + 1)(a− n)− n(a− n + 1)]Xn = (a− 2n)Xn.

We finally complete the diamond Da by adding the edges corresponding
to the Yα-action.

10. The sl(3) case

10.1. Representations of sl(3)

The sl(3)-simple modules are characterized by their highest weight. More
precisely, the basis of sl(3) is:

Xα =

0 1 0
0 0 0
0 0 0

 , Xβ =

0 0 0
0 0 1
0 0 0

 , Xα+β =

0 0 1
0 0 0
0 0 0

 ,

Hα =

1 0 0
0 −1 0
0 0 0

 , Hβ =

0 0 0
0 1 0
0 0 −1

 ,

Yα =

0 0 0
1 0 0
0 0 0

 , Yβ =

0 0 0
0 0 0
0 1 0

 , Yα+β =

0 0 0
0 0 0
1 0 0

 .

The simple modules have non multiplicity free weights. We can describe
then by using the reduced shape algebra. The fundamental modules are
three dimensional, they are realized on the space V ω1 = C3 and V ω2 =
∧2C3.
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For each pair of natural integers, there is an unique irreducible represen-
tation π(a, b) with highest weight aω1 + bω2.

10.2. Shape and reduced shape algebra

Now we have just one Plücker relation: let us put as above:

δ
(1)
1 = g11, δ

(1)
2 = g21, δ

(1)
3 = g31

δ
(2)
12 = g11g22 − g12g21, δ

(2)
13 = g11g32 − g12g31, δ

(2)
23 = g21g32 − g22g31.

Then the unique Plücker relation is:

δ
(1)
1 δ

(2)
23 − δ

(1)
2 δ

(2)
13 + δ

(1)
3 δ

(2)
12 = 0.

The shape algebra is the quotient of the algebra of polynomial functions
in these 6 variables by the above relation.

The reduced shape algebra is obtained by imposing δ
(1)
1 = 1 and δ

(2)
12 =

1.
An explicit basis for this module V (a,b) and the Xη, Yη, Hη actions

on this basis can be found in [6] for instance. Let us briefly recall the
construction of [6].

One defines a diamond cone D in R3 and a infinite dimensional vector
space V with basis:

B = {em,n,`, (m,n, `) ∈ D ⊂ R3}
= {em,n,`, m, n ≥ 0, −n ≤ ` ≤ 2m− n, m− 2n ≤ ` ≤ m,

` ≡ max(m,n) mod 2}.
The action of any Xη on these vectors em,n,` is thus explicitely given in [6],
we shall refind and present this explicit form below. Now the irreducible
module V (a,b) with highest weight aω1 + bω2 is the module generated by
the Xη action on the highest weight vector ea+b,a+b,a−b.

A basis for this module is an explicit subset B(a,b) of B. There is a
symmetry τ(a,b) on V (a,b), τ(a,b)(B(a,b)) = B(a,b) and the Yη, Hη actions are
defined as

Yη = τ(a,b) ◦Xη ◦ τ(a,b), Hη = [Xη, Yη].
See [6] for explicit formulas.

With our notations, we have:

n− =


0 0 0
x 0 0
u y 0

 , N− = exp
(
n−

)
=


 1 0 0

x 1 0
u + xy

2 y 1

 .

418



Diamond for sl(n)

Then:

δ
(1)
2 = X, δ

(1)
3 =

xy

2
+ u = U, δ

(2)
13 = Y, δ

(2)
23 =

xy

2
− u = E

and

S•red(V )+ ' C[x, y, u]

= C[δ(1)
2 , δ

(1)
3 , δ

(2)
13 , δ

(2)
23 ]/

〈δ(1)
3 + δ

(2)
23 − δ

(1)
2 δ

(2)
13 〉

= C[X, Y, U, E]/〈U + E −XY 〉.

The quasi standard ordering on variables is:

δ
(1)
3 > δ

(1)
2 > δ

(2)
23 > δ

(2)
13 , or U > X > E > Y.

Then the leading term for this basis is δ
(1)
2 δ

(2)
13 = XY , thus we get the

basis:{
(δ(1)

3 )u(δ(2)
23 )e(δ(1)

2 )x = UuEeXx, u, e, x ∈ N
}

⋃ {
(δ(1)

3 )u(δ(2)
23 )e(δ(1)

2 )y = UuEeY y, u, e, y ∈ N, y > 0
}

.

Now the action of Xα, Xβ and Xα+β on these polynomials are the
following:

Xα =
∂

∂x
− y

2
∂

∂u
, Xβ =

∂

∂y
+

x

2
∂

∂u
, Xα+β =

∂

∂u
,

thus

Xα(X) = 1, Xα(Y ) = 0, Xα(U) = 0, Xα(E) = Y,

Xβ(X) = 0, Xβ(Y ) = 1, Xβ(U) = X, Xβ(E) = 0,

Xα+β(X) = 0, Xα+β(Y ) = 0, Xα+β(U) = 1, Xα+β(E) = −1.

Then the Xη are acting by derivations, we refind the diamond cone, the
diamond D(a,b), the vector space V (a,b), the symmetry τ(a,b) and the com-
plete diamond graphs on D(a,b) described in [6] with the identification:

em,n,` = Un−m−`
2 E

m−`
2 Xm−n if m > n

em,n,` = U
m+`

2 E
m−`

2 if m = n

em,n,` = U
m+`

2 Em−n+`
2 Y n−m if m < n,
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our Groebner basis for S•red(V )+ coincides exactly with the basis B given
in [6].

10.3. Xη action, symmetry and Yη action

With our notations, we have the following identification between column
and variables X, U, Y, E:

X = δ
(1)
2 (g) −→ 2

U = δ
(1)
3 (g) −→ 3

Y = δ
(2)
13 (g) −→ 1

3

E = δ
(2)
23 (g) −→ 2

3

The unique reduced Plücker relation is:

3 − 1 2
3 +

2
3 = 0

For instance, with these notations, the Xα action on our basis is:

UuEeXx (x > 0) eUu+1Ee−1Xx−1 + (e + x)UuEeXx−1

UuEeY y (y ≥ 0) eUuEe−1Y y+1

or

em,n,` (m > n) m−`
2 em−1,n,`+1 + (m− n + m−`

2 )em−1,n,`−1

em,n,` (n ≥ m) (m− n+`
2 ) em−1,n,`

.

And the Xβ action is:
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UuEeXx (x > 0) uUu−1EeXx−1

UuEeY y (y ≥ 0) uUu−1EeXY y + yUuEeY y−1

or

em,n,` (m > n) (n− m−`
2 )em,n−1,`

em,n,` (n ≥ m) (n−m + n+`
2 )em,n−1,`+1 + (n+`

2 )em,n−1,`−1

.

For sl(3), our symmetry τ on quasi standard Young tableaux induces a
very simple transformation on V (a,b).

Starting with a quasi standard Young tableau T with a′ columns of
height 1 and b′ columns of height 2, a′ ≤ a and b′ ≤ b, as for sl(2), we
complete T by adding a−a′ trivial columns 1 and b′− b trivial columns
1
2 . Then we act with τ , we reorder the entries of each column and finally

we cancell the trivial columns. The resulting quasi standard tableau will
be denoted τ (a,b)(T ).

For instance if a = 5 and b = 3 and T = 2 2 2 2 3
3 3 , we get:

τ (5,3)(T ) = τ
( 1 2 2 1 1 2 2 3

2 3 3
)

= 3 2 2 3 3 2 2 1
2 1 1

= − 1 1 2 1 2 2 3 3
2 2 3

' − 2 2 2 3 3
3 .
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With the polynomial notations, we get:

τ (a,b)(UuEeXx) = Ua−(x+u)Eb−eXx

τ (a,b)(UuEeXx) = Ua−uEb−(y+e)Y y.

And with the notations of [6]:

τ (a,b)(em,n,`) = ea+b−n,a+b−m,a−b+m−n−`.

11. The sl(4) case

11.1. Representations of sl(4)

As above, we have simple roots α, β and γ, with:

Xα =

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Xβ =

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , Xγ =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

Moreover we have positive roots α + β, β + γ and α + β + γ, with:

Xα+β =

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Xβ+γ =

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

Xα+β+γ =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .

We put Yη = tXη and

Hα =

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , Hβ =

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ,

Hγ =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 .

The fundamental representations are 4 and 6 dimensional, they are associ-
ated to the fundamental highest weight ω1 for the canonical representation
on V = C4, ω2 for the representation on ∧2V and ω3 for the representa-
tion on ∧3V . These fundamental representations are easy to describe, the
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reduction of the tensor product of any two of them is completely described
in [2]. Especially, we can get the Plücker relations thanks to this decom-
position.

11.2. Shape and reduced shape algebra

Now we have 10 Plücker relations: let us put as above:

δ
(1)
i = gi1, δ

(2)
ij =

∣∣∣∣gi1 gi2
gj1 gj2

∣∣∣∣ , δ
(3)
ijk =

∣∣∣∣∣gi1 gi2 gi3
gj1 gj2 gj3
gk1 gk2 gk3

∣∣∣∣∣
Then we have 4 Plücker relations between the δ(1) and δ(2):

δ
(1)
1 δ

(2)
23 − δ

(1)
2 δ

(2)
13 + δ

(1)
3 δ

(2)
12 = 0,

δ
(1)
2 δ

(2)
34 − δ

(1)
3 δ

(2)
24 + δ

(1)
4 δ

(2)
23 = 0,

δ
(1)
1 δ

(2)
34 − δ

(1)
3 δ

(2)
14 + δ

(1)
4 δ

(2)
13 = 0,

δ
(1)
1 δ

(2)
24 − δ

(1)
2 δ

(2)
14 + δ

(1)
4 δ

(2)
12 = 0.

There are also 4 relations between the δ(2) and δ(3):

δ
(2)
14 δ

(3)
234 − δ

(2)
24 δ

(3)
134 + δ

(2)
34 δ

(3)
124 = 0,

δ
(2)
12 δ

(3)
134 − δ

(2)
13 δ

(3)
124 + δ

(2)
14 δ

(3)
123 = 0,

δ
(2)
12 δ

(3)
234 − δ

(2)
23 δ

(3)
124 + δ

(2)
24 δ

(3)
123 = 0,

δ
(2)
13 δ

(3)
234 − δ

(2)
23 δ

(3)
134 + δ

(2)
34 δ

(3)
123 = 0.

And one between the δ(2):

δ
(2)
12 δ

(2)
34 − δ

(2)
13 δ

(2)
24 + δ

(2)
14 δ

(2)
23 = 0.

And finally one between the δ(1) and the δ(3):

δ
(1)
1 δ

(3)
234 − δ

(1)
2 δ

(3)
134 + δ

(1)
3 δ

(3)
124 − δ

(1)
4 δ

(3)
123 = 0.

The shape algebra is the quotient of the algebra of polynomial functions
in these 14 variables by the 10 above relations.

The reduced shape algebra is obtained by imposing δ
(1)
1 = 1, δ

(2)
12 = 1

and δ
(3)
123 = 1.
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With our notations:

n− =


0 0 0 0

x 0 0 0
u y 0 0
w v z 0




and

N− = exp(n−) =


 1 0 0 0

x 1 0 0
u + xy

2 y 1 0
w + xv

2 + zu
2 + xyz

6 v + yz
2 z 1


 .

Then we get:

δ
(1)
1 = 1, δ

(1)
2 = x = X, δ

(1)
3 =

xy

2
+u = U, δ

(1)
4 = w+

xv

2
+

zu

2
+

xyz

6
= A

and

δ
(3)
123 = 1, δ

(3)
124 = z = Z, δ

(3)
134 =

yz

2
−v = W, δ

(3)
234 =

xyz

6
−xv

2
− zu

2
+w = C

and

δ
(2)
12 = 1, δ

(2)
13 = y = Y,

δ
(2)
14 = v +

yz

2
= V, δ

(2)
23 =

xy

2
− u = E,

δ
(2)
24 =

xyz

3
+

xv

2
− zu

2
− w = D, δ

(2)
34 =

xy2z

12
+ uv − yw = B.

Now:

S•red(V )+ ' C[x, y, z, u, v, w]

= C[δ(1)
2 , . . . , δ

(1)
4 , δ

(2)
13 , . . . , δ

(2)
34 , δ

(3)
124, . . . , δ

(3)
234]/Pred(δ)+

= C[X, Y, Z, U, E, W, V,A, C, D,B]/P luck

where Pluck is the ideal generated by the 10 polynomials:

Pluck =

〈U −XY + E, D −XV + A, B − UV + Y A, XB − UD + AE,

B − Y D + EV, C −XW + UZ −A,

V C −DW + BZ, W − Y Z + V, C − EZ + D, Y C − EW + B〉.
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Then we get the Groebner basis G:

{ −B + UV − Y A,XB − UD + AE,−D + XV −A,

− U + XY − E,−C + XW − UZ + A,B − Y D + EV,

V C −DW + BZ,−C + EZ −D,Y C − EW + B,

−W + Y Z − V,−EB − EY A− UB + UY D,

UDW − UBZ −AEW − CB + AB}.
The leading terms of this basis are:

XY, XV, UV, BX, Y Z, EZ, Y C, V C, XW, EV, UDW, UDY.

Now the basis of our space, i.e. the nodes of the sl(4)-diamond are mono-
mials

XxY yZzWwV vUuEeAaCcDdBb

with:

0 = xy = xv = uv = bx = yz = ez = yc = vc = xw = ev

= udw = udy.

The action of our generators Xα, Xβ and Xγ on these polynomials are:

Xα = ∂x −
y

2
∂u +

(
yz

12
− v

2

)
∂w,

Xβ = ∂y +
x

2
∂u −

z

2
∂v −

xz

6
∂w,

Xγ = ∂z +
y

2
∂v +

(
xy

12
+

u

2

)
∂w.

Then we get:

Xα(X) = 1, Xβ(X) = 0, Xγ(X) = 0,

Xα(Y ) = 0, Xβ(Y ) = 1, Xγ(Y ) = 0,

Xα(Z) = 0, Xβ(Z) = 0, Xγ(Z) = 1,

Xα(U) = 0, Xβ(U) = X, Xγ(U) = 0,

Xα(E) = Y, Xβ(E) = 0, Xγ(E) = 0,

Xα(W ) = 0, Xβ(W ) = Z, Xγ(W ) = 0,
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Xα(V ) = 0, Xβ(V ) = 0, Xγ(V ) = Y,

Xα(A) = 0, Xβ(A) = 0, Xγ(A) = U,

Xα(C) = W, Xβ(C) = 0, Xγ(C) = 0,

Xα(D) = V, Xβ(D) = 0, Xγ(D) = V,

Xα(B) = 0, Xβ(B) = D, Xγ(B) = 0.

Thus the Xη for η simple are acting on our basis of the reduced shape
algebra by giving linear combination with integral coefficients, indeed,
we find first such a linear combination on Z (even Z+) coefficients but
on monomials which are perhaps not all admissible, then we come back
to admissible monomials, using the reduced Plücker relations, but these
relations are with coefficients ±1, thus we finally get a combination of
monomials in the basis with coefficients in Z.

11.3. Symmetry

Now the symmetry τ on Young tableaux does not induce a simple opera-
tion τ (a,b,c) on the basis of the simple module V (a,b,c).

For instance the tableau
1 3
2
4

= ZU is an element of the basis of

V (1,0,1) (see the figure below). Repeating the operation performed for sl(2)
and sl(3), we get:

compl(
1 3
2
4

) =
1 3
2
4

and

τ(compl(
1 3
2
4

)) =
4 2
3
1

= −
1 2
3
4

but this tableau is not quasi standard: the extraction of the trivial top
1 of the first column is not trivial. Thus:

τ (1,0,1)(
1 3
2
4

) = −
2
3
4

−
1 3
2
4

+ 4
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or:
τ (1,0,1)(ZU) = −WX = −C − ZU + A.

We prefer to keep the new anti quasi standard Groebner basis to see τ
as a global change of basis τcompl inside the reduced shape algebra and
to realize Yτη = τcomplXητcompl by using the two basis. For instance in
V (1,0,1) the basis is:

{1, X, U,A, Z, W,C,WU, WA,CU, CA,CX, ZU, ZA,ZX},
the image by τcompl of this basis is:

{AC,UC,XC,C,WA,ZA, A,ZX,Z,X, 1,WX, W, WU}
The matrix of Yτη on this new basis is exactly the matrix of Xη in the old
one.

Figure 6 gives the presentation for the adjoint representation V (1,0,1) of
SL(4).
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Figure 6. The adjoint representation V (1,0,1) of SL(4)
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