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Trace Theorems for Sobolev Spaces on Lipschitz
Domains. Necessary Conditions

Giuseppe Geymonat

Abstract

A famous theorem of E. Gagliardo gives the characterization of traces for
Sobolev spaces W 1, p (Ω) for 1 ≤ p < ∞ when Ω ⊂ RN is a Lipschitz domain.
The extension of this result to W m, p (Ω) for m ≥ 2 and 1 < p < ∞ is now
well-known when Ω is a smooth domain. The situation is more complicated for
polygonal and polyhedral domains since the characterization is given only in terms
of local compatibility conditions at the vertices, edges, .... Some recent papers give
the characterization for general Lipschitz domains for m=2 in terms of global
compatibility conditions. Here we give the necessary compatibility conditions for
m ≥ 3 and we prove how the local compatibility conditions can be derived.

1. Introduction

Let Ω be a Lipschitz bounded and connected subset of RN whose bounded
and orientable boundary is denoted by Γ. For 1 ≤ p < ∞ and m integer
Wm, p (Ω) denotes the Sobolev space of functions of Lp (Ω) whose distribu-
tional derivatives up to the order m also belong to Lp (Ω). For m ≥ 1 the
restriction γ0(u) = u|Γ to Γ of a function u ∈Wm, p (Ω) is well-defined and
belongs to Lp (Γ). A famous result of E. Gagliardo [6] gives, for m = 1, the
caracterization of the range of γ0. More precisely, Gagliardo proves that
the operator γ0 is linear and continuous from W 1, p (Ω) onto W 1−1/p, p (Γ)
for 1 ≤ p <∞ and has a continuous right inverse for p > 1.

When u ∈ W 2, p (Ω) then ∂u
∂xj

∈ W 1, p (Ω) for j = 1, . . . , N ; therefore

γ1(u) = ∂u
∂n =

∑N
j=1 γ0

(
∂u
∂xj

)
nj ∈ Lp (Γ) since n = (n1, . . . , nN ) is defined

almost everywhere and belongs to (L∞ (Γ))N . J. Nečas [9] proves that
γ0(u) ∈ W 1, p (Γ) and that the map u −→ (γ0(u), γ1(u)) is linear and
continuous from W 2, p (Ω) into W 1, p (Γ) × Lp (Γ). A natural question is
to characterize the range of the map (γ0, γ1). A first answer has been
obtained for polygonal-type domains Ω ⊂ R2 by Kondratev and Grisvard
(see e.g. [8] for full references) in terms of compatibility conditions at
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the corners and then the results have been extended to polyhedral-type
domains (N = 3). These characterizations have been extensively used
in order to give regularity results for different types of boundary-value
problems.

For general Lipschitz domains a first characterization of the range of
(γ0, γ1) has been obtained for N = 2 and p = 2 in [7] as a byproduct of
the study of the Airy function; this result has been extended to general
p > 1 by [5]. During a visit at the Istituto di Analisi Numerica del CNR in
Pavia the following equivalent statement came out after some discussions
the with F. Brezzi and A. Buffa.

Theorem 1.1. The range of (γ0, γ1) is the set of (f0, f1) ∈ W 1, p (Γ) ×
Lp (Γ) such that:

∂f0

∂t
t + f1n ∈ (W 1−1/p, p (Γ))2. (1.1)

A first consequence of (1.1) has been a general characterization of the
range of (γ0, γ1) for N = 3 (see [2]) that also works for all N ≥ 3.

Let us remark that the compatibility conditions at a corner follow from
the characterization of W 1−1/p, p (Γ) and the exchange of n and t at the
crossing of the corner.

The statement of the theorem 1.1 allows an easy interpretation of the
necessity of the condition (1.1). Indeed, when u ∈W 2, p (Ω) then grad u =(

∂u
∂x1

, ∂u
∂x2

)
∈
(
W 1, p (Ω)

)2 and γ0(grad u) ∈
(
W 1−1/p, p (Γ)

)2
. Hence the

necessity of (3.1) follows from

γ0(grad u) =
∂γ0(u)
∂t

t + γ1(u)n. (1.2)

In this paper we give general necessary conditions for the traces of the
elements of Wm, p (Ω) for all integer m ≥ 2, all p > 1 and all N ≥ 2. The
proof of [7] can be adapted in order to prove that these conditions are also
sufficient when N = 2 and p = 2.

The author is indebted to many people. At first to F. Krasucki whose
questions about the mechanical meaning of Grisvard results on the traces
of Airy functions were the starting point for the extension of the Gagliardo
theorem to Wm, p (Ω) in the case m=2 and p=2 for 2-dimensional domains
[7]. During a visit to the IAN of the CNR the discussions with F. Brezzi
and particularly with A. Buffa allowed the extension to the case m=2 and
1 < p <∞ for general N-dimensional domains [2]. At last the discussions
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with F. Murat during the Colloque were stimulating to obtain the actual
formulation of the conditions for m=3.

2. Preliminaries

Let Ω be a Lipschitz bounded and connected subset of RN whose bounded
and orientable boundary is denoted by Γ. This means (see [9], [8] and
[1]) that for every x ∈ Γ there exists a neighborhood V (x) of x in RN

and a new orthonormal coordinate system {y1, ..., yN} such that V (x) =∏N
i=1]−αi, αi[ = V ′(x)×]−αN , αN [ and there exists a Lipschitz continuous

function ϕ : V ′(x) −→]−αN , αN [ such that |ϕ (y′)| ≤ αN/2 for every y′ =
(y1, ..., yN−1) ∈ V ′(x) and such that Ω∩V (x) = {y = (y′, yN ) ∈ V (x) | yN

> ϕ (y′)} and Γ ∩ V (x) = {y = (y′, yN ) ∈ V (x) | yN = ϕ (y′)}.
Since Γ is compact there exists M open and connected subsets Γi such

that Γ =
⋃M

i=1 Γi and there exists M points ai ∈ Γi and M Lipschitz con-
tinuous function ϕi such that Γi = Γ∩V (ai). The induced parametrization
(ϕi,Γi) of Γ is defined for i = 1, . . . ,M by

y′ = (y1, ..., yN−1) 7−→
(
y′, ϕi

(
y′
))
.

This parametrization induces N − 1 linearly independent tangent vectors
defined a.e. on Γi:

tk =
(
eN−1

k , ∂ϕi/∂yk

)
, k = 1, . . . , N − 1

where eN−1
k = (δh,k)h=1,...,N−1. A corresponding set of orthonormalized

vectors Tk =
(
T k

h

)
h=1,...,N

∈ (L∞ (Γ))N can defined as follows for k = 1:

T1 =
−1√

1 + (∂ϕi/∂y1)
2
t1 (2.1)

and for k = 2, . . . , N − 1,

T k
h =

−∂ϕi/∂yh√
1 +

∑k−1
l=1 (∂ϕi/∂yl)

2

∂ϕi/∂yk√
1 +

∑k
l=1 (∂ϕi/∂yl)

2
, h = 1, . . . , k − 1,

(2.2)

T k
k =

√
1 +

∑k−1
l=1 (∂ϕi/∂yl)

2√
1 +

∑k
l=1 (∂ϕi/∂yl)

2
(2.3)
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T k
h = 0 , h = k, . . . , N − 1 (2.4)

T k
N =

1√
1 +

∑k−1
l=1 (∂ϕi/∂yl)

2

∂ϕi/∂yk√
1 +

∑k
l=1 (∂ϕi/∂yl)

2
. (2.5)

At a.e. point x = (y′, ϕi (y′)) ∈ Γi the vectors (T1, . . . ,TN−1) span the
tangent space TxΓ who is an hyperplane of RN . Any other orthonormal
basis of TxΓ is obtained applying a rotation to the previous one. The unit
outward normal vector n = (n1, n2, . . . , nN ) ∈ (L∞ (Γ))N is defined a.e.
on Γi by

y′ 7−→ (∂ϕi/∂y1, . . . , ∂ϕi/∂yN−1, −1)√
1 +

∑N−1
k=1 (∂ϕi/∂yk)

2
.

For a.e. x ∈ Γ the vectors (T1, . . . ,TN−1,n) are a positively oriented basis
of TxΩ ≈ RN . As in the case of regular domains the definitions are intrinsic
since not depending from the choice of the parametrization (ϕi,Γi).

Since Γ is a Lipschitz-continuous manifold without boundary the Sobolev
spaces W s, p (Γ) are well defined (independently from the parametrization
(ϕi,Γi)) for −1 ≤ s ≤ 1 and 1 < p <∞. More precisely, ψ ∈ Lp (Γ) means
that for i = 1, . . . ,M one has ψ (y′, ϕi (y′)) ∈ Lp (V ′(xi)) and ψ ∈W 1, p (Γ)
when ψ (y′, ϕi (y′)) ∈W 1, p (V ′(xi)). This means that for k = 1, . . . , N − 1
one has ∂ (ψ (y′, ϕi (y′))) /∂yk ∈ Lp (V ′(xi)) where

∂ψ (y′, ϕi (y′))
∂yk

=
(
∂ψ

∂yk

) (
y′, ϕi

(
y′
))

+
(
∂ψ

∂yN

) (
y′, ϕi

(
y′
)) ∂ϕi (y′)

∂yk
. (2.6)

Using the tangent fields Tk we define the tangential derivatives

∂Tkψ =
N∑

h=1

(
∂ψ

∂yh

) (
y′, ϕi

(
y′
))
T k

h (2.7)

and for ψ ∈ W 1, p (Γ) the tangential vector field ∇Γψ =
∑N−1

k=1 (∂Tk
ψ)Tk.

It follows that∇Γψ belongs to (Lp (Γ))N and its definition does not depend
on the parametrization (ϕi,Γi).

For u ∈ Wm, p (Ω), m ≥ 1, the restriction to Γ is defined on every Γi

by u|Γi
= u (y′, ϕi (y′)). This restriction, denoted γ0(u) = u|Γ , belongs to

Lp (Γ).
When m = 2 then Du =

(
∂u
∂x1

, . . . , ∂u
∂xN

)
∈
(
W 1, p (Ω)

)N . Hence it
follows from (2.6) that γ0(u) ∈ W 1, p (Γ) since for i = 1, . . . ,M on Γi one
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has for k = 1, . . . , N − 1:

∂γ0(u) (y′, ϕi (y′))
∂yk

= γ0

(
∂u

∂yk

)
+ γ0

(
∂u

∂yN

)
∂ϕi

∂yk
∈ Lp (Γi) . (2.8)

The exterior normal derivative of u on Γ, denoted γ1(u), is defined a.e. on
Γi by: (

∂u

∂n

) (
y′, ϕi

(
y′
))

=
N∑

j=1

(
∂u

∂yj

)(
y′, ϕi

(
y′
))
nj
(
y′
)
. (2.9)

The normal derivative γ1(u) so defined belongs to Lp (Γ) since the unit
normal vector n = (n1, . . . , nN ) belongs to (L∞ (Γ))N .

In a similar way, when m = 3, Du ∈
(
W 2, p (Ω)

)N and the hessian
Hu = (Dαu)|α|=2 belongs to W 1, p

(
Ω;MN

sym

)
where MN

sym denotes the
vector space of symmetric N × N matrices. The second order exterior
normal derivative, denoted γ2(u), is defined on Γi by:(

∂2u

∂n2

)(
y′, ϕi

(
y′
))

=
N∑

l,j=1

(
∂2u

∂yl∂yj

)(
y′, ϕi

(
y′
))
nl

(
y′
)
nj
(
y′
)
. (2.10)

Hence γ2(u) ∈ Lp (Γ).
More generally, when u ∈ Wm, p (Ω), m ≥ 4, all γ0 (Dαu) ∈ Lp (Γ) for

|α| ≤ m−1 and then the exterior normal derivatives γk(u) up to the order
k = m− 1, are defined on Γi by:(

∂ku

∂nk

)(
y′, ϕi

(
y′
))

=
∑
|α|=k

k!
α!

(Dαu)
(
y′, ϕi

(
y′
))
nα (y′) (2.11)

for all k ≥ 1, γk(u) ∈ Lp (Γ).

3. Necessary conditions

From the previous definitions it follows that u 7−→ (γ0(u), . . . , γm−1(u)) is
a linear and continuous map from Wm, p (Ω) into W 1, p (Γ)× (Lp (Γ))m−1.
A natural question is the characterization of the range of such map.
When the boundary Γ of Ω is more regular (for instance of class C∞),
the extension of the Gagliardo’s theorem states that, for p > 1, u 7−→
(γ0(u), . . . , γm−1(u)) is a linear and continuous map from Wm, p (Ω) onto∏m−1

k=0 W
m−k−1/p, p (Γ) and it has a continuous right inverse.
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For polygonal-type domains (when N = 2) and for polyhedral-type
domains (when N = 3) the caracterization of the range of the map
(γ0, . . . , γm−1) has been obtained in terms of compatibility conditions.

A first step toward the characterization of the range for general Lips-
chitz domains is the obtention of the necessary conditions.

Proposition 3.1. Let be (f0, f1) ∈W 1, p (Γ)×Lp (Γ). A necessary condi-
tion in order that (f0, f1) ∈ range(γ0, γ1) is:

∇Γf0 + f1n ∈ (W 1−1/p, p (Γ))N . (3.1)

Proof. When u ∈ W 2, p (Ω) then Du =
(

∂u
∂x1

, . . . , ∂u
∂xN

)
∈
(
W 1, p (Ω)

)N .
It follows from (2.8), the definition of ∇Γ and of Tk that in every point
(y′, ϕi (y′)) ∈ Γi one has for h = 1, . . . , N − 1:

(∇Γγ0(u))h =
∂u

∂yh
−
(

N−1∑
l=1

∂u

∂yl

∂ϕi

∂yl
− ∂u

∂yN

)
∂ϕi/∂yh

1 +
∑N−1

k=1 (∂ϕi/∂yk)
2

and

(∇Γγ0(u))N =
∂u

∂yN
+

(
N−1∑
l=1

∂u

∂yl

∂ϕi

∂yl
− ∂u

∂yN

)
1

1 +
∑N−1

k=1 (∂ϕi/∂yk)
2 .

Hence from (2.9) and the definition of n it follows that

∇Γγ0(u) + γ1(u)n = γ0(Du). (3.2)

One obtains (3.1) since γ0(Du) ∈ (W 1−1/p, p (Γ))N . �

Remark 3.2. For Lipschitz domains the two terms of the sum in (3.1)
belong separately only to (Lp (Γ))N .

Whenm = 3, thenDu ∈
(
W 2, p (Ω)

)N and hence γ0(Du) ∈ (W 1, p (Γ))N .
From the previous proposition it then follows the following result.

Lemma 3.3. Let be (f0, f1, f2) ∈W 1, p (Γ)×Lp (Γ)×Lp (Γ). A necessary
condition in order that (f0, f1, f2) ∈ range(γ0, γ1, γ2) is:

∇Γf0 + f1n ∈ (W 1, p (Γ))N . (3.3)

In order to state the second necessary condition, let be

g0 = ∇Γf0 + f1n =
(
g0
h

)
h=1,...,N

∈ (W 1, p (Γ))N
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and let define for k = 1, . . . , N − 1 the vector ∂Tkg0 ∈ (Lp (Γ))N whose
components are (

∂T kg0
)

h
= ∂T kg0

h, h = 1, . . . , N (3.4)

where the tangential derivatives are defined in (2.7).

Theorem 3.4. Let be (f0, f1, f2) ∈ W 1, p (Γ)× Lp (Γ)× Lp (Γ). The nec-
essary conditions in order that (f0, f1, f2) ∈ range(γ0, γ1, γ2) are (3.3)
and:

N−1∑
k=1

(
∂T kg0 ·T k

) (
T k ⊗T k

)
+

+
∑

1≤k<p≤N−1

(
∂T kg0 ·T p

) (
T k ⊗T p + T p ⊗T k

)
+

+
N−1∑
k=1

(
∂T kg0 · n

) (
T k ⊗ n + n⊗T k

)
+

+f2n⊗ n ∈W 1−1/p, p
(
Γ;MN

sym

)
. (3.5)

Proof. Since g0 = γ0(Du) ∈ (W 1, p (Γ))N it follows from (3.4) and the
definition of Tk that on V ′(xi) one has for h = 1, . . . , N :

∂T kg0
h = ∂T k

∂u

∂yh
=

N∑
s=1

(
∂2u

∂yh∂ys

)(
y′, ϕi

(
y′
))
T k

s

A simple computation then gives:

∂T kg0 ·T p =
1
2
γ0(Hu) :

(
T k ⊗T p + T p ⊗T k

)
(3.6)

and

∂T kg0 · n =
1
2
γ0(Hu) :

(
T k ⊗ n + n⊗T k

)
(3.7)

where A : B =
∑N

i,j=1 aijbij denotes the scalar product of the symmetric
matrices A = (aij) and B = (bij). Since the vectors (T1, . . . ,TN−1,n) are
an orthonormal basis of TxΩ, an orthonormal basis of the symmetrized
tensor product TxΩ⊗S TxΩ is given by:{

T k ⊗T k
}

k=1,...,N−1
, n⊗ n
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{
1√
2

(
T k ⊗T p + T p ⊗T k

)
, 1√

2

(
T k ⊗ n + n⊗T k

)}
1≤k<p≤N−1

A development of γ0(Hu) with respect to this basis and the use of (3.6)
and (3.7) gives immediately (3.5). �

Remark 3.5. Let us once more remark that each term of the sum in (3.5)
only belongs to L p

(
Γ;MN

sym

)
.

Remark 3.6. With the same procedure one can write the necessary com-
patibility conditions for the traces of u ∈Wm, p (Ω), m ≥ 4.

4. Examples

In order to avoid inessential technicalities, we consider for N = 2 the case
where Ω = {(x, y) ;x > 0, y > 0} is the first quadrant and hence the cor-
ner has opening π/2. On the vertical (resp. horizontal) side of the corner
Γ1 = {(0, y) ; y ≥ 0}, resp. Γ2 = {(x, 0) ;x ≥ 0}, one has T 1 = (0,−1) and
n = (−1, 0), resp.T 1 = (−1, 0) and n = (0,−1).

Example 4.1. We prove that the usual compatibility conditions in a corner
( see e.g. [8]) for u ∈ W 2, p (Ω) follow from (3.1). Indeed this condition
becomes:

g 0 = (∂T1f0) T 1 + f1n ∈ (W 1−1/p, p (Γ))2 .
Since the definition of W 1−1/p, p (Γ) is invariant under the Lipschitz trans-
form Γ −→ R, the previous condition means that:

W 1−1/p, p (R) 3 g0
1 =

{
−f1 for x < 0

−df0/dx for x > 0

and

W 1−1/p, p (R) 3 g0
2 =

{
−df0/dx for x < 0
−f1 for x > 0 .

Since obviously, df0/dx, f1 ∈ W 1−1/p, p (R±), one can verify these condi-
tions with the help of the following proposition, whose proof can be found
e.g. in [8].

Proposition 4.2. Let be H± ∈W 1−1/p, p (R±); and let define:

H (x) =
{
H− (x) for x < 0
H+ (x) for x > 0 . (4.1)
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Then H ∈W 1−1/p, p (R)

(i) for 1 < p < 2 without any other condition;

(ii) for p = 2 if and only if∫ +∞

0

∣∣H+ (t)−H− (−t)
∣∣2 dt/t < +∞;

(ii) for p > 2 if and only if

H+ (0) = H− (0) .

Example 4.3. In order to prove that the usual compatibility conditions in
a corner for u ∈ W 3, p (Ω) , follow from (3.3)and (3.5) one has at first to
express the conditions g0

h ∈ W 1, p (R) for h = 1, 2 with an analogous of
proposition 4.2. Since the orthonormal basis of TxΩ⊗S TxΩ is now given
by:

T 1 ⊗T 1, n⊗ n,
1√
2

(
T 1 ⊗ n + n⊗T 1

)
,

it is a simple exercice to express the different terms of these symmetric
matrices on Γ1,Γ2 and so find the compatibility conditions, always thank
to the proposition 4.2.

When N = 3 with an analogous method one can express the compati-
bility conditions for a vertex or an edge of a polyhedral-type domain. Once
more since the definition of W 1−1/p, p (Γ) and W 1, p (Γ) are invariant under
a Lipschitz transform one can reduce the study of the vertex behaviour to
the following problems. Let be R2 divided in Λ non overlapping sectors Sλ,
λ = 1, . . . ,Λ, with vertex at the origin. Let be given Hλ ∈ W 1−1/p, p (Sλ)
(resp.Hλ ∈W 1, p (Sλ)) for λ = 1, . . . ,Λ; find the conditions such that:

H(x, y) =


H1(x, y) for (x, y) ∈ S1

· · ·
HΛ(x, y) for (x, y) ∈ SΛ

belongs to W 1−1/p, p
(
R2
)
, resp.to W 1, p

(
R2
)
. Some partial answers can be

found in [3] and in [5].
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5. Concluding remarks

The examples suggest that the necessary conditions (3.3) and (3.5) are
also necessary. Indeed in the case N = 2 and p = 2 it is possible to adapt
the reasoning used in [7] to prove the sufficiency of these conditions and
the arguments used in [5] will also give the proof of the sufficiency for all
p > 1.

The proof of the sufficiency in the general case N ≥ 3 seems more
delicate. The extension of the previous results to fractional Sobolev Spaces
W s, p (Ω) seems open (for the case p = 2 and 1

2 < s < 3
2 see however [4]).

References

[1] R. A. Adams & J. J. F. Fournier – Sobolev spaces. Second edition,
Academic Press, New York, 2003.

[2] A. Buffa & G. Geymonat – On the traces of functions in W 1, p(Ω)
for Lipschitz domains in R3, C. R. Acad. Sci. Paris, Série I 332 (2001),
p. 699–704.

[3] A. Buffa & J. P. Ciarlet – On traces for functional spaces related
to Maxwell’s equations. Part I: an integration by parts formula in
Lipschitz polyedra, Math. Meth. Appl. Sci. 24 (2001), p. 9–30.

[4] Z. Ding – A proof of the trace theorem of Sobolev spaces on Lipschitz
domains, Proc. A. M. S. 124 (1996), p. 591–600.

[5] R. G. Durán & M. A. Muschietti – On the traces of W 2, p (Ω) for
a Lipschitz domain, Rev. Mat. Complutense XIV (2001), p. 371–377.

[6] E. Gagliardo – Caratterizzazioni delle tracce sulla frontiera rela-
tive ad alcune classi di funzioni in n-variabili, Rend. Sem. Mat. Univ.
Padova 27 (1957), p. 284–305.

[7] G. Geymonat & F. Krasucki – On the existence of the airy function
in Lipschitz domains. Application to the traces of H2, C. R. Acad. Sci.
Paris, Série I 330 (2000), p. 355–360.

[8] P. Grisvard – Elliptic boundary value problems in nonsmooth do-
mains, Pitman, London, 1985.

[9] J. Nečas – Les méthodes directes en théorie des équations elliptiques,
Masson, Paris, 1967.

196



Trace Theorems. Necessary Conditions

Giuseppe Geymonat
Laboratoire de Mécanique et de Génie
Civil, UMR 5508
CNRS, Université Montpellier II
Place Eugène Bataillon
34695 Montpellier Cedex 5
France
geymonat@lmgc.univ-montp2.fr

197

mailto:geymonat@lmgc.univ-montp2.fr

	 1. Introduction
	 2. Preliminaries
	 3. Necessary conditions
	 4. Examples
	 5. Concluding remarks
	 . References

