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Left-Garside categories, self-distributivity, and
braids

PATRICK DEHORNOY

Abstract

In connection with the emerging theory of Garside categories, we develop
the notions of a left-Garside category and of a locally left-Garside monoid. In
this framework, the relationship between the self-distributivity law LD and braids
amounts to the result that a certain category associated with LD is a left-Garside
category, which projects onto the standard Garside category of braids. This ap-
proach leads to a realistic program for establishing the Embedding Conjecture of
[Dehornoy, Braids and Self-distributivity, Birkhatiser (2000), Chap. IX].

The notion of a Garside monoid emerged at the end of the 1990’s [23, 19]
as a development of Garside’s theory of braids [32], and it led to many
developments [2, 4, 5, 6, 8, 7, 14, 13, 15, 31, 33, 36, 43, 42, 45, 46, 47, ...].
More recently, Bessis [3], Digne-Michel [27], and Krammer [39] introduced
the notion of a Garside category as a further extension, and they used it to
capture new nontrivial examples and improve our understanding of their
algebraic structure. The concept of a Garside category is also used in [34],
and it is already implicit in [25] and [35], and maybe in many diagrams
of [18].

In this paper we describe and investigate a new example of (left)-
Garside category, namely a certain category LD" associated with the left
self-distributivity law

z(yz) = (zy)(z2). (LD)
The interest in this law originated in the discovery of several nontrivial
structures that obey it, in set theory [16, 41] and in low-dimensional topol-
ogy [37, 30, 44]. A rather extensive theory was developed in the decade
1985-95 [18]. Investigating self-distributivity in the light of Garside cate-
gories seems to be a good idea. It turns out that a large part of the theory
developed so far can be summarized into one single statement, namely

Keywords: Garside category, Garside monoid, self-distributivity, braid, greedy normal

form, least common multiple, LD-expansion.
Math. classification: 18B40, 20N02, 20F36.
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P. DEHORNOY

The category LD is a left-Garside category,

(this is the first part of Theorem 6.1 below).

The interest of the approach should be at least triple. First, it gives
an opportunity to restate a number of previously unrelated properties in
a new language that should make them more easily understandable. In
particular, the connection between self-distributivity and braids is now
expressed in the simple statement:

There exists a right-lecm preserving surjective functor of LD
to the Garside category of positive braids,

(second part of Theorem 6.1). This result allows one to recover most of the
usual algebraic properties of braids as a direct application of the properties
of LD": roughly speaking, Garside’s theory of braids is the emerged part
if an iceberg, namely the algebraic theory of self-distributivity.

Second, a direct outcome of the current approach is a realistic program
for establishing the Embedding Conjecture. The latter is the most puzzling
open question involving free self-distributive systems. Among others, it
says that the equivalence class of any bracketed expression under self-
distributivity is a semilattice, i.e., any two expressions admit a least upper
bound with respect to a certain partial ordering. Many equivalent forms of
the conjecture are known [18, Chapter IX]. At the moment, no complete
proof is available, but we establish the following new result

Unless the left-Garside category LD is not regular, the
Embedding Conjecture is true,

(Theorem 6.2). This result reduces a possible proof of the conjecture to a
(long) sequence of verifications.

Third, the category LD seems to be a seminal example of a left-Garside
category, quite different from all previously known examples of Garside
categories. In particular, being strongly asymmetric, LD is not a Garside
category. The interest of investigating such objects per se is not obvious,
but the existence of a nontrivial example such as £D" seems to be a
good reason, and a help for orientating further research. In particular, our
approach emphasizes the role of locally left-Garside monoids': this is a

IThis is not the notion of a locally Garside monoid in the sense of [27]; we think that
the name “preGarside” is more relevant for that notion, which involves no counterpart
of any Garside element or map, but is only the common substratum of all Garside
structures.
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LEFT-GARSIDE CATEGORIES

monoid M that fails to be Garside because no global element A exists, but
nevertheless possesses a family of elements A, that locally play the role
of the Garside element and are indexed by a set on which the monoid M
partially acts. Most of the properties of left-Garside monoids extend to
locally left-Garside monoids, in particular the existence of least common
multiples and, in good cases, of the greedy normal form.

Our definition of a left-Garside category is borrowed from [27] (up to
a slight change in the formal setting, see Remark 2.6). Several proofs in
Sections 2 and 3 use arguments that are already present, in one form
or another, in [1, 48, 28, 29, 12, 19, 35] and now belong to folklore. Most
appear in the unpublished paper [27] by Digne and Michel, and are implicit
in Krammer’s paper [39]. Our reasons for including such arguments here
is that adapting them to the current weak context requires some useful
polishing, and is necessary to explain our two main new notions, namely
locally Garside monoids and regular left-Garside categories.

The paper is organized in two parts. The first one (Sections 1 to 3)
contains those general results about left-Garside categories and locally
left-Garside monoids that will be needed in the sequel, in particular the
construction and properties of the greedy normal form. The second part
(Sections 4 to 8) deals with the specific case of the category £D' and
its connection with braids. Sections 4 and 5 review basic facts about the
self-distributivity law and explain the construction of the category £LD™.
Section 6 is devoted to proving that LD is a left-Garside category and
to showing how the results of Section 3 might lead to a proof of the Em-
bedding Conjecture. In Section 7, we show how to recover the classical
algebraic properties of braids from those of LD*. Finally, we explain in
Section 8 some alternative solutions for projecting £LD™ to braids. In an
appendix, we briefly describe what happens when the associativity law re-
places the self-distributivity law: here also a left-Garside category appears,
but a trivial one.

We use N for the set of all positive integers.

1. Left-Garside categories
We define left-Garside categories and describe a uniform way of construct-
ing such categories from so-called locally left-Garside monoids, which are

monoids with a convenient partial action.
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P. DEHORNOY

1.1. Left-Garside monoids

Let us start from the now classical notion of a Garside monoid. Essentially,
a Garside monoid is a monoid in which divisibility has good properties,
and, in addition, there exists a distinguished element A whose divisors
encode the whole structure. Slightly different versions have been consid-
ered [23, 19, 26], the one stated below now being the most frequently
used. In this paper, we are interested in one-sided versions involving left-
divisibility only, hence we shall first introduce the notion of a left-Garside
monoid.

Throughout the paper, if a,b are elements of a monoid—or, from Sec-
tion 1.2, morphisms of a category—we say that a left-divides b, or that a
is a left-divisor of b, denoted a < b, if there exists ¢ satisfying ac = b. The
set of all left-divisors of a is denoted by Div(a). If ac = b holds with ¢ # 1,
we say that a is a proper left-divisor of b, denoted a < b.

We shall always consider monoids M where < is a partial ordering. If
two elements a, b of M admit a greatest lower bound ¢ with respect to <,
the latter is called a greatest common left-divisor, or left-ged, of a and b,
denoted ¢ = ged(a, b). Similarly, a <-least upper bound d is called a least
common right-multiple, or right-lem, of a and b, denoted d = lem(a,b). We
say that M admits local right-lcm’s if any two elements of M that admit
a common right-multiple admit a right-lcm.

Finally, if M is a monoid and S, .S’ are subsets of M, we say that S left-
generates S if every nontrivial element of S’ admits at least one proper
left-divisor belonging to S.

Definition 1.1. A monoid M is called left-preGarside if

(LGg) for each a in M, every <-increasing sequence in Div(a) is finite,
(LG1) M is left-cancellative,
(LG2) M admits local right-lem’s.

An element A of M is called a left-Garside element if
(LG3) Div(A) left-generates M, and a < A implies A < aA.
A monoid M is called left-Garside if it is left-preGarside and possesses at

least one left-Garside element.

Using “generates” instead of “left-generates” in (LG3) would make no
difference, by the following trivial remark—but the assumption (LGp) is
crucial, of course.
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LEFT-GARSIDE CATEGORIES

Lemma 1.2. Assume that M is a monoid satisfying (LGo). Then every
subset S left-generating M generates M.

Proof. Let a be a nontrivial element of M. By definition there exist a3 # 1
in S and o’ satisfying a = a1d’. If @’ is trivial, we are done. Otherwise, there
exist as # 1 in S and a” satisfying a’ = asa”, and so on. The sequence 1,
ai, ajaz, ... is <-increasing and it lies in Div(a), hence it must be finite,
yielding a = ai...aq with ay,...,aq in S. [l

Right-divisibility is defined symmetrically: a right-divides b if b = ca
holds for some c. Then the notion of a right-(pre)Garside monoid is defined
by replacing left-divisibility by right-divisibility and left-product by right-
product in Definition 1.1.

Definition 1.3. A monoid M is called Garside with Garside element A
if M is both left-Garside with left-Garside element A and right-Garside
with right-Garside element A.

The equivalence of the above definition with that of [26] is easily checked.
The seminal example of a Garside monoid is the braid monoid B, equipped
with Garside’s fundamental braid A,,, see for instance [32, 29]. Other clas-
sical examples are free abelian monoids and, more generally, all spher-
ical Artin-Tits monoids [10], as well as the so-called dual Artin-Tits
monoids [9, 3]. Every Garside monoid embeds in a group of fractions,
which is then called a Garside group.

Let us mention that, if a monoid M is left-Garside, then mild condi-
tions imply that it is Garside: essentially, it is sufficient that M is right-
cancellative and that the left- and right-divisors of the left-Garside ele-
ment A coincide [19].

1.2. Left-Garside categories

Recently, it appeared that a number of results involving Garside monoids
still make sense in a wider context where categories replace monoids [3, 27,
39]. A category is similar to a monoid, but the product of two elements is
defined only when the target of the former is the source of the latter. In the
case of Garside monoids, the main benefit of considering categories is that
it allows for relaxing the existence of the global Garside element A into a
weaker, local version depending on the objects of the category, namely a
map from the objects to the morphisms.
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P. DEHORNOY

We refer to [40] for some basic vocabulary about categories—we use
very little of it here.

Notation 1.4. Throughout the paper, composition of morphisms is de-
noted by a multiplication on the right: fg means “f then ¢”. If f is a
morphism, the source of f is denoted 0y f, and its target is denoted 0 f.
In all examples, we shall make the source and target explicit: morphisms
are triples (z, f,y) satisfying

80($,f,y)::r, 81(:c,f,y):y.
A morphism f is said to be nontrivial if f # 15, holds.

We extend to categories the terminology of divisibility. So, we say that
a morphism f is a left-divisor of a morphism g, denoted f < g, if there
exists h satisfying fh = g¢. If, in addition, A can be assumed to be non-
trivial, we say that f < g holds. Note that f < g implies 0o f = dpg. We
denote by Div(f) the collection of all left-divisors of f.

The following definition is equivalent to Definition 2.10 given by F. Digne
and J. Michel in [27] (see Remark 2.6 below).

Definition 1.5. A category C is called left-preGarside if

(LGp) for each f in Hom(C), every <-ascending sequence in Div(f) is
finite,

(LG1) Hom(C) admits left-cancellation,

(LG2) Hom(C) admits local right-lem’s.
A map A : Obj(C) — Hom(C) is called a left-Garside map if, for each
object x, we have JpA(x) = x and

(LG3) Div(A(z)) left-generates Hom(x,—), and f < A(z) implies
Az) < fAOL).
A category C is called left-Garside if it is left-preGarside and possesses at
least one left-Garside map.

Ezxample 1.6. Assume that M is a left-Garside monoid with left-Garside
element A. One trivially obtains a left-Garside category C(M) by putting

Obj(C(M)) = {1}, Hom(C(M)) = {1} x M x {1}, A1) = A.
Another left-Garside category Cy can be attached with M , namely taking

~ -~

Obj(C(M)) =M, Hom(C(M))={(a,b,c)|ab=c}, A(a)=A.
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~

It is natural to call C(M) the Cayley category of M since its graph is the
Cayley graph of M (defined provided M is also right-cancellative).

The notion of a right-Garside category is defined symmetrically, ex-
changing left and right everywhere and exchanging the roles of source and
target. In particular, the map A and Axiom (LG3) are to be replaced by a
map V satisfying 9,V (z) = x and, using b = a for “a right-divides b”,

(LGs) V(y) right-generates Hom(—,y), and V(y) 3= f implies
V(0oy)f = V(y).

Then comes the natural two-sided version of a Garside category [3, 27].

Definition 1.7. A category C is called Garside with Garside map A if
C is left-Garside with left-Garside map A and right-Garside with right-
Garside map V satisfying A(z) = V(01(A(z)) and V(y) = A(G(V(y))
for all objects x, y.

It is easily seen that, if M is a Garside monoid, then the categories C(M)
and C(M) of Example (1.6) are Garside categories. Insisting that the
maps A and V involved in the left- and right-Garside structures are con-
nected as in Definition 1.7 is crucial: see Appendix for a trivial example

where the connection fails.

1.3. Locally left-Garside monoids

We now describe a general method for constructing a left-Garside cat-
egory starting from a monoid equipped with a partial action on a set.
The trivial examples of Example 1.6 enter this family, and so do the two
categories LD' and B* investigated in the second part of this paper.

We start with a convenient notion of partial action of a monoid on a
set. Several definitions could be thought of; here we choose the one that
is directly adapted to the subsequent developments.

Definition 1.8. Assume that M is a monoid. A not necessarily every-
where defined function a@ : M — (X — X) is called a partial (right)
action of M on X if, writing x « a for a(a)(z),

(1) x « 1 = x holds for each z in X,

(77) (zea) «b = x « ab holds for all x, a, b, this meaning that either both
terms are defined and they are equal, or neither is defined,

(t31) for each finite subset S in M, there exists x in X such that xea is
defined for each a in S.
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P. DEHORNOY

In the above context, for each z in X, we put
M,={a€ M| z.+ais defined }. (1.1)
Then Conditions (7), (i7), (i73) of Definition 1.8 imply
leM,, abe M, < (a€ M, &be M,,,), VfiniteS Jz(S C M,).

A monoid action in the standard sense, i.e., an everywhere defined
action, is a partial action. For a more typical case, consider the n-strand
Artin braid monoid B;}. We recall that B, is defined for n < oo by the
monoid presentation

B . +
B ={oy,...0 oi0p =050 for =gl =2 2N g
n 1> » Yn—1 0-10-]0-1 = O-]o-lo-] for ‘7/ *j’ =1

Then we obtain a partial action of BY on N by putting

{ n if a belongs to B!,
Nnead =

) (1.3)
undefined otherwise.

A natural category can then be associated with every partial action of
a monoid.

Definition 1.9. For a a partial action of a monoid M on a set X, the
category associated with o, denoted C(«), or C(M, X) if the action is clear,
is defined by

Obj(C(M, X)) =X, Hom(C(M,X))={(z,a,xea)|ze X, ac M}

Ezxample 1.10. We shall denote by B*t the category associated with the
action (1.3) of Bf on N, i.e., we put

Obj(B*) =N, Hom(B")={(n,a,n)|n e B/}

Define A : Obj(B*) — Hom(B") by A(n) = (n,Ay,,n). Then the well
known fact that B} is a Garside monoid for each n [32, 38] easily implies
that BT is a Garside category, as will be formally proved in Proposi-
tion 1.12 below.

The example of B shows the benefit of going from a monoid to a
category. The monoid BZ, is not a (left)-Garside monoid, because it is of
infinite type and there cannot exist a global Garside element A. However,
the partial action of (1.3) enables us to restrict to subsets B,/ (submonoids
in the current case) for which Garside elements exist: with the notation
of (1.1), B} is (BL)n. Thus the categorical context enables us to capture
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LEFT-GARSIDE CATEGORIES

the fact that Bl is, in some sense, locally Garside. It is easy to formalize
these ideas in a general setting.

Definition 1.11. Let M be a monoid with a partial action « on a set X.
A sequence (A;).cx of elements of M is called a left-Garside sequence
for « if, for each x in X, the element x « A, is defined and

(LGgOC) Div(A,) left-generates M, and a < A, implies A, < aAgeq.

The monoid M is said to be locally left-Garside with respect to v if it is
left-preGarside and there is at least one left-Garside sequence for a.

A typical example of a locally left-Garside monoid is B, with its ac-
tion (1.3) on N. Indeed, the sequence (A, )nen is clearly a left-Garside
sequence for (1.3).

The next result should appear quite natural.

Proposition 1.12. Assume that M is a locally left-Garside monoid with
left-Garside sequence (Ag)zex. Then C(M,X) is a left-Garside category
with left-Garside map A defined by A(x) = (z, Mg, ¢« Ay).

Proof. By definition, (z,a,y) < (2/,d’,y’) in C(M, X) implies 2/ = x and
a < ' in M. So the hypothesis that M satisfies (LGo) implies that C(M, X)
does.

Next, (z,a,vy)(y,b,2) = (z,a,y)(y,b,z") implies ab = ab’ in M, hence
b =1 by (LG1), and, therefore, C(M, X) satisfies (LGy).

Assume (z,a,y)(y,V,2") = (x,b,2)(z,d',2") in Hom(C(M, X)). Then
ab = ba’ holds in M. By (LGz), a and b admit a right-lem ¢, and we have
a<c b<c and ¢ < ab. By hypothesis, z « ab’ is defined, hence so is
x « ¢, and it is obvious to check that (z,c,z « ¢) is a right-lem of (z,a,y)
and (z,b, z) in Hom(C(M, X)). Hence C(M, X)) satisfies (LG2).

Assume that (x,a,y) is a nontrivial morphism of Hom/(C(M, X)). This
means that a is nontrivial, so, by (LGgOC), some left-divisor a’ of A, is a
left-divisor of a. Then (z,d’,x «a’) < A(x) holds, and A(x) left-generates
Hom(z, —).

Finally, assume (z, a,y) < A(x) in Hom(C(M, X)). This implies a < A,
in M. Then (LGgOC) in M implies A, < aA,. By hypothesis, y « A, is
defined, and we have (z,a,y)A(y) = (z,al,, z«al,), of which (z, A,z
Ay) is aleft-divisor in Hom(C(M, X)). So (LG3) is satisfied in C(M, X). O
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P. DEHORNOY

It is not hard to see that, conversely, if M is a left-preGarside monoid,
then C(M, X)) being a left-Garside category implies that M is a locally
left-Garside monoid. We shall not use the result here.

If M has a total action on X, i.e., if x « a is defined for all x and a,
the sets M, coincide with M, and Condition (LGY¢) reduces to (LG3). In
this case, each element A, is a left-Garside element in M, and M is a
left-Garside monoid. A similar result holds for each set M, that turns out
to be a submonoid (if any).

Proposition 1.13. Assume that M is a locally left-Garside monoid with
left-Garside sequence (Ayz)zex, and x is such that M, is closed under
product and Ay = A, holds for each y in M. Then M, is a left-Garside
submonoid of M.

Proof. By definition of a partial action, x « 1 is defined, so M, contains 1,
and it is a submonoid of M. We show that M, satisfies (LGp), (LG1), (LG2),
and (LGs). First, a counter-example to (LGg) in M, would be a counter-
example to (LGg) in M, hence M, satisfies (LGg). Similarly, an equality
ab = abl with b # b in M, would also contradict (LGy) in M, so M,
satisfies (LG1). Now, assume that a and b admit in M,, hence in M, a
common right-multiple ¢. Then a and b admit a right-lem ¢ in M. By
hypothesis, = « ¢ is defined, and ¢’ < ¢ holds. By definition of a partial
action, z « ¢ is defined as well, i.e., ¢ lies in M,, and it is a right-lcm of a
and b in M,. So M, satisfies (LG2), and it is left-preGarside.

Next, A, is a left-Garside element in M. Indeed, let a be any nontrivial
element of M,. By (LGgOC), there exists a nontrivial divisor a’ of a satisfying
a’ < A,. By definition of a partial action, x « a’ is defined, so it belongs
to M., and A, left-generates M,. Finally, assume a < A;. As A, belongs
to M, this implies a € M, hence A, < alA.q by (LGgOC), e, Ay < al\,
since we assumed that the sequence A is constant on M,. So A, is a
left-Garside element in M,,. O

2. Simple morphisms
We return to general left-Garside categories and establish a few basic

results. As in the case of Garside monoids, an important role is played by
the divisors of A, a local notion here.
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LEFT-GARSIDE CATEGORIES

2.1. Simple morphisms and the functor ¢

Hereafter, we always use A as the default notation for the (left)-Garside
map with left-Garside map A involved in the considered structure.

Definition 2.1. Assume that C is a left-Garside category. A morphism f
of C is called simple if it is a left-divisor of A(dyf). In this case, we denote
by f* the unique simple morphism satisfying f f* = A(dpf). The family
of all simple morphisms in C is denoted by Hom*(C).

By definition, every identity morphism 1, is a left-divisor of every mor-
phism with source x, hence in particular of A(zx). Therefore 1, is simple.

Definition 2.2. Assume that C is a left-Garside category. We put
¢(z) = 01(A(z)) for x in Obj(C), and ¢(f) = f** for f in Hom*P(C).

Although straightforward, the following result is fundamental—and it
is the main argument for stating (LG3) in the way we did.

Lemma 2.3. Assume that C is a left-Garside category.
(1) If f is a simple morphism, so are f* and ¢(f).
(1i) Ewvery right-divisor of a morphism A(z) is simple.

Proof. (i) By (LG3), we have ff* = A(9of) < fA(OLf), hence f* < A(d1f)
by left-cancelling f. Therefore, f* is simple. Applying the result to f*, one
shows that ¢(f)—as well as ¢*(f) for each positive k—are simple.

(77) Assume that g is a right-divisor of A(x). This means that there
exists f satisfying fg = A(z), hence g = f* by (LG1). Then g is simple
by (7). O

Lemma 2.4. Assume that C is a left-Garside category.

(1) The morphisms 1, are the only left- or right-invertible morphisms
in C.

(1) Every morphism of C is a product of simple morphisms.

(131) There is a unique way to extend ¢ into a functor of C into itself.

(tv) The map A is a natural transformation of the identity functor
into ¢, i.e., for each morphism f, we have

FAOLf) = A(of) ¢(f)- (2.1)
Proof. (i) Assume fg =1, with f # 1, and g # 1p, r. Then we have

L <f=<fg=<f=<fg=<..,
an infinite <-increasing sequence in Div(1,) that contradicts (LGo).
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(1) Let f be a morphism of C, and let x = 0y f. If f is trivial, then
it is simple, as observed above. We wish to prove that simple morphisms
generate Hom(C). Owing to Lemma 1.2, it is enough to prove that sim-
ple morphisms left-generate Hom(C), i.e., that every nontrivial morphism
with source x is left-divisible by a simple morphism with source z, in
other words by a left-divisor of A(z). This is exactly what the first part
of Condition (LG3) claims.

(7i7) Up to now, ¢ has been defined on objects, and on simple mor-
phisms. Note that, by construction, (2.1) is satisfied for each simple mor-
phism f. Indeed, applying Definition 2.1 for f and f* gives the relations

fIP=A00f) and [f*f" =A(00f") = AOf),
whence
FAQ) =177 =A0f) ™ = A0 f)o(f)-
Applying this to f = 1, gives A(z) = A(z)¢p(1s), hence ¢(1,) = Ly
by (LG1).
Let f be an arbitrary morphism of C, and let fi...f, and gi1...g4 be two

decompositions of f as a product of simple morphisms, which exist by (i7).
Repeatedly applying (2.1) to fp, ..., fi and gq, ..., g1 gives

fAOSf) = fi- fp (01f) = A(Go f)P(f1)---0(fp)
= g1---9¢AO1f) = A(Oo f)p(g1)---(9q)-

By (LG;), we deduce qb(fl)QS(fp) = ¢(g1)..-¢(gq), and therefore there is
no ambiguity in defining ¢(f) to be the common value. In this way, ¢ is
extended to all morphisms in such a way that ¢ is a functor and (2.1)
always holds. Conversely, the above definition is clearly the only one that
extends ¢ into a functor.

(tv) We have seen above that (2.1) holds for every morphism f, so
nothing new is needed here. See Figure 1 for an illustration. O

Lemma 2.5. Assume that C is a left-Garside category. Then, for each
object x and each simple morphism f, we have

P(A(z)) = A(p(x)) and  ¢(f7) = ¢(f)". (2.2)

Proof. By definition, the source of A(z) is x and its target is ¢(z), hence
applying (2.1) with f = A(x) yields A(z)A(p(z)) = A(z)d(A(x)), hence
A(p(z)) = ¢(A(x)) after left-cancelling A(x).
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T L» Y
A)| ‘f A(y)
@)y o)

FIGURE 1. Relation (2.1): the Garside map A viewed as a natural
transformation from the identity functor to the functor ¢.

On the other hand, let z = Jpf. Then we have ff* = A(x), and
do(o(f)) = ¢(x). Applying ¢ and the above relation, we find

P()o(f) = o(A(x)) = A(d(x)) = A(do(¢(f))) = o(f)o(f)"
Left-cancelling ¢(f) yields ¢(f*) = o(f)*. O

Remark 2.6. We can now see that Definition 1.5 is equivalent to Defini-
tion 2.10 of [27]: the only difference is that, in the latter, the functor ¢ is
part of the definition. Lemma 2.4(iv) shows that a left-Garside category
in our sense is a left-Garside category in the sense of [27]. Conversely, the
hypothesis that ¢ and A satisfy (2.1) implies that, for f : © — y, we have
A(z)o(y) = fA(y), whence A(z) < fA(y) and f*¢(y) = A(y), which,
by (LG1), implies ¢(f) = f**. So every left-Garside category in the sense
of [27] is a left-Garside category in the sense of Definition 1.5.

2.2. The case of a locally left-Garside monoid

We now consider the particular case of a category C(M, X) associated
with a partial action of a monoid M.

Lemma 2.7. Assume that M is a locally left-Garside monoid with left-
Garside sequence (Ag)zex. Then Ay < alyg. holds whenever x o a is
defined, and, defining ¢,(a) by Ardz(a) = alyzeq, we have

P(x) =z Ay, d((z,0,9)) = (6(2), Pz(a), d(y)). (2.3)

Proof. Assume that z «a is defined. Lemma 2.4 (77) implies that the mor-
phism (z,a,z «a) of C(M, X) can be decomposed into a finite product of
simple morphisms (zg, a1, 1), ... , (T4—1, aqg, xq). This implies a = a;...aq
in M. The hypothesis that each morphism (z;_1,a;, z;) is simple implies
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Ay, | < a;A,, for each i, whence
Ar S a1y S 010205, < .o 01090z, = D geq.

Hence, for each element a in M, there exists a unique element o’ satisfying
Ayad' = al ., and this is the element we define to be ¢,.(a). Then, zea =y
implies

(2,0,9) (Y, Ay, 9(y)) = (2, Ay, ¢(2)) (B(2), Pz (a), d(y))-
By uniqueness, we deduce ¢((z,a,y)) = (¢(z), d=(a), ¢(y)). O

2.3. Greatest common divisors

We observe, or rather recall, that left-ged’s always exist in a left-preGarside
category. We begin with a standard consequence of the noetherianity as-
sumption (LGo).

Lemma 2.8. Assume that C is a left-preGarside category and S is a subset
of Hom(C) that contains the identity-morphisms and is closed under right-
lem. Then every morphism has a unique maximal left-divisor that lies in S.

Proof. Let f be an arbitrary morphism. Starting from fo = 1,7, which
belongs to S by hypothesis, we construct a <-increasing sequence fo, fi, ...
in S N Div(f). As long as f; is not <-maximal in S N Div(f), we can
find f;1 in S satisfying f; < fi+1 < f. Condition (LGp) implies that the
construction stops after a finite number d of steps. Then f; is a maximal
left-divisor of f lying in S.

As for uniqueness, assume that ¢’ and ¢’ are maximal left-divisors of f
that lie in S. By construction, ¢’ and ¢’ admit a common right-multiple,
namely f, hence, by (LGz2), they admit a right-lem g. By construction, g is
a left-divisor of f, and it belongs to S since ¢’ and ¢’ do. The maximality
of g and ¢’ implies ¢’ = g = ¢". O

Proposition 2.9. Assume that C is a left-preGarside category. Then any
two morphisms of C sharing a common source admit a unique left-gcd.

Proof. Let § be the family of all common left-divisors of f and ¢. It
contains 15, s, and it is closed under lem. A left-ged of f and g is a maximal
left-divisor of f lying in §. Lemma 2.8 gives the result. O
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2.4. Least common multiples

As for right-lem, the axioms of left-Garside categories only demand that a
right-lem exists when a common right-multiple does. A necessary condition
for such a common right-multiple to exist is to share a common source.
This condition is also sufficient. Again we begin with an auxiliary result.

Lemma 2.10. Assume that C is a left-Garside category. Then, for f =
fi---fa with f1,..., fq simple and x = Oy f, we have

f = A@) A(d(x)) .. A(e" ! (2)). (2.4)
Proof. We use induction on d. For d = 1, this is the definition of simplicity.

Assume d > 2. Put y = 01 f1. Applying the induction hypothesis to f...f4,
we find

f=hferfa) < F1 AW) A(G(Y)) .. A" (y))
ZA( ) A(p(@)) ... A(¢7 2 () ¢ (1)
A(z) A(()) ... A" (2)) A(¢™ ().

The second equality comes from applying (2.1) d — 1 times, and the last
relation comes from the fact that ¢?~1(f;) is simple with source ¢?~1(z).
O

Proposition 2.11. Assume that C is a left-Garside category. Then any
two morphisms of C sharing a common source admit a unique right-lcm.

Proof. Let f, g be any two morphisms with source z. By Lemma 2.4, there
exists d such that f and g can be expressed as the product of at most d
simple morphisms. Then, by Lemma 2.10, A(z) A(¢(2)) ... A(¢?9 (2)) is
a common right-multiple of f and g. Finally, (LG2) implies that f and g
admit a right-lem. The uniqueness of the latter is guaranteed by Lem-
ma 2.4(i). O

In a general context of categories, right-lem’s are usually called push-
outs (whereas left-lem’s are called pull-backs). So Proposition 2.11 states
that every left-Garside category admits push-outs.

Applying the previous results to the special case of categories associated
with a partial action gives analogous results for all locally left-Garside
monoids.

Corollary 2.12. Assume that M is a locally left-Garside monoid with
respect to some partial action of M on X.
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(1) Any two elements of M admit a unique left-ged and a unique right-
lem.
(1) For each x in X, the subset M, of M is closed under right-lcm.

Proof. (i) As for left-ged’s, the result directly follows from Proposition 2.9
since, by definition, M is left-preGarside.

As for right-lem’s, assume that M is locally left-Garside with left-
Garside sequence (Az)zex. Let a,b be two elements of M. By definition
of a partial action, there exists  in X such that both z «a and x « b are
defined. By Proposition 2.11, (x,a,z+a) and (z,b, x «b) admit a right-lem
(x,¢, z) in the category C(M, X). By construction, ¢ is a common right-
multiple of @ and b in M. As M is assumed to satisfy (LG2), @ and b admit
a right-lem in M.

(74) Fix now z in X, and let a,b belong to M,, i.e., assume that x «a
and z « b are defined. Then (z,a,z « a) and (x,b,z « b) are morphisms
of C(M, X). As above, they admit a right-lem, which must be (z,¢,z « ¢)
where c is the right-lem of a and b. Hence ¢ belongs to M,. ([

3. Regular left-Garside categories

The main interest of Garside structures is the existence of a canoni-
cal normal form, the so-called greedy normal form [29]. In this section,
we adapt the construction of the normal form to the context of left-
Garside categories—this was done in [27] already—and of locally left-
Garside monoids. The point here is that studying the computation of the
normal form naturally leads to introducing the notion of a regular left-
Garside category, crucial in Section 6.

3.1. The head of a morphism

By Lemma 2.4(i7), every morphism in a left-Garside category is a prod-
uct of simple morphisms. Generally the decomposition does not need to
be unique in general, and the first step for constructing a normal form
consists in isolating a particular simple morphism that left-divides the
considered morphism. It will be useful to develop the construction in a
general framework where the distinguished morphisms do not need to be
the simple ones.
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Notation 3.1. Let us recall that, for f,g in Hom(C), where C is a left-
preGarside category, lem(f, g) is the right-lem of f and g, when it exists.
In this case, we denote by f\g the unique morphism that satisfies

f-\g =lem(f, g). (3.1)
We use a similar notation in the case of a (locally) left-Garside monoid.

Definition 3.2. Assume that C is a left-preGarside category and S is
included in Hom(C). We say that S is a seed for C if

(7) S left-generates Hom(C),
(7)) S is closed under the operations lem and \,
(#i) S is closed under left-divisor.

In other words, S is a seed for C if (i) every nontrivial morphism of C
is left-divisible by a nontrivial element of S, (i7) for all f,¢g in S, the
morphisms lem(f, g) and f\g belong to S whenever they exist, and (i)
for each f in &, the relation h < f implies h € S.

Lemma 3.3. If C is a left-Garside category, then Hom*P(C) is a seed
for C.

Proof. First, Hom®P(C) left-generates Hom(C) by Condition (LGs).

Next, assume that f, g are simple morphisms sharing the same source x.
By Proposition 2.11, the morphisms lem(f, g) and f\g exist. By definition,
we have f < A(x) and g < A(x), hence lem(f, g) < A,. Hence lem(f, g)
is simple. Let h satisfy lem(f, g)h = A(x). This is also f (f\g) h = A(x).
By Lemma 2.3(ii), (f\g)h, which is a right-divisor of A(z), is simple,
and, therefore, f\g, which is a left-divisor of (f\g) h, is simple as well by
transitivity of <.

Finally, Hom*P(C) is closed under left-divisor by definition. O

Lemma 2.8 guarantees that, if S is a seed for C, then every morphism f
of C has a unique maximal left-divisor g lying in S, and Condition (i) of
Definition 3.2 implies that ¢ is nontrivial whenever f is.

Definition 3.4. In the context above, the morphism g is called the S-head
of f, denoted Hs(f).
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In the case of Hom®P(C), it is easy to check, for each f in Hom(C), the
equality
HHomSP(C) (f) = ng(f7 A(aof)), (32)
in this case, we shall simply write H(f) for Hyomsr(c)(f)-

3.2. Normal form

The following result is an adaptation of a result that is classical in the
framework of Garside monoids.

Proposition 3.5. Assume that C is a left-preGarside category and S is
a seed for C. Then every nontrivial morphism f of C admits a unique
decomposition

f=r..fa, (3.3)
where f1,..., fq lie in S, fq is nontrivial, and f; is the S-head of f;...fq for
each 1.

Proof. Let f be a nontrivial morphism of C, and let f; be the S-head
of f. Then f; belongs to S, it is nontrivial, and we have f = fif for
some unique f’. If f’ is trivial, we are done, otherwise we repeat the
argument with f’. In this way we obtain a <-increasing sequence 1lg, 5 <
f1 < fife < .... Condition (LGp) implies that the construction stops after
a finite number of steps, yielding a decomposition of the form (3.3).

As for uniqueness, assume that (f1,..., fg) and (g1, ..., ge) are decom-
positions of f that satisfy the conditions of the statement. We prove
(f1,- fa) = (g1, -, ge) using induction on min(d, e). First, d = 0 implies
e = 0 by Lemma 2.4(7). Otherwise, the hypotheses imply f1 = Hs(f) =
g1. Left-cancelling f1 gives two decompositions (fa, ..., f7) and (g2, ..., ge)
of fa...fq, and we apply the induction hypothesis. [l

Definition 3.6. In the context above, the sequence (fi, ..., fg) is called
the S-normal form of f.

When S turns out to be the family Hom®?(C), the S-normal form will
be simply called the normal form. The interest of the S-normal form lies
in that it is easily characterized and easily computed. First, one has the
following local characterization of normal sequences.

Proposition 3.7. Assume that C is a left-preGarside category and S is a
seed for C. Then a sequence of morphisms (fi,..., fa) is S-normal if and
only if each length two subsequence (fi, fi+1) is S-normal.
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This follows from an auxiliary lemma.

Lemma 3.8. Assume that (f1, f2) is S-normal and g belongs to S. Then
g < [f1f2 implies g < [ fr.

Proof. The hypothesis implies that f and g have the same source. Put
¢" = f\g. The hypothesis that S is closed under \ and an easy induction
on the length of the S-normal form of f show that ¢’ belongs to S. By
hypothesis, we have both g < ffife and f < ffif2, hence lem(f,g) =
fd' < ffif2 whence ¢’ < f1f2 by left-cancelling f. As g belongs to S and
(f1, f2) is normal, this implies ¢’ < f1, and finally g < f¢' < ff1- O

Proof of Proposition 3.7. It is enough to consider the case d = 2, from
which an easy induction on d gives the general case. So we assume that
(f1, f2) and (fa, f3) are S-normal, and aim at proving that (fi, fo, f3) is
S-normal. The point is to prove that, if g belongs to S, then g < fifaf3
implies g X f1. So assume g < f1f2f3. As (fa, f3) is S-normal, Lemma 3.8
implies g < f1f2. As (f1, f2) is S-normal, this implies g < fi. O

3.3. A computation rule

We establish now a recipe for inductively computing the S-normal form,
namely determining the S-normal form of g f when that of f is known and
g belongs to S.

Proposition 3.9. Assume that C is a left-preGarside category, S is a seed
for C, and (fi1,..., fa) is the S-normal form of f. Then, for each g in S,
the S-normal form of gf is (f1,..., f5, 94), where go = g and (f], g;) is the
S-normal form of g;—1 f; for i increasing from 1 to d—see Figure 2.

gol 191 192 lgau 1gd

FIGURE 2. Adding one S-factor go on the left of an S-normal
sequence (f1, ..., f4): compute the S-normal form (f1, g1) of gof1,
then the S-normal form (f4,g2) of g1 f2, and so on from left to
right; the sequence (f1, ..., f}, ga) is S-normal.
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Proof. For an induction, it is enough to consider the case d = 2, hence to
prove

/ /
L L}
Claim. Assume that the diagram 901 lgl 192 is commutative and
—_—
i f2
(f1, f2) and (f1,g1) are S-normal. Then (f1, f4) is S-normal.

So assume that h belongs to S and satisfies h < f] f5. Then, a fortiori, we
have h < f{fb92 = gofif2, hence h < gofi by Lemma 3.8 since (f1, f2)
is S-normal. Therefore we have h < f{g1, hence h < f] since (f],91) is
S-normal. [l

The results of Proposition 3.7 and 3.9 apply in particular when C is
left-Garside and S is the family of all simple morphisms, in which case
they involve the standard normal form.

In the case of lem’s, Corollary 2.12 shows how a result established for
general left-Garside categories induces a similar result for locally left-
Garside monoids. The situation is similar with the normal form, provided
some additional assumption is satisfied.

Definition 3.10. A left-Garside sequence (A, ),cx witnessing that a cer-
tain monoid is locally left-Garside is said to be coherent if a < A, implies
a < Ay for each y such that a «y is defined.

For instance, the family (A, )nen witnessing for the locally left-Garside
structure of the monoid BZ is coherent. Indeed, a positive n-strand braid a
is a left-divisor of A,, if and only if it is a left-divisor of A,/ for every n’ > n.
The reason is that being simple is an intrinsic property of positive braids:
a positive braid is simple if and only if it can be represented by a braid
diagram in which any two strands cross at most once [28].

Proposition 3.11. Assume that M is a locally left-Garside monoid asso-
ciated with a coherent left-Garside sequence (Ag)zex. Let ¥ = {a € M |
dr € X(a =< Ay)}. Then ¥ is a seed for M, every element of M admits
a unique Y-normal form, and the counterpart of Propositions 3.7 and 3.9
hold for the ¥-normal form in M.

Proof. Axiom (LGgOC) guarantees that every nontrivial element of M is left-
divisible by some nontrivial element of ¥. Then, by hypothesis, 1, < A,
holds for each object x. Then, assume a, b € X. There exists x such that zea
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and x «b are defined. By definition of X, there exists 2’ satisfying a < A,/,
hence, by definition of coherence, we have a < A,. A similar argument
gives b < A, whence lem(a,b) < A,, and lem(a, b) € 3. So there exists ¢
satisfying a (a\b) ¢ = A,. By (LG5, we deduce (a\b) ¢ < Ageq, whence
a\b X Az.q, and we conclude that a\b belongs to . Finally, it directly
results from its definition that ¥ is closed under left-divisor. Hence ¥ is a
seed for M in the sense of Definition 3.2.

As, by definition, M is a left-preGarside monoid, Proposition 3.5 ap-
plies, guaranteeing the existence and uniqueness of the Y-normal form
on M, and so do Propositions 3.7 and 3.9. (I

Thus, the good properties of the greedy normal form are preserved when
the assumption that a global Garside element A exists is replaced by the
weaker assumption that local Garside elements A, exist, provided they
make a coherent sequence.

3.4. Regular left-Garside categories

It is natural to look for a counterpart of Proposition 3.9 involving right-
multiplication by an element of the seed instead of left-multiplication. Such
a counterpart exists but, interestingly, the situation is not symmetric, and
we need a new argument. The latter demands that the considered category
satisfies an additional condition, which is automatically satisfied in a two-
sided Garside category, but not in a left-Garside category.

In this section, we only consider the case of a left-Garside category
and its simple morphisms, and not the case of a general left-preGarside
category with an arbitrary seed—see Remark 3.15. So, we only refer to
the standard normal form.

Definition 3.12. We say that a left-Garside category C is regular if the
functor ¢ preserves normality of length two sequences: for fi, fo simple
with 01 f1 = o f2,

(f1, f2) normal implies  (&(f1), ¢(f2)) normal. (3.4)

Proposition 3.13. Assume that C is a regular left-Garside category, that
(f1, -, fa) s the normal form of a morphism f, and that g is simple. Then

the normal form of fg is (go, f1,--., [), where gq = g and (gi—1, f!) is the
normal form of f;g; for i decreasing from d to 1—see Figure 3.

We begin with an auxiliary observation.
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gol lgl lgd—Q lgd—l lgd
T{) TH, Tc’l»

FIGURE 3. Adding one simple factor g, on the right of a simple
sequence (f1,..., fa): compute the normal form (gq—1f}) of faga,
then the normal form (gq—2f}_5) of fa—194—1, and so on from right
to left; the sequence (go, f1, ..., f;) is normal.

Lemma 3.14. Assume that C is a left-Garside category and f1, fo are
simple morphisms satisfying 01 f1 = 0o f2. Then (fi1, fo) is normal if and
only if f{ and fo are left-coprime, i.e., ged(fy, fa2) is trivial.

Proof. The following equalities always hold:

H(f1f2) = ged(f1f2, A(Oof1)) = ged(fifo, f1f1) = f1ged(fa, fT).

Hence (f1, f2) is normal, i.e., fi = H(f1f2) holds, if and only if f; =
f1ged(fo, fi) does, which is ged(fa, fi) = la,p as left-cancelling fi is
allowed. O

Proof of Proposition 3.13. As in the case of Proposition 3.9 it is enough
to consider the case d = 2, and therefore it is enough to prove

Ny by
Claim. Assume that the diagram 901 lgl 192 is commutative and
_/> _IP
i fa
(f1, f2) and (g1, f5) are normal. Then (f1, f5) is normal.

To prove the claim, we introduce the morphisms gg, g7, g5 defined by
fi f

oy I |
981 lgi‘ 195
(1) 6(f2)

9ig7 = A(0vg:i) (Definition 2.1). Then the diagram
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commutative. Indeed, applying (2.1), we find
gof191 = figrgi = f1A(dogo) = f1A(01 f1)
= A(9 f1)o(f1) = A(Gogo)¢(f1) = 90959 (f1),
hence fig7 = g5o(f1) by left-cancelling go. A similar argument gives
f293 = g1 (f2)-
Assume that h is simple and satisfies h < f] f}. We deduce

h < fif295 = 950(f1)o(f2)-
By hypothesis, (fi, f2) is normal. Hence the hypothesis that C is reg-
ular implies that (¢(f1),¢(f2)) is normal as well. By Lemma 3.8, h <
G56(F1)6(f>) implies h < gsd(f1) = flg7. We deduce h < ged(fLf}, f1g7) =
f1ecd(f4, g7). By Lemma 3.14, the hypothesis that (g1, f3) is normal im-
plies ged(gf, f5) = 1, and, finally, we deduce h < f1, d.e., (f1, f4) is nor-
mal. (]

Remark 3.15. It might be tempting to mimick the arguments of this sec-
tion in the general framework of a left-preGarside category C and a seed S,
provided some additional conditions are satisfied. However, it is unclear
that the extension can be a genuine one. For instance, if we require that,
for each f in S, there exists f* in S such that ff* exists and depends
on Jyf only, then the map Jyf — ff* is a left-Garside map and we are
back to left-Garside categories.

3.5. Regularity criteria

We conclude with some sufficient conditions implying regularity. In par-
ticular, we observe that, in the two-sided case, regularity is automatically
satisfied.

Lemma 3.16. Assume that C is a left-Garside category. Then a sufficient
condition for C to be regular is that the functor ¢ be bijective on Hom(C).

Proof. Assume that C is a left-Garside category and ¢ is bijective onto
Hom(C). First we claim that ¢(f) < ¢(g) implies f < ¢ in C. Indeed,
assume ¢(g) = ¢(f)h. As ¢ is surjective, we have ¢(g) = ¢(f)p(h') for
some h', hence ¢(g) = ¢(fh') since ¢ is a functor, hence g = fh' since ¢
is injective.

Next, we claim that ¢(f) is simple if and only if f is simple. That
the condition is sufficient directly follows from Definition 2.1. Conversely,
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assume that ¢(f) is simple. This means that there exists g satisfying
o(f)g = A(Oop(f)). As ¢ is surjective, there exists ¢’ satisfying g = ¢(g’).
Applying (2.2), we obtain ¢(fg') = A(dod(f)) = ¢(A(Oof), hence fg' =
A(0yf) by injectivity of ¢.

Finally, assume that (f1, f2) is normal, and ¢ is a simple morphism left-
dividing ¢(f1)¢(f2), hence satisfying gh = ¢(f1)¢(f2) for some h. As ¢ is
surjective, we have g = ¢(g’) and h = ¢(h') for some ¢, h’. Moreover, by
the claim above, the hypothesis that ¢ is simple implies that ¢’ is simple
as well. Then we have ¢(¢")p(h') = ¢(f1)o(f2), hence g'h' = f1fo since
¢ is a functor and it is injective. The hypothesis that (f1, f2) is normal
implies ¢’ < fi, hence g = 6(¢') < 6(f1). So (6(f1), 6(f2)) i normal, and
C is regular. O

Proposition 3.17. Every Garside category is reqular.

Proof. Assume that C is a left-Garside category with respect to A and
a right-Garside category with respect to V satisfying A(z) = V(z') for
¥ = 01 A(z). Put ¢(z') = V(') for 2’ in Obj(C) and, for g simple
in Hom(C), hence a right-divisor of V(91 g), denote by *g the unique simple
morphism satisfying *gg = V(9pg), and put ¢(g) = **¢. Then arguments
similar to those of Lemma 2.4 give the equality

V(dog) 9 = 1(9) V(019) (3.5)
which is an exact counterpart of (2.1). Let f : © — y be any morphism
in C. Put 2’ = ¢(z) and y' = ¢(y). By construction, we also have x = ¢ (z')

and y = ¢(y'). Applying (2.1) to f : x — y, we obtain A(x) ¢(f) = f A(y),
which is also

V(@) o(f) = f V(). (3.6)
On the other hand, applying (3.5) to ¢(f) : 2’ — ¢/ yields
V(") o(f) = v(o(f) V(Y). (3.7)

Comparing (3.6) and (3.7) and right-cancelling V(y), we deduce ¥ (¢(f)) =
f. A symmetric argument gives ¢(¢(g)) = g for each g, and we conclude
that v is the inverse of ¢, which is therefore bijective. Then we apply
Lemma 3.16. (]

Remark. The above proof shows that, if C is a left-Garside category that
is Garside, then the associated functor ¢ is bijective both on Obj(C) and
on Hom(C). Let us mention without proof that this necessary condition
is actually also sufficient.
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Apart from the previous very special case, we can state several weaker
regularity criteria that are close to the definition and will be useful in
Section 6. We recall that H(f) denotes the maximal simple morphism
left-dividing f.

Proposition 3.18. A left-Garside category C is regular if and only if ¢
preserves the head function on product of two simples: for fi, fo simple

with O f1 = 0o f2,
H(¢(f1f2)) = o(H(f1f2)); (3.8)

Proof. Assume that C is regular, and that f1, fo satisfy 01 f1 = Oy fa. Let
(f1, f5) be the formal form of f; fo—which has length 2 at most by Proposi-
tion 3.9. Then, (¢(f1), ¢(f3)) is normal and satisfies ¢(f1)P(f5) = ¢(f1f2),
so (o(f1),#(f3)) is the normal form of f(f;f2). Hence we have H(f1f2) =
71 and H(6(f1£2)) = 6(]), which is (3.8).

Conversely, assume (3.8) and let (fi, f2) be normal. By construction,
we have fi = H(f1f2), hence ¢(f1) = H(¢(f1f2)) by hypothesis. This
means that the normal form of ¢(f1f2) is (¢(f1),g) for some g satisfying
o(f1f2) = o(f1)g. Now ¢(f2) is such a morphism g, and, by (LGy), it is
the only one. So the normal form of ¢(fif2) is (¢(f1),#(f2)), and C is
regular. O

Proposition 3.19. Assume that C is a left-Garside category C. Then two
sufficient conditions for C to be regular are

(1) The functor ¢ preserves left-coprimeness of simple morphisms: for
f,g simple with Oy f = Oug,

ged(f,g) =1 implies  ged(o(f), d(g)) = 1. (3.9)

(13) The functor ¢ preserves the gcd operation on simple morphisms:
fOT’ f7 g Simple with 80f = 6097

ged(o(f), o(g)) = ¢(ged(f, 9)), (3.10)

and, moreover, ¢(f) is nontrivial whenever f is nontrivial.

Proof. Assume (7). Let (f,g) be normal. By Lemma 3.14, ged(f*, g) is 1.
By (3.9), we deduce ged(o(f*),#(g)) = 1. By Lemma 2.5, this equality
is also ged(o(f)*, #(g)) = 1, which, by Lemma 3.14 again, means that
(¢(f), #(g)) is normal. Hence C is regular.

On the other hand, it is clear that (ii) implies (). O
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4. Self-distributivity

We quit general left-Garside categories, and turn to one particular exam-
ple, namely a certain category (two categories actually) associated with
the left self-distributive law. The latter is the algebraic law

z(yz) = (zy)(z2) (LD)
extensively investigated in [18].

We first review some basic results about this law and the associated
free LD-systems, i.e., the binary systems that obey the LD-law. The key
notion is the notion of an LD-expansion, with two derived categories LD
and £D* that will be our main subject of investigation from now on.

4.1. Free LD-systems

For each algebraic law (or family of algebraic laws), there exist universal
objects in the category of structures that satisfy this law, namely the
free systems. Such structures can be uniformly described as quotients of
absolutely free structures under convenient congruences.

Definition 4.1. We let T;, be the set of all bracketed expressions involving
variables x1, ..., zp, i.e., the closure of {x1,...,z,} under t; x to = (t1)(t2).
We use T for the union of all sets T;,. Elements of T are called terms.

Typical terms are x1, x2 * z1, x3 * (r3 * 1), etc. It is convenient to
think of terms as rooted binary trees with leaves indexed by the variables:

the trees associated with the previous terms are A\ , and ,

T3T1
respectively. The system (77, ) is the absolutely free system (or algebra)
generated by x1, ..., T,, and every binary system generated by n elements
is a quotient of this system. So is in particular the free LD-system of

rank n.

Definition 4.2. We denote by =, the least congruence (i.e., equivalence
relation compatible with the product) on (7, ) that contains all pairs of
the form

(tl * (tg * tg), (tl * tg) * (tl * tg)).
Two terms t,t’ satisfying t =, t' are called LD-equivalent.

The following result is then standard.
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Proposition 4.3. For each n < oo, the binary system (T, /=.p,*) s a
free LD-system based on {z1,...,zy}.

4.2. LD-expansions

The relation =, is a complicated object, about which many questions
remain open. In order to investigate it, it proved useful to introduce the
subrelation of =, that corresponds to applying the LD-law in the ex-
panding direction only.

Definition 4.4. Let t,t be terms. We say that t’ is an atomic LD-
expansion of t, denoted t —1_ #', if ¢’ is obtained from ¢ by replacing some
subterm of the form 1 x(taxt3) with the corresponding term (t1xto)x(t1xt3).
We say that ¢’ is an LD-expansion of t, denoted t —p t/, if there exists a
finite sequence of terms t, ..., ¢, satisfying to = ¢, t, = t', and t;_4 -1t
for 1 <i<p.

By definition, being an LD-expansion implies being LD-equivalent, but
the converse is not true. For instance, the term (zxz)x(zxz) is an (atomic)
LD-expansion of = * (x * x), but the latter is not an LD-expansion of the
former. However, it should be clear that =, is generated by —p, so that
two terms t,t are LD-equivalent if and only if there exists a finite zigzag
to, t1, ..., top satisfying to = t, top = t/, and t;_1 —1p ti Lo ti1 for each
odd 1.

The first nontrivial result about LD-equivalence is that the above zigzags
may always be assumed to have length two.

Proposition 4.5. [17] Two terms are LD-equivalent if and only if they
admit a common LD-expansion.

This result is similar to the property that, if a monoid M satisfies
Ore’s conditions—as the braid monoid B} does for instance—then every
element in the universal group of M can be expressed as a fraction of the
form ab~! with a,b in M. Proposition 4.5 plays a fundamental role in the
sequel, and we need to recall some elements of its proof.

Definition 4.6. [17] A binary operation ® on terms is recursively defined
by

t®x; =1t*xx;, t@(to*tl):(t®t0)*(t®t1). (4.1)
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Next, for each term ¢, the term ¢(t) is recursively defined by?

o(xi) =z P(to*xt1) = ¢(to) ® B(t1). (4.2)

The idea is that ¢t ® t' is obtained by distributing ¢ everywhere in #'

once. Then ¢(t) is the image of ¢t when * is replaced with ® everywhere

in the unique expression of t in terms of variables. Examples are given

in Figure 4. A straightforward induction shows that ¢ ® t' is always an
LD-expansion of t xt' and, therefore, that ¢(¢) is an LD-expansion of ¢.

FIGURE 4. The fundamental LD-expansion ¢(t) of a term ¢, re-
cursive definition: ¢(to *t1) is obtained by distributing ¢(to) every-
where in ¢(t1).

(*2) - K0

T3T4 T1T2T1T3L1T2L1T4

FIGURE 5. The fundamental LD-expansion ¢(t) of a term ¢, a
concrete example: t = 1 % (2 * (z3 % x4)) gives ¢(t) = 21 ® (22 ®
(z3 ® 24)).

The main step for establishing Proposition 4.5 consists in proving that
¢(t) plays with respect to atomic LD-expansions the same role as the
one played by Garside’s fundamental braid A,, with respect to Artin’s
generators o;—which makes it natural to call ¢(t) the fundamental LD-
expansion of t.

Lemma 4.7. [17] [18, Lemmas V.3.11 and V.3.12] (i) The term ¢(t) is
an LD-expansion of each atomic LD-expansion of t.
(1) If t' is an LD-expansion of t, then ¢(t') is an LD-expansion of ¢(t).

2In [17] and [18], @ is used instead of ¢, an inappropriate notation in the current
context.
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Sketch of proof. One uses induction on the size of the involved terms. Once
Lemma 4.7 is established, an easy induction on d shows that, if there exists
a length d sequence of atomic LD-expansions connecting ¢ to ¢/, then ¢%(t)
is an LD-expansion of . Then a final induction on the length of a zigzag
connecting ¢ to ¢’ shows that, if ¢ and ¢’ are LD-equivalent, then ¢d(t) is
an LD-expansion of ¢’ for sufficiently large d (namely for d at least the
number of “zag”s in the zigzag). O

4.3. The category LD

A category (and a quiver) is naturally associated with every graph, and
the previous results invite to introduce the category associated with the
LD-expansion relation — .

Definition 4.8. We denote by £LD{ the category whose objects are terms,
and whose morphisms are all pairs of terms (¢,t') satisfying t —p t'.

By construction, the category L£Dj is left- and right-cancellative, and
Proposiion 4.5 means that any two morphisms of £Dj with the same
source admit a common right-multiple. Moreover, a natural candidate for
being a left-Garside map is obtained by defining A(t) = (¢, ¢(t)) for each
term ¢.

Question 1. Is £LD{ a left-Garside category?

Question 1 is currently open. We shall see in Section 6.3 that it is one
of the many forms of the so-called Embedding Conjecture. The missing
part is that we do not know that least common multiples exist in LD{,
the problem being that we have no method for proving that a common
LD-expansion of two terms is possibly a least common LD-expansion.

5. The monoid LD* and the category LD*

The solution for overcoming the above difficulty consists in developing
a more precise study of LD-expansions that takes into account the po-
sition where the LD-law is applied. This leads to introducing a certain
monoid LDT whose elements provide natural labels for LD-expansions,
and, from there, a new category LD*, of which £D{ is a projection. This
category LD* is the one on which a left-Garside structure will be proved
to exist.
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t te D,

A Lk

Ueo toad et

t Oot/llot/ o0 t/Tau
FIGURE 6. Action of D, to a term ¢: the LD-law is applied to
expand t at position «, i.e., to replace the subterm t,,, which is
t/aO*(t/alo*t/odl)v with (t/aO*t/al(J)*(t/a()*t/all); in other WOI’dS,
the light grey subtree is duplicated and distributed to the left of the
dark grey and black subtrees.

5.1. Labelling LD-expansions

By definition, applying the LD-law to a term ¢ means selecting some sub-
term of ¢ and replacing it with a new LD-equivalent term. When terms are
viewed as binary rooted trees, the position of a subterm can be specified
by describing the path that connects the root of the tree to the root of
the considered subtree, hence typically by a binary address, i.e., a finite
sequence of 0’s and 1’s, according to the convention that 0 means “forking
to the left” and 1 means “forking to the right”. Hereafter, we use A for the
set of all such addresses, and € for the empty address, which corresponds
to the position of the root in a tree.

Notation 5.1. For t a term and « an address, we denote by ¢/, the subterm
of t whose root (when viewed as a subtree) has address «, if it exists, i.e.,
if « is short enough.

So, for instance, if ¢ is the term 1 x (z2xx3), we have ty = 1, /19 = 72,
whereas tq is not defined, and t, = ¢ holds, as it holds for every term.

Definition 5.2. (See Figure 6.) We say that ' is a D,-expansion of t,
denoted t' = t o D,, if t' is the atomic LD-expansion of ¢ obtained by
applying LD at the position a, i.e., replacing the subterm ?,,, which is
t/a() * (t/al() * t/an), with the term (t/ao * t/alO) * (t/a0 * t/a11)~

By construction, every atomic LD-expansion is a D,-expansion for a
unique «. The idea is to use the letters D, as labels for LD-expansions.
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As arbitrary LD-expansions are compositions of finitely many atomic LD-
expansions, hence of D,-expansions, it is natural to use finite sequences
of D, to label LD-expansions. In other words, we extend the (partial)
action of D, on terms into a (partial) action of finite sequences of D, ’s.
Thus, for instance, we write

t' =teDaDgD,

to indicate that ¢’ is the LD-expansion of ¢ obtained by successively ap-
plying the LD-law (in the expanding direction) at the positions «, then j,
then ~.

If S is a nonempty set, we denote by S* the free monoid generated by S,
i.e., the family of all words on the alphabet S (finite sequences of elements
of S) equiped with concatenation.

Lemma 5.3. In the sense of Definition 1.8, Definition 5.2 gives a partial
action of the free monoid {D, | o € A}Y* on T (the set of terms).

Proof. Conditions (7) and (i¢) of Definition 1.8 follow from the construc-
tion. The point is to prove (iii), i.e., to prove that, if wy, ..., w, are arbi-
trary finite sequences of letters D, then there exists at least one term ¢
such that tew; is defined for each ¢. This is what [18, Proposition VII.1.21]
states. U

5.2. The monoid LD*

There exist clear connections between the action of various D, ’s: differ-
ent sequences may lead to the same transformation of terms. We shall
now identify a natural family of such relations and introduce the monoid
presented by these relations.

Lemma 5.4. For all o, 3,7, the following pairs have the same action on
terms:

(1) DaogDaty and DaiyDaog; (“parallel case”)
(i1) DaogDa and DaDaoogDaros; (“nested case 17)
(113) Da10gDa and DoDyo18; (“nested case 2”)
(iv) Da11gDa and DoDgi1s; (“nested case 3”)
(v) DaDo1 Do and Do1 Do Da1Dag. (“critical case”)

Sketch of proof. The commutation relation of the parallel case is clear,
as the transformations involve disjoint subterms. The nested cases are
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D, D,
% &h

D D
D oo D

D.
i i R —_— —

FIGURE 7. Relations between D,,-expansions: the critical case.
We read that the action of D.D1 D, and D1D.D1 D, coincide.

commutation relations as well, but, because one of the involved subterms
is nested in the other, it may be moved, and even possibly duplicated,
when the main expansion is performed, so that the nested expansion(s)
have different names before and after the main expansion. Finally, the
critical case is specific to the LD-law, and there is no way to predict it
except a direct verification, as shown in Figure 7. O

Definition 5.5. Let Ryp be the family of all relations of Lemma 5.4. We
define LD* to be the monoid ({D, |« € A} | Rip)™.

Lemma 5.4 immediately implies

Proposition 5.6. The partial action of the free monoid {D,, | a € A}*
on terms induces a well defined partial action of the monoid LD*.

For t a term and a in LD™, we shall naturally denote by tea the common
value of t « w for all sequences w of letters D, that represent a.

Remark. In this way, each LD-expansion receives a label that is an element
of LD™, thus becoming a labelled LD-expansion. However, we do not claim
that a labelled LD-expansion is the same as an LD-expansion. Indeed, we
do not claim that the relations of Lemma 5.4 exhaust all possible relations
between the action of the D,’s on terms. A priori, it might be that different
elements of LD* induce the same action on terms, so that one pair (¢,t)
might correspond to several labelled expansions with different labels. As
we shall see below, the uniqueness of the labelling is another form of the
above mentioned Embedding Conjecture.
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5.3. The category LD*

We are now ready to introduce our main subject of interest, namely the
category LD of labelled LD-expansions. The starting point is the same
as for LD, but the difference is that, now, we explicitly take into account
the way the source is expanded into the target.

Definition 5.7. We denote by LD* the category whose objects are terms,
and whose morphisms are triples (¢,a,t’) with a in LD* and tea = t'.

In other words, LD is the category associated with the partial action
of LD on terms, in the sense of Section 1.9. We recall our convention
that, when the morphisms of a category are triples, the source is the first
entry, and the target is the last entry. So, for instance, a typical morphism

in LD is the triple
</>>\ 3 D€D1 ) %) ’

whose source is the term x * (z x (zxz)) (we adopt the default convention
that specifying no variable means using some fixed variable x), and whose
target is the term (z * x) x ((x x ) * (z * x)).

5.4. The element A,

We aim at proving that the category £D7 is a left-Garside category. To
this end, we need to define the A-morphisms. As planned in Section 4.3,
the latter will be constructed using the LD-expansions (¢, ¢(t)). Defining
a labelled version of this expansion means fixing some canonical way of
expanding a term ¢ into the corresponding term ¢(t). A natural solution
then exists, namely following the recursive definition of the operations ®
and ¢.

For w a word in the letters D, we denote by shg(w) the word obtained
by replacing each letter D, of w with the corresponding letter Dy, i.e., by
shifting all indices by 0. Similarly, we denote by sh,(w) the word obtained
by appending v on the left of each address in w. The LD-relations of
Lemma 5.4 are invariant under shifting: if w and w’ represent the same
element a of LD*, then, for each v, the words sh. (w) and sh- (w’) represent
the same element, naturally denoted sh,(a), of LD*. For each a in LD*,
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the action of shy(a) on a term ¢ corresponds to the action of a to the 7-
subterm of ¢: so, for instance, if ¢’ = tea holds, then t'xt; = (t*t1)eshg(a)
holds as well, since the O-subterm of ¢ x t; is ¢, whereas that of ¢ x¢; is t'.

Definition 5.8. For each term ¢, the elements §; and A; of LD" are
defined by the recursive rules

5 — 1 for t of size 0, i.e., when t is a variable x;,
"7\ De-sho(8y,) - shy(6y,) for t = to x 1.
(5.1)
A, = 1 for t of size 0, (5.2)
ShO(Ato) - shy (Atl) . 5¢(t1) for t = tg x 1.

Ezample 5.9. Let t be zx (zx (z* x)). Then ¢ is x, and, therefore, Ay,
is 1. Next, ¢y is @ x (z x ), so (5.2) reads Ay = shi(Ay,) - d4(1,)- Then
¢(tp) is (x * ) x (z x z). Applying (5.1), we obtain

5¢>(t/1) =D - ShO((Sx*x) : Shl(éx*x) = DcDoD.
On the other hand, using (5.2) again, we find
At/l == ShO(Aw) . Shl (Ax*x) . 5$*Z‘ == ]. . ]. . _Dg == D67

and, finally, we obtain Ay = D1 D.DyD;. According to the defining rela-
tions of the monoid LD, this element is also D.D1D,. Note the compat-
ibility of the result with the examples of Figures 5 and 7.

Lemma 5.10. For all terms tg,t, we have
(to*t) o0 =tg ® L,
t . At - (b(t)

The proof is an easy inductive verification.

5.5. Connection with braids

Before investigating the category LD more precisely, we describe the sim-
ple connection existing between £LD* and the positive braid category B
of Example 1.10.
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Lemma 5.11. Define m: {Dy | a € A} — {0; | i > 1} U{1} by

#(Dy) = {O'H_l if v is the address 1%, i.e., 11...1, i times 1, (5.5)

1 otherwise.
Then m induces a surjective monoid homomorphism of LD onto BZ,.

Proof. The point is that each LD-relation of Lemma 5.4 projects under 7
onto a braid relation. All relations involving addresses that contain at
least one 0 collapse to mere equalities. The remaining relations are

Dlz‘Dlj = Dlj_Dli with ] 2 ) + 2,

which projects to the valid braid relation 0;_y0;_; = 0;_,0;_4, and

DliDllei = DlleiDllei(), with j =1 + 17
which projects to the not less valid braid relation
0i—19j-10i—1 = 05-10;-1051-
]

We introduced a category C(M, X) for each monoid M partially act-
ing on X in Definition 1.9. The braid category B* and our current cat-
egory LD" are of these type. For such categories, natural functors arise
from morphisms between the involved monoids, and we fix the following
notation.

Definition 5.12. Assume that M, M’ are monoids acting on sets X
and X', respectively. A morphism ¢: M—M' and a map : X —X' are
called compatible if

(@ ea) =1p(z) . p(a) (5.6)
holds whenever z « a is defined. Then, we denote by [p, ] the functor
of C(M,X) to C(M',X’) that coincides with 1 on objects and maps
(z,a,y) to (Y (z), ¢(a),¥(y)).
Proposition 5.13. Define the right-height ht(t) of a term t by ht(x;) =0

and ht(tg *xt1) = ht(t1) + 1. Then the morphism m of (5.5) is compatible
with ht, and [, ht] is a surjective functor of LD* onto B*.

The parameter ht(¢) is the length of the rightmost branch in ¢ viewed
as a tree or, equivalently, the number of final )’s in ¢ viewed as a bracketed
expression.
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Proof. Assume that (t,a,t’) belongs to Hom(LD"). Put n = ht(t). The
LD-law preserves the right-height of terms, so we have ht(t') = n as well.
The hypothesis that ¢« a exists implies that the factors Dy: that occur in
some (hence in every) expression of a satisfy ¢ < n — 1. Hence 7(a) is a
braid of B;}, and ne7(a) is defined. Then the compatibility condition (5.6)
is clear, and [, ht] is a functor of LD* to B.

Surjectivity is clear, as each braid o; belongs to the image of =. O

Moreover, a simple relation connects the elements A; of LDt and the
braids A,,.

Proposition 5.14. Ift is a term with non-zero right-height n, we have
W(At) = An.

Proof. We first prove that ht(¢) = n implies
w(0) = 0y0y...0,, (5.7)

using induction on the size of ¢. If ¢ is a variable, we have ht(t) = 0 and
0+ = 1, so the equality is clear. Otherwise, write t = ty x t1. By definition,
we have

(St = DE . Sho((sto) . Sh1 ((5t1)-

Let sh denote the endomorphism of BZ, that maps o; to o;,; for each i.
Then 7 collapses every term in the image of shg, and 7(shy(a)) = sh(nw(a))
holds for each a in LD*. So, using the induction hypothesis 7(d;,) =
0y...0,,_1, we deduce
(o) = oy - 1-sh(oy...0,,_1) = 0y...0,,,

which is (5.7). Put A9 = 1 (= A1). We prove that ht(t) = n implies
m(Ay) = A, for n > 0, using induction on the size of ¢ again. If ¢ is
a variable, we have n = 0 and A; = 1, as expected. Otherwise, write
t = tg xt1. The definition gives

Ay = sho(Ay,) - shi(A) - S401,)-

As above, m collapses the term in the image of shg, and it transforms shy
into sh. Hence, using the induction hypothesis m(A¢,) = A,—1 and (5.7)
for ¢(t1), whose right-height is that of ¢1, we obtain

W(At) =1 Sh(Anfl) * 0109 ...0,_1 = An 0
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6. Main results

We can now state the two main results of this paper.

Theorem 6.1. For each term t, put A(t) = (t, A, ¢(t)). Then LD is a
left-Garside category with left-Garside map A, and [7,ht] is a surjective
right-lem preserving functor of LD* onto the positive braid category BT .

Theorem 6.2. Unless the category LD* is not reqular, the Embedding
Conjecture of [18, Chapter IX] is true.

6.1. Recognizing left-preGarside monoids

Owing to Proposition 1.12 and to the construction of LD from the partial
action of the monoid LD* on terms, the first part of Theorem 6.1 is a direct
consequence of

Proposition 6.3. The monoid LDT equipped with its partial action on
terms via self-distributivity is a locally left-Garside monoid with associated
left-Garside sequence (A¢)ier.

This is the result we shall prove now. The first step is to prove that
LD is left-preGarside. To do it, we appeal to general tools that we now
describe. As for (LGy), we have an easy sufficient condition when the action
turns out to be monotonous in the following sense.

Proposition 6.4. Assume that M has a partial action on X and there
exists a map p: X — N such that a # 1 implies p(x o a) > p(x). Then M
satisfies (LGo).

Proof. Assume that (aq,...,as) is a <-increasing sequence in Div(a). By
definition of a partial action, there exists x in X such that x«a is defined,
and this implies that x  a; is defined for each i. Next, the hypothesis that
(a1, ...,ag) is <-increasing implies that there exist bo, ..., by # 1 satisfying
a; = a;—1b; for each i. We find

w(xea;) = p((zeai—1)eb) > p(reai—1),
and the sequence (p(zeay),..., pu(zeay)) is increasing. As p(xeay) > p(x)
holds, we deduce ¢ < p(xea)—pu(x)+1 and, therefore, M satisfies (LGg). O

As for conditions (LG;) and (LGz), we appeal to the subword reversing
method of [21]. We recall that S* denotes the free monoid generated by S.
We use € for the empty word.
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Definition 6.5. Let S be any set. A map C' : S x S — S* is called
a complement on S. Then, we denote by Rc the family of all relations
aC(a,b) = bC(b,a) with a # b in S, and by C the unique (possibly
partial) map of S* x S* to S* that extends C and obeys the recursive
rules

C(u,v1v2) = C(u,v1)C(C(v1,u),v2), C(vive,u) = C(ve, C(u,v1)). (6.1)
Proposition 6.6 ([21] or [18, Prop.11.2.5.]). Assume that M 1is a monoid
satisfying (LGo) and admitting the presentation (S, Rc)*, where C is a
complement on S. Then the following are equivalent:

(1) The monoid M is left-preGarside;
(13) For all a,b,c in S, we have

~ o~

C(C(C(a,b),C(a,c)),C(C(b,a),C(b,c))) =e. (6.2)

6.2. Proof of Therem 6.1

We shall now prove that the monoid LD* equipped with its partial action
on terms via left self-distributivity satisfies the criteria of Section 6.1.
Here, and in most subsequent developments, we heavily appeal to the
results of [18], some of which have quite intricate proofs.

Proof of Theorem 6.1. First, each term t has a natural size u(t), namely
the number of inner nodes in the associated binary tree. Then the hypoth-
esis of Proposition 6.4 clearly holds: if ¢’ is a nontrivial LD-expansion of t,
then the size of ¢’ is larger than that of t. Then, by Proposition 6.4, LD"
satisfies (LGo).

Next, we observe that the presentation of LD in Definition 5.5 is as-
sociated with a complement on the set {D, | & € A}. Indeed, for each
pair of addresses a, 3, there exists in the list Ryp exactly one relation of
the type Dg... = Dg.... Hence, in view of Proposition 6.6, and because we
know that LD* satisfies (LGy), it suffices to check that (6.2) holds in LD*
for each triple Dy, Dg, D~ . This is Proposition VIII.1.9 of [18]. Hence LD*
satisfies (LG1) and (LGz), and it is a left-preGarside monoid.

Let us now consider the elements A; of Definition 5.8. First, Lemma 5.10
implies that ¢« A, is defined for each term ¢, and it is equal to ¢(t). Next,
assume that ¢« D,, is defined. Then Lemma VII.3.16 of [18] states that D,,
is a left-divisor of A; in LD", whereas Lemma VII.3.17 of [18] states that
Ay is a left-divisor of Dy A, p,, . Hence Condition (LGéOC) of Definition 1.11
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is satisfied, and the sequence (Ay)ier is a left-Garside sequence in LD™.
Thus LD™ is a locally left-Garside monoid, which completes the proof of
Proposition 6.3.

By Proposition 1.12, we deduce that £D*, which is C(LD*,T") by defini-
tion, is a left-Garside category with left-Garside map A as defined in The-
orem 6.1.

As for the connection with the braid category BT, we saw in Proposi-
tion 5.13 that [, ht] is a surjective functor of LD* onto BT, and it just
remains to prove that it preserves right-lem’s. This follows from the fact
that the homomorphism 7 of LD* to B preserves right-lem’s, which in
turn follows from the fact that LD* and BZ, are associated with comple-
ments C' and C satisfying, for each pair of addresses «, 3,

m(C(Da, Dg)) = C(m(Da), 7(Dg))- (6.3)

Indeed, let a,b be any two elements of LD™. Let u, v be words on the al-
phabet {D,, | @ € A} that represent a and b, respectively. By [18, Propo-
sition I1.2.16], the word C(u,v) exists, and uC/(u,v) represents lem(a, b).
Then 7(uC(u,v)) represents a common right-multiple of the braids 7 (a)
and 7(b), and, by (6.3), we have

o~

7(uC(u,v)) = m(u)C(r(u), 7(v)).

This shows that the braid represented by m(uC (u,v)), which is 7(lcm(a, b))
by definition, is the right-lem of the braids m(a) and 7 (b). So the mor-
phism 7 preserves right-lem’s, and the proof of Theorem 6.1 is com-
plete. U

6.3. The Embedding Conjecture

From the viewpoint of self-distributive algebra, the main benefit of the
current approach might be that it leads to a natural program for possibly
establishing the so-called Embedding Conjecture. This conjecture, at the
moment the most puzzling open question involving free LD-systems, can
be stated in several equivalent forms.

Proposition 6.7. [18, Section IX.6] The following are equivalent:
(1) The monoid LD embeds in a group;

(ii) The monoid LD* admits right-cancellation;

(i1i) The categories LD and LD* are isomorphic;
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(iv) The functor ¢ associated with the category LD is injective;

(v) For each term t, the LD-expansions of t make an upper-semilattice;
(vi) The relations of Lemma 5.4 generate all relations that connect the
action of D, ’s by self-distributivity.

Each of the above properties is conjectured to be true: this is the Em-
bedding Conjecture.

We turn to the proof of Theorem 6.2. So our aim is to show that the
Embedding Conjecture is true whenever the category LDV is regular. To
this end, we shall use some technical results from [18], plus the following
criterion, which enables one to prove right-cancellability by only using
simple morphisms.

Proposition 6.8. Assume that C is a left-Garside category and the asso-
ciated functor ¢ is injective on Obj(C). Then the following are equivalent:
(1) Hom(C) admits right-cancellation;
(13) The functor ¢ is injective on Hom(C).
Moreover, if C is regular, (i) and (ii) are equivalent to
(1i1) The functor ¢ is injective on simple morphisms of C.

Proof. Assume that f,g are morphisms of C that satisfy ¢(f) = ¢(g). As
¢ is a functor, we first deduce

$(00f) = Bo(6(f)) = do((9)) = ¢(dog),

hence dyf = Oypg as ¢ is injective on objects. A similar argument gives
O1f = 01g. Then, (2.1) gives

FAO1f) = A0 f)o(f) = A(Gog)p(g) = gA(d1g) = gA(O1 f).
If we can cancel A(9;f) on the right, we deduce f = g and, therefore, (i)
implies (i7).
Conversely, assume that h is simple and fh = gh holds. By multiplying
by h*, we deduce fhh* = ghh*, i.e., fA(Oph) = gA(dph). As we have
O1f = Oph = 019 by hypothesis, applying (2.1) gives

A0 f)p(f) = fA(OLf) = gA(O19) = A(Dog)d(9) = A(Duf)o(9),

hence ¢(f) = ¢(g) by left-cancelling A(9y f). If (i7) holds, we deduce f = g,
i.e., h is right-cancellable. As simple morphisms generate Hom(C), we
deduce that every morphism is right-cancellable and, therefore, (i) im-

plies (7).
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It is clear that (i) implies (i7i). So assume that C is regular and
(7i7) holds. Let f,g satisfy &(f) = ¢(g). Let (fi1,..., fa) and (g1, ..., ge)
be the normal forms of f and g, respectively. The regularity assump-
tion implies that every length two subsequence of (¢(f1),...,¢(fs)) and
(0(g1), .., #(ge)) is normal. Moreover, (iii) guarantees that ¢(f;) and ¢(g;)
are nontrivial. Hence (¢(f1), ..., #(fq)) and (¢(g1), ..., #(ge)) are normal. As
b is a fnctor, we have 6(f1).-6(f2) = 6(f) = 6(g) = 6(g1)--6(g), and
the uniqueness of the normal form implies d = e, and ¢(f;) = ¢(g;) for
each 4. Then (4i7) implies f; = g; for each i, hence f = g. O

So, in order to prove Theorem 6.2, it suffices to show that the cate-
gory LD" satisfies the hypotheses of Proposition 6.8, and this is what we
do now.

Lemma 6.9. The functor ¢ of LD is injective on objects, i.e., on terms.

Proof. We show using induction on the size of ¢ that ¢(t) determines ¢. The
result is obvious if ¢ has size 0, 7.e., when t is a single variable x;. Assume
t = to x t;. By construction, the term ¢(t) is obtained by substituting
every variable x; occurring in the term ¢(¢1) with the term ¢(to) * ;.
Hence ¢(to) is the 1"~ *0-subterm of ¢(t), where n is the common right-
height of ¢ and ¢(t). From there, ¢(¢1) can be recovered by replacing the
subterms ¢(tg)xx; of ¢(t) by x;. Then, by induction hypothesis, ¢ty and 1,
hence ¢, can be recovered from ¢(t1) and ¢(tp). O

Lemma 6.10. The functor ¢ of LD is injective on simple morphisms.

Proof. Assume that f, f' are morphisms of LD satistying ¢(f) = ¢(f'),
say f = (t,a,s) and f' = (t',d,s"). The explicit description of Lemma 2.7
implies ¢(t) = ¢(t'), hence t = ¢’ by Lemma 6.9. Similarly, we have
o(s) = ¢(s'), hence s’ = s. Therefore, we have t e a = te«a’ = s. By
Proposition VII.126 of [18], we deduce that ¢« a = ¢« a’ holds for every
term ¢ for which both tea and t.a’ are defined. Then Proposition IX.6.6
of [18] implies a = o’ provided a or o’ is simple. O
We can now complete the argument.
Proof of Theorem 6.2. The category LD is left-Garside, with an asso-
ciated functor ¢ that is injective both on objects and on simple mor-
phisms. By Proposition 6.8, if £LD" is regular, then Hom(LD") admits

right-cancellation, which is one of the forms of the Embedding Conjec-
ture, namely (ii) in Proposition 6.7. O
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6.4. A program for proving the regularity of LD"
At this point, we are left with the question of proving (or disproving)
Conjecture 1. The left-Garside category LD is regular.

The regularity criteria of Section 3.5 lead to a natural program for
possibly proving Conjecture 1 and, therefore, the Embedding Conjecture.
We begin with a preliminary observation.

Lemma 6.11. The left-Garside sequence (Ay)er on LD™ is coherent (in
the sense of Definition 3.10).

Proof. The question is to prove that, if ¢ is a term and ¢ « a is defined
and a < Ay holds for some ¢/, then we necessarily have a < A;. This
is a direct consequence of Proposition VIIL.5.1 of [18]. Indeed, the latter
states that an element a is a left-divisor of some element A, if and only if
a can be represented by a word in the letters D, that has a certain special
form. This property does not involve the term ¢, and it implies that, if a
left-divides A¢, then it automatically left-divides every element Ay such
that ¢’ « a is defined. O

So, according to Proposition 3.11, we obtain a well defined notion of
a simple element in LD*: an element a of LD™ is called simple if it left-
divides at least one element of the form A;. Then simple elements form a
seed in LD*, and are eligible for a normal form satisfying the general prop-
erties described in Section 3. In this context, applying Proposition 3.19(i7)
leads to the following criterion.

Proposition 6.12. Assume that, for each term t and for all simple ele-
ments a,b of LDT such that tea and t « b are defined, we have

ged(¢i(a), ¢i(b)) = dr(ged(a, b)). (6.4)

Then Conjecture 1 is true.

Proof. Let f,g be two simple morphisms in LD that satisfy dyf = 0pg =
t. By definition, f has the form (¢,a,t « a) for some a satisfying a <
Ay, hence simple in LD*. Similarly, f has the form (¢,b,¢ « b) for some
simple element b, and we have ged(f,g) = (t,ged(a,b),t « ged(a,b)). On
the other hand, Lemma 2.7 gives ¢(f) = (¢(t), ¢(a), d(t « a)) and ¢(g) =

(p(t), d£(b), Pp(t « b)), whence
ged(6(£), 6(9)) = ($(2), ed(6e(a), ¢4(), H(0) « ged(n(a), 61 (5).
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If (6.4) holds, we deduce

ged(9(f), ¢(g)) = ¢(ged(f, 9))-

Moreover, if tea is defined, then a # 1 implies u(¢(tea)) > pu(¢(t)), whence
¢¢(a) # 1. Then, Proposition 3.19(ii) implies that £LD™ is regular. O

Ezample 6.13. Assume a = D, b = D, and t = x % (x * (x % x)). Then
tea and t«b are defined. On the other hand, we have ¢(t) = ((z*x) * (z %
x)) *x ((xxx) *x (x xx)). An easy computation gives ¢(D.) = DoD; and
¢1(D1) = D, see Figure 8. We find ged(¢¢(a), ¢¢(b)) = 1 = ged(a, b), and
(6.4) is true in this case.

Note that the couterpart of (6.4) involving right-lem’s fails. In the cur-
rent case, we have

lem(gi(a), ¢1(b)) = ¢ (lem (a, b)) - DoDy :

the terms ¢(t « D¢) and ¢(t « D1) admit a common LD-expansion that is
smaller than ¢;(t«lem(De, D)), which turns out to be ¢2(t), see Figure 8
again.

The reader may similarly check that (6.4) holds for ¢ = (z * (z
z)) * (x x (z % x)) with a = Dy and b = Dy; the values are ¢¢(Dy) =
DoooDo10D10o D110 and ¢¢(D1) = De.

Proposition 6.12 leads to a realistic program that would reduce the proof
of the Embedding Conjecture to a (long) sequence of verifications. Indeed,
it is shown in Proposition VIIL.5.15 of [18] that every simple element a
of LD* admits a unique expression of the form

>
a= H Dlea),

acA

where fo) denotes D,je-1...Dq1 Do and > refers to the unique linear
ordering of A satisfying @ > a08 > alvy for all o, 3,v. In this way, we
associate with every simple element a of LD" a sequence of nonnegative
integers (eq)aca that plays the role of a sequence of coordinates for a.
Then it should be possible to

- express the coordinates of ¢;(a) in terms of those of a,

- express the coordinates of ged(a,b) in terms of those of a and b.
If this were done, proving (or disproving) the equalities (6.4) should be
easy.
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teD1 t Dl
lD 1D DoD, 1D0D1 DOODloDlD

telem(D,,Dy) lcm (DoD1,D¢) ¢(telem(De,Dy))

FIGURE 8. The left diagram shows an instance of Relation (6.4):
for the considered choice of ¢, we find Ay = D.D1D., A¢op, =
DlDeDODOODlDIOv Ieading to ¢t(D1) = l)6 and ¢t(De) = DODl-
Here ¢¢(D.) and ¢.(D;) are left-coprime, so (6.4) is true. The right
diagram shows that the counterpart involving lcm'’s fails.

Remark. Contrary to the braid relations, the LD-relations of Lemma 5.4
are not symmetric. However, it turns out that the presentation of LD*
is also associated with what can naturally be called a left-complement,
namely a counterpart of a (right)-complement involving left-multiples. But
the latter fails to satisfy the counterpart of (6.2), and it is extremely un-
likely that one can prove that the monoid LD™ is possibly right-cancellative
(which would imply the Embedding Conjecture) using some version of
Proposition 6.6.

7. Reproving braids properties

Proposition 5.13 and Theorem 6.1 connect the Garside structures associ-
ated with self-distributivity and with braids, both being previously known
to exist. In this section, we show how the existence of the Garside struc-
ture of braids can be (re)-proved to exist assuming the existencce of the
Garside structure of £LD™ only. So, for a while, we pretend that we do
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not know that the braid monoid B;} has a Garside structure, and we only
know about the Garside structure of LD™.

7.1. Projections

We begin with a general criterion guaranteeing that the projection of a
locally left-Garside monoid is again a locally left-Garside monoid.

If S, S are two alphabets and 7 is a map of S to S (the free monoid
on S), we still denote by 7 the alphabetical homomorphism of S* to El
that extends 7, defined by m(sy...8¢) = 7(s1)...7(s¢).

Lemma 7.1. Assume that

e M is a locally left-Garside monoid associated with a complement C
on S;

e M is a monoid associated with a complement C on S and satisfy-
ing (LGo);

o m:S — SU{e} satisfies 7(S) D S and

For all a,b in S, we have C(m(a),7(b)) = 7(C(a,b)). (7.1)

Then M is left-preGarside, and m induces a surjective right-lem pre-

serving homomorphism of M onto M.

Proof. An easy induction shows that, if u,v are words on S and é(u,v)

exists, then C(m(u), 7(v)) exists as well and we have

C(m(u),n(v)) = 7(C(u,v)). (7.2)
Let @, b, be elements of S. By hypothesis, there exist a,b,c in S sat-
isfying 7(a) = @, n(b) = b, n(c) = ¢. As M is left-preGarside, by the
direct implication of Proposition 6.6, the relation (6.2) involving a, b, ¢ is
true in S*. Applying 7 and using (7.2), we deduce that the relation (6.2)
involving @, b, ¢ is true in S". Then, as M satisfies (LGg) by hypothesis, the
converse implication of Proposition 6.6 implies that M is left-preGarside.
Then, by definition, the relations aC(a,b) = bC'(b, a) with a,b € S make

a presentation of M. Now, for a,b in S, we find

m(a)C(n(a),n(b)) = w(aC(a,b)) = 7(bC(b, a)) = m(b)C(m(b), (a))

in M, which shows that the homomorphism of 5" to M that extends
induces a well defined homomorphism of M to M. This homomorphism,
still denoted m, is surjective since, by hypothesis, its image includes S.
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Finally, we claim that 7 preserves right-lem’s. The argument is almost
the same as in the proof of Theorem 6.1, with the difference that, here,
we do not assume that common multiples necessarily exist. Let a,b be
two elements of M that admit a common right-multiple. Let u, v be words
on S* that represent a and b, respectively. By Proposition 11.2.16 of [18§],
the word C (u,v) exists, and uC (u,v) represents lem(a, b). Then the word
7(uC (u,v)) represents a common right-multiple of m(a) and 7(b) in M,
and, by (7.2), we have

~

m(uC(u,v)) = m(u) C(m(u), m(v)),

which shows that the element represented by m(uC(u,v)), which, by defi-
nition, is 7(lem(a, b)), is the right-lem of 7(a) and 7 (b) in M. O

We turn to locally left-Garside monoids, i.e., we add partial actions in
the picture. Although lengthy, the following result is easy. It just says that,
if M is a locally left-Garside monoid, then its image under a projection
that is compatible with the various ingredients of the Garside structure is
again locally left-Garside.

Proposition 7.2. Assume that

o M is a locally left-Garside monoid associated with a complement C
on S and (Ay)zex is a left-Garside sequence for the involved action of M
on X;

o M is a monoid associated with a complement C on S that has a partial
action on X and satisfies (LGp);
em:iS— SU{e} satisfies (7.2), 0 : S — S is a section for v, w: X —
X is a surjection, and
For x in X and a in M, if x « a is defined, then so is w(x) « w(a)
and we have w(x) « m(a) = w(z « a);
Forz in X and@ in S, if T« a is defined,
then so is x « 0(a) for each x satisfying w(x) = x;
For z in X, the value of m(Az) depends on w(z) only. (7.5)

_ Form in X, let Az be the common value of m(Ay) for w(x) = T. Then
M s locally left-Garside, with associated left-Garside sequence (Az)z %,
and 7 induces a surjective right-lcm preserving homomorphism of M onto
M.

(7.3)

(7.4)
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Proof. First, the hypotheses of Lemma 7.1 are satisfied, hence M is left-
preGarside and 7 induces a surjective lem-preserving homomorphism of M
onto M.

Next, by (7.5), the definition of the elements Az for Z in X is unam-
biguous. It remains to check that (Az) % is a left-Garside sequence with
respect to the action of M on X. So, assume T € M, and let = be any
element of M satisfying w(z) = T.

First, = « A, is defined, hence, by (7.3), so is w(z) « m(Az), which is
T L] Af.

Assume now @ # 1 and T.a is defined. As S generates M, we can assume
a € S without loss of generality. By (7.4), the existence of T « @ implies
that of z«0(a@). As (Ay)zex is a left-Garside sequence for the action of M
on X, we have a’ < A, for some a’ # 1 left-dividing 6(a@). By construction,
(@) lies in S, and it is an atom in M. So the only possiblity is a’ = 0(a),
i.e., we have 0(a) < A,. Applying 7, we deduce @ < Az in M.

Finally, under the same hypotheses, we have A, < (@) Ag.p() in M.
Using

T(Azeb(@) = Ao(zes(@) = Dw(w)ea = Azea,
we deduce Az < @Az.z in M, always under the hypothesis @ € S. The
case of an arbitrary element @ for which T « @ exists then follows from an
easy induction on the length of an expression of @ as a product of elements

of S. |

It should then be clear that, under the hypotheses of Proposition 7.2,
[, @] is a surjective, right-lem preserving functor of C(M, X) to C(M, X).

7.2. The case of LD and B*
Applying the criterion of Section 7.1 to the categories LD and BT is easy.

Proposition 7.3. The monoid B is a locally left-Garside monoid with
respect to its action on N, and (An)nen s a left-Garside sequence in B .

Proof. Hereafter, we denote by C' the complement on {D, | « € A} asso-
ciated with the LD-relations of Lemma 5.4, and by C the complement on
{o; | i > 1} associated with the braid relations of (1.2). We consider the
maps 7 of Lemma 5.11, and the right-height ht from terms to nonnegative
integers. Finally, we define § by 6(o;) = Dqi-i. We claim that these data
satisfy all hypotheses of Proposition 7.2. The verifications are easy. That
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the complements C' and C satisfy (7.1) follows from a direct inspection.
For instance, we find

m(C(D1, De)) = m(DeD1 Do) = 0105 = C(op, 01) = C(w(D1), 7(De)),

and similar relations hold for all pairs of generators D, Dg.

Then, the action of LD' on terms preserve the right-height, whereas
the action of braids on N is trivial, so (7.3) is clear. Next, # is a section
for 7, and we observe that t«6(o;) is defined if and only if the right-height
of t is at least 7 4+ 1, hence if and only if ht(¢) « o; is defined, so (7.4)
is satisfied. Finally, we observed in Proposition 5.13 that w(A;) is equal
to Ay (s), hence it depends on ht(t) only. So (7.5) is satisfied.

Therefore, Proposition 7.2 applies, and it gives the expected result. [

Corollary 7.4. (i) The braid category B* is a left-Garside category.
(13) For each n, the braid monoid B} is a Garside monoid.

Proof. Point (i) follows from Proposition 1.12 once we know that B
is locally left-Garside. Point (i7) follows from Proposition 1.13 since, for
each n, the submonoid B, of BY is (BL), in the sense of Definition 1.8.

O

Thus, as announced, the Garside structure of braids can be recovered
from the left-Garside structure of LDT.

8. Intermediate categories

We conclude with a different topic. The projection of the self-distributivity
category LD* to the braid category BT described above is rather trivial
in that terms are involved through their right-height only and the corre-
sponding action of braids on integers is just constant. Actually, one can
consider alternative projections corresponding to less trivial braid actions
and leading to two-step projections

LDt — C(BL,X) — B*.
We shall describe two such examples.
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8.1. Action of braids on sequences of integers

Braids act on sequences of integers via their permutations. Indeed, the
rule

(T1y ey Tp) 0 O3 = (L1, ey Tim1, Tit1y Tiy Tig 2y ovy Tny) (8.1)
defines an action of B,; on N", whence a partial action of B, on N*, where
N* denotes the set of all finite sequences in N. In this way, we obtain a
new category C(BZ,,N*), which clearly projects to B*.

We shall now describe an explicit projection of LD* onto this category.
We recall that terms have been defined to be bracketed expressions con-
structed from a fixed sequence of variables xi,x2,... (or as binary trees
with leaves labelled with variables z,), and that, for ¢ a term and « a
binary address, t/, denotes the subterm of ¢ whose root, when ¢ is viewed
as a binary tree, has address a.

Proposition 8.1. Let B* be the category associated with the partial ac-
tion (8.1) of BY, on N*. Then B* is a Garside category, and the projec-
tion [m,ht] of LD onto B factors through B* into

[, 7] 4, [id,1g]

LD* B*

where T is defined for ht(t) = n by

B*,

7(t) = (var(tp), vare(t/o), -, varg (tn-10)),

varg(t) denoting the index of the righmost variable occurring in t.

So, a typical morphism of B+ is ((1,2,2), 01, (2,1,2)), and the projection
of terms to sequences of integers is given by

~

/ ) 'ﬂ (p17p2)"'7pn)-
xpl ‘TPQ

Tp

n

Sketch of proof. The point is to check that the action of the LD-law on
the indices of the right variables of the subterms with addresses 190 is
compatible with the action of braids on sequences of integers. It suffices
to consider the basic case of Dyi-1, and the expected relation is shown
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Dlifl

—_—

Lp
Lq Lqg Tp
|7 |7
O;
(s qye.) —> (g, py -..)

FIGURE 9. Compatibility of the action of D;:-1 on sequences of
“subright” variables and of the action of o; on sequences of integers.

in Figure 9. Details are easy. Note that, for symmetry reasons, the cate-
gory BT is not only left-Garside, but even Garside. ]

8.2. Action of braids on LD-systems

The action of positive braids on sequences of integers defined in (8.1) is
just one example of a much more general situation, namely the action
of positive braids on sequences of elements of any LD-system. It is well
known—see, for instance, [18, Chapter I]—that, if (S, ) is an LD-system,
i.e., % is a binary operation on .S that obeys the LD-law, then

({L’l, ...,{En) «0; = (a;l, vy Lj—1, L5 % Ly 1, T, T2, ,.’L‘n) (82)

induces a well defined action of the monoid B, on the set S™, and, from
there, a partial action of B, on the set S* of all finite sequences of elements

of S.

Proposition 8.2. Assume that (S, ) is an LD-system, and let B be the
category associated with the partial action (8.2) of B%, on S*. Then BS is
a left-Garside category, and, for each sequence s = (s1, 2, ...) of elements
of S, the projection [w,ht] of LD* onto BY factors through B into

lid, 1g]

[, 7s]

LD*
where g is defined for ht(t) = n by

B B*,

ms(t) = (evals(tp), ..., evals(t)1n-19)),
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evals(t) being the evaluation of t in (S,*) when x, is given the value s,
for each p.

We skip the proof, which is an easy verification similar to that of Propo-
sition 8.1.

When (S, %) is N equipped with  x y = y and we map z, to p for
each p, we obtain the category B* of Proposition 8.1. In this case, the
(partial) action of braids is not constant as in the case of B, but it factors
through an action of the associated permutations, and it is therefore far
from being free. By contrast, if we take for S the braid group B, with
the operation x defined by x xy = wsh(y) o, sh(z)™!, where we recall
sh is the shift endomorphism of B, that maps o; to o;, ; for each i,
and if we send x, to 1 (or to any other fixed braid) for each p, then the
corresponding action (8.2) of BI on (Bs)* is free, in the sense that a = a’
holds whenever s «a = s« a’ holds for at least one sequence s in (By)*:
this follows from Lemma II1.1.10 of [24]. This suggests that the associated
category C(BZ,, (Bx)*)) has a very rich structure.

Appendix: Other algebraic laws

The above approach of self-distributivity can be developed for other al-
gebraic laws as well. However, at least from the viewpoint of Garside
structures, the case of self-distributivity seems quite particular.

The case of associativity

Associativity is the law z(yz) = (zy)z. It is syntactically close to self-
distributivity, the only difference being that the variable x is not dupli-
cated in the right hand side. Let us say that a term ¢’ is an A-expansion
of another term ¢ if ¢ can be obtained from ¢ by applying the associativity
law in the left-to-right direction only, i.e., by iteratively replacing sub-
terms of the form ¢; x (t2 xt3) by the corresponding term (t; xt2) xt3. Then
the counterpart of Proposition 4.5 is true, i.e., two terms ¢,t are equiva-
lent up to associativity if and only if they admit a common A-expansion,
a trivial result since every size n term t admits as an A-expansion the
term ¢(t) obtained from ¢ by pushing all brackets to the left.
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As in Sections 4.3 and 5.2, we can introduce the category AJ whose
objects are terms, and whose morphisms are pairs (¢,t') with ¢ an A-
expansion of . As in Section 5.1, we can take positions into account, using
A, when associativity is applied at address «, and introduce a monoid A*
that describes the connections between the generators A, [22]. Here the
relations of Lemma 5.4 are to be replaced by analogous new relations,
among which the MacLane-Stasheff Pentagon relations A2 = Ay1 44 Aao-
The monoid A* turns out to be a well known object: indeed, it is (iso-
morphic to) the submonoid F'* of R. Thompson’s group F' generated by
the standard generators x1, 9, ... [11]. Also, the orbits of the partial ac-
tion of the monoid A" on terms are well known: these are the (type A)
associahedra, equipped with the structure known as Tamari lattice.

Now, as in Section 5, we can introduce the category A", whose objects
are terms, and whose morphisms are triples (¢,a,t') with ¢ in A* and
tea =1t'. Using ¥ (¢) for the term obtained from ¢ by pushing all brackets
to the right, we have

Proposition. The categories A and A" are isomorphic; A§ is left-
Garside with Garside map t — (t,¢(t)), and right-Garside with Garside
map t > (0().1).

This result might appear promising. It is not! Indeed, the involved Gar-
side structure(s) is trivial: the maps ¢ and 1) are constant on each orbit
of the action of AT on terms, and it easily follows that every morphism
in Aj and A" is left-simple and right-simple so that, for instance, the
greedy normal form of any morphism always has length one®. The only
observation worth noting is that A" provides an example where the left-
and the right-Garside structures are not compatible, and, therefore, we
have no Garside structure in the sense of Definition 1.7.

Central duplication

We conclude with still another example, namely the exotic central dupli-
cation law x(yz) = (zy)(yz) of [20]. The situation there turns out to be
similar to that of self-distributivity, and a nontrivial left-Garside struc-
ture appears. As there is no known connection between this law and other

3We do not claim that the monoid A* is not an interesting object in itself: actually

it is, with rich nontrivial algebraic and geometric properties, see [22]; we only say that
the current Garside category approach is not relevant here.
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widely investigated objects like braids, it is probably not necessary to go
into details.
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ANR-08-BLAN-0269-02.

References

1]

S.I. Adyan, Fragments of the word Delta in a braid group, Mat. Za-
metki Acad. Sci. SSSR 36 (1984), no. 1, 25-34, (Russian); English
translation in Math. Notes of the Acad. Sci. USSR 36 (1984), no. 1,
p- 505-510.

D. Bessis, Garside categories, periodic loops and cyclic sets,
math.GR/0610778.

., The dual braid monoid, Ann. Sci. Ecole Norm. Sup. 36
(2003), 647-683.

, A dual braid monoid for the free group, J. Algebra 302
(2006), 55-69.

D. Bessis and Ruth Corran, Garside structure for the braid group of
G(e,e,r), math.GR/0306186.

J. Birman, V. Gebhardt, and J. Gonzélez-Meneses, Conjugacy in gar-
side groups i: Cyclings, powers and rigidity, Groups Geom. Dyn. 1
(2007), 221-279.

, Conjugacy in garside groups iii: Periodic braids, J. Algebra
316 (2007), 746-776.

, Conjugacy in garside groups ii: Structure of the ultra summsit
set, Groups Geom. Dyn. 2 (2008), 16-31.

J. Birman, K.H. Ko, and S.J. Lee, A new approach to the word prob-
lem in the braid groups, Adv. Math. 139 (1998), no. 2, 322-353.

E. Brieskorn and K. Saito, Artin-Gruppen und Cozeter-Gruppen, In-
vent. Math. 17 (1972), 245-271.

J.W. Cannon, W.J. Floyd, and W.R. Parry, Introductory notes on
Richard Thompson’s groups, Enseign. Math. 42 (1996), 215-257.

R. Charney, Artin groups of finite type are biautomatic, Math. Ann.
292 (1992), no. 4, 671-683.

241



P. DEHORNOY

[13] R. Charney and J. Meier, The language of geodesics for Garside
groups, Math. Zeitschr. 248 (2004), 495-509.

[14] R. Charney, J. Meier, and K. Whittlesey, Bestvina’s normal form
complex and the homology of Garside groups, Geom. Dedicata 105
(2004), 171-188.

[15] J. Crisp and L. Paris, Representations of the braid group by auto-
morphisms of groups, invariants of links, and Garside groups, Pac. J.
Maths 221 (2005), 1-27.

[16] P. Dehornoy, I1}-complete families of elementary sequences, Ann. P.
Appl. Logic 38 (1988), 257-287.

, Free distributive groupoids, J. Pure Appl. Algebra 61 (1989),
123—-146.

, Braids and Self-Distributivity, Progr. Math., vol. 192,
Birkhauser, 2000.

, Groupes de Garside, Ann. Sci. Ecole Norm. Sup. (4) 35
(2002), 267-306.

, Study of an identity, Algebra Universalis 48 (2002), 223-248.

, Complete positive group presentations, J. Algebra 268
(2003), 156—-197.

, Geometric presentations of Thompson’s groups, J. Pure
Appl. Algebra 203 (2005), 1-44.

[23] P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two
generalisations of Artin groups, Proc. London Math. Soc. 79 (1999),
no. 3, 569-604.

[24] P. Dehornoy, with I. Dynnikov, D. Rolfsen, and B. Wiest, Ordering
braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc.,
2008.

[17]

[18]

[19]

[20]
[21]

[22]

[25] P. Deligne and G. Lusztig, Representations of reductive groups over
finite fields, Ann. of Math. 103 (1976), 103-161.

[26] F. Digne, Présentations duales pour les groupes de tresses de type
affine A, Comm. Math. Helvetici 8 (2008), 23-47.

[27] F. Digne and J. Michel, Garside and locally Garside categories, arXiv:
math.GR/0612652.

242



28]

[29]

LEFT-GARSIDE CATEGORIES

E.A. El-Rifai and H.R. Morton, Algorithms for positive braids,
Quart. J. Math. Oxford Ser. 45 (1994), no. 2, 479-497.

D. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson,
and W.P. Thurston, Word Processing in Groups, Jones and Bartlett
Publ.; 1992.

R. Fenn and C.P. Rourke, Racks and links in codimension 2, J. Knot
Theory Ramifications 1 (1992), 343-406.

N. Franco and J. Gonzalez-Meneses, Conjugacy problem for braid
groups and Garside groups, J. Algebra 266 (2003), 112-132.

F.A. Garside, The braid group and other groups, Quart. J. Math.
Oxford Ser. 20 (1969), 235-254.

V. Gebhardt, A new approach to the conjugacy problem in Garside
groups, J. Algebra 292 (2005), 282-302.

E. Godelle, Parabolic subgroups of Garside groups 1I,
math.GR/0811.0751.

,  Normalisateurs et centralisateurs des sous-groupes
paraboliques dans les groupes d’artin-tits, PhD. Thesis, Univer-
sité d’Amiens, 2001.

, Parabolic subgroups of Garside groups, J. Algebra 317
(2007), 1-16.

D. Joyce, A classifying invariant of knots: the knot quandle, J. Pure
Appl. Algebra 23 (1982), 37-65.

C. Kassel and V. Turaev, Braid groups, Grad. Texts in Math.,
Springer Verlag, 2008.

D. Krammer, A class of Garside groupoid structures on the pure braid
group, Trans. Amer. Math. Soc. 360 (2008), 4029-4061.

S. Mac Lane, Categories for the Working Mathematician, Grad. Texts
in Math., Springer Verlag, 1998.

R. Laver, The left distributive law and the freeness of an algebra of
elementary embeddings, Adv. Math. 91 (1992), no. 2, 209-231.

E.K. Lee and S.J. Lee, A Garside-theoretic approach to the reducibility
problem in braid groups, J. Algebra 320 (2008), 783-820.

243



P. DEHORNOY

[43] S.J. Lee, Garside groups are strongly translation discrete, J. Algebra
309 (2007), 594-609.

[44] S.V. Matveev, Distributive groupoids in knot theory, Sb. Math. 119
(1982), no. 1-2, 78-88.

[45] J. McCammond, An introduction to Garside structures, circulated
notes, 2005.

[46] M. Picantin, Garside monoids vs. divisibility monoids, Math. Struct.
in Comp. Sci. 15 (2005), no. 2, 231-242.

[47] H. Sibert, Tame Garside monoids, J. Algebra 281 (2004), 487-501.

[48] W. Thurston, Finite state algorithms for the braid group, circulated
notes, 1988.

PATRICK DEHORNOY

Laboratoire de Mathématiques Nicolas
Oresme

Université de Caen

14032 Caen

France
www.math.unicaen.fr/~dehornoy
dehornoy@math.unicaen.fr

244


www.math.unicaen.fr/~dehornoy
mailto:dehornoy@math.unicaen.fr

	1. Left-Garside categories
	1.1. Left-Garside monoids
	1.2. Left-Garside categories
	1.3. Locally left-Garside monoids

	2. Simple morphisms
	2.1. Simple morphisms and the functor 
	2.2. The case of a locally left-Garside monoid
	2.3. Greatest common divisors
	2.4. Least common multiples

	3. Regular left-Garside categories
	3.1. The head of a morphism
	3.2. Normal form
	3.3. A computation rule
	3.4. Regular left-Garside categories
	3.5. Regularity criteria

	4. Self-distributivity
	4.1. Free LD-systems
	4.2. LD-expansions
	4.3. The category LD+0

	5. The monoid LD+ and the category LD+
	5.1. Labelling LD-expansions
	5.2. The monoid LD+
	5.3. The category LD+
	5.4. The element t
	5.5. Connection with braids

	6. Main results
	6.1. Recognizing left-preGarside monoids
	6.2. Proof of Therem 6.1
	6.3. The Embedding Conjecture
	6.4. A program for proving the regularity of LD+

	7. Reproving braids properties
	7.1. Projections
	7.2. The case of LD+ and B+

	8. Intermediate categories
	8.1. Action of braids on sequences of integers
	8.2. Action of braids on LD-systems

	Appendix: Other algebraic laws
	The case of associativity
	Central duplication

	References

