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On the range of the Fourier transform
connected with Riemann-Liouville operator

LAKHDAR TANNECH RACHDI
AuLEM Rouz

Abstract

We characterize the range of some spaces of functions by the Fourier transform
associated with the Riemann-Liouville operator Z,, a > 0 and we give a new
description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-
Wiener-Schwartz theorems.

1. Introduction

In [3], the first author with the others consider the so-called Riemann-
Liouville transform Z,; « > 0, defined on the space %,(R?) (the space of
continuous functions on R?, even with respect to the first variable) by

/ / 1—t2x—|—rt)

Ro(f)(r,z) = x(1— t2) (1 — 2)a71dt ds, if a > 0;

1 /1 dt
— V1 —¢2 R if o = 0.
/17‘(7“ t,x—i—rt)m, ita=0

The mapping Z, generalizes the mean operator % defined by

1

Ro(f)(r,x) = /O%f(rsin&x+rc089) de.

2w
The dual operator ‘%, of % is defined by

olo) o) = — [ g/ + (0= )2 y)dy.

s

Math. classification: 42B35, 43A32, 35S30.
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L.T. RacHDI AND A. Rouz

The mean operator %y and its dual ‘%, play an important role and have
many applications; for example, in image processing of the so-called syn-
thetic aperture radar (SAR) data [9, 10] or in the linearized inverse scatter-
ing problem in acoustics [8]. The operators %, and ‘%, have been studied
by many authors and from many points of view [2, 13, 14]. In [3]; the au-
thors associated to the Riemann-Liouville operator the Fourier transform
F o defined by

Fa(f) (1 A) =
1 +oo . o

where, j, is a modified Bessel function. They have constructed the
harmonic analysis related to the Fourier transform .%, (inversion formula,
Plancherel formula, Paley-Wiener theorem, Plancherel theorem ...).

Our investigation in the present work consists to characterize the range
of some spaces of functions by the Fourier transform .%#, and to estab-
lish a real Paley-Wiener theorem and a Paley-Wiener-Schwartz theorem
for this transform. More precisely, in the second section of this paper, we
characterize the range of some subspace of L?([0, +oo[xR;r?**1 dr @ dz)
(the space of square integrable functions on [0, +oo[xR with respect to
the measure 2+ dr ® dx). In the third section; we give a new characteri-
zation of the Schwartz’s space S, (R?) (the space of infinitely differentiable
functions on R?; even with respect to the first variable, rapidly decreasing
together with all their derivatives)[15, 16, 18]. Using this; we give a nice
description of the space S,(I") (the space of infinitely differentiable func-
tions on I' = R? U {(it,z); (t,x) € R?, |t| < |z|}; even with respect to
the first variable, rapidly decreasing with all their derivatives). In the last
section, using the idea of [4]; we establish a real Paley-Wiener theorem
and a Paley-Wiener-Schwartz theorem.

We recall that in [21]; the author obtains similar results for the Hankel
transform and the generalized Hankel transform on the half line.

2. Fourier transform associated with Riemann-Liouville op-
erator.

In this section, we recall some properties of the Fourier transform associ-
ated with the Riemann-Liouville operator.
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ON THE RANGE OF THE FOURIER TRANSFORM

For all (i, \) € C?; we put

Cu(r, x) = Ko cos(p.)exp(—iX.))(r, z),
where Z,, is the Riemann-Liouville transform defined in the introduction.
Then, the function ¢, ) is given by

SD,LL,)\(rv x) = Ja (7" \/ Mg + )‘2)671./\367 (2'1)

where j, is the modified Bessel function defined by

N Jals) _ S DT s\
Ja(s) = 2°T(a+ 1)=27 —F(““);}k!r(mmn@)

(1— t2)a‘%e*it5dt; (2.2)

Val(a+3) J-
and J,, is the Bessel function of first kind and index « [6, 7, 12, 22].
Moreover,

Fa+1) /1

e For all (u, A) € T, we have

sup fpua(r,z)| =1
(r,z)€eR?

where T is the set given by

D=R2U{(inA): (.)€ B2, |u] < AT} (23)
e For all (u, \) € C?; the function ¢, ) is the unique solution of the
system
Ayu(r,z) = —idu(r, z),
Aou(r, x) = —p2u(r, ),
0
u(0,0) = 1, 8—:(0,95) —0; Vz € R;
where 9
Ay = —
1 81}’

02 2a+10 0? ‘
P s e
In the following, we shall define the Fourier transform associated with the
Riemann-Liouville operator and we give some properties that we need in
the next section.

We denote by

Ay = (r,x) €]0, +oo[xR, a > 0.
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L.T. RacHDI AND A. Rouz

o dvy(r,z) the measure defined on [0, +oo[xR, by
1
20T (e + 1)V 27

r?tlir @ dx.

dve(ryx) =

o [P(dv,), p € [1,+00], the space of measurable functions f on
[0, +oo[ xR, satisfying

7l = (/OJFOO/R‘f(r, $)|pd1/a(7‘7x))zl7 e 1y

PiVa
ess sup  |f(r,z)| < +oo, p = +o0.
(rx)€[0,+00[xR
e I', the subset of I' given by
Ty = [0,+oo[xRU{(i, \); (1, A) € R?, 0 < p < [N}

e %r, the o—algebra on I';

Br, =07 (B +00[xR)

where 6 is the bijective function defined on I'} by

O(p, ) = (2 + A2 N). (2.4)

o dv, (i, A) the measure defined on I'; by
YalA) =va(0(A)); A e Br.

o LP(dvy), p € [1,+0o0], the space of measurable functions f on I'y,
satisfying
[ £llpye < +o0.

e dmy(z) the measure defined on R", by

1
dmy,(x) = — dzx.
)}
e LP(dmy), p € [1,+0o0], the space of measurable functions f on R",
satisfying
||pr’mn < +o0.
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ON THE RANGE OF THE FOURIER TRANSFORM

Proposition 2.1. i. For all non negative measurable function f on I'y
(respectively integrable on I'y with respect to the measure dv, ), we have

//F+ Flu, Ndya(p, A) =

S o7 O N) (1% + N2)* pdpad + fyy S £ (g, ) (A2 — 512) pdpad A
V27 20T (a + 1)

it. For all non negative measurable function g on [0, +oo[xXR (respectively
integrable on [0, +oo[ xR with respect to the measure dv, ), we have

/R/()+OO 9(r, z)dva(r,z) = / p,9° (1, Ndya(p, A). (2.5)

Definition 2.2. The Fourier transform associated with the Riemann-
Liouville operator is defined on L!(dv,) by

N eTs FulNN = [ [ 500 0) dutro),

where I' is the set defined by the relation (2.3) and ¢,, ) is the eigenfunction
given by (2.1).

We have the following properties
e For every f € L'(dv,) and (i, A) € T, we have
Fal)(11:2) = (B o Fa) (f) (11, ) (2.6)
where,
W V) €B% ZulN ) = [ [ 000 dalrn) e M),
and

V(u,A) €T, B(f)(ua)‘):f(\/ :u2+)‘27)‘) = fol0(uA). (2.7)

e For f € L'(dv,), the function .Z,(f) is continuous on I' and

im  Falf)(N) = 0.
w4222 —+o00
(mN)ET
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L.T. RacHDI AND A. Rouz

e For f € L'(dv,) such that Z,(f) € L'(dv,), we have the inversion
formula for .%,; for almost every (r,z) € [0, +00[xR,

pa) = [ [ ZalP) 0 NGl )i ).

e For all p € [1,+o0] and f € LP(dv,),
B(f) € LP(dva) and  |[B(f)lpye = IIf

[pva- (2.8)

In particular, from the relations (2.5), (2.7) and the fact that the func-
tion 6 defined by (2.4), is bijective from I'; onto [0, +oo[xR; we de-
duce that the mapping B is an isometric isomorphism from L?(dv,,) onto
L?(dvy). N

It’s well known [19, 20], that the transform .%, is an isometric isomor-
phism from L?(dv,) onto itself. Then, using the relations (2.5), (2.6) and
(2.7), we have the following result

Theorem 2.3. (Plancherel theorem) The transform %, can be extended
to an isometric isomorphism from L?(dvs) onto L?(dvs). In particular,
we have the Parseval’s equality; for all f, g € L*(dv,)

/R/O+°° fr,@)g(r, z)dve(r,z) = //r+ Fo )1t N)Zar(9) (1 N drya (1, N).

3. Fourier transform of L?(dv,)- rapidly decreasing functions.

This section consists to characterize, by the Fourier transform associated
with the Riemann-Liouville operator, a space of functions having only
some integral conditions at infinity. This permits in the coming section,
to give an other description of the Schwartz’s space on the set I'.

We denote by [3, 13]
e S(R?) the space of infinitely differentiable functions on R?, rapidly
decreasing together with all their derivatives, and S, (R?) its subset

consisting of even functions with respect to the first variable.

e S.(I") the space of infinitely differentiable functions on I', even
with respect to the first variable, rapidly decreasing together with
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ON THE RANGE OF THE FOURIER TRANSFORM

all their derivatives, which means
V(ki, k2) € N2, Va € N,

0 0

sup { (1 + |uf* + IAIQ)QI(%)'“(a)’”f(M, A (1, A) €T} < +oo,
where
2(f( \), if p=reR;
af - or Ty ) yp=r )
a(:uv )

10
+ v . . _ < )

To prove the main result of this section, we need the following lemma.

Lemma 3.1. Let ag, ay, by, by be real numbers such that a; < by;
i €{0,1}; and let

¥ R? X [ag, bo] x [a1, b1] — C

be a bounded function such that

i. For all (u, \) € R?; the function
(ryz) = (1, N); (r, )

belongs to L' ([ag, bo] % [a1,b1]; dma(r,)).
ii.
I S LT d 0
m Y ) T,ff m T,CC ==
u2+/\2—>+oo/% _/Cy1 U ((p, A); (1, ) dma(r, z)
uniformly with respect to oy, Bi; 0<i <1 and a; < a; < G; < b;.

Then, for all f € L*([ag,bo] % [a1,b1]; dma(r,z));

bo b1
lim 0 /al P((p, N); (1, @) f(r, ) dma(r,z) = 0.

p2HA2—+o0 Jg
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L.T. RacHDI AND A. Rouz

Proof. e Suppose firstly that f € S(R?). By integration by parts; we have
[ [ a0 () a2
= st v [ [ 000 () i)
—/b1 %7 (b, 2) / /b0 (s (8,) dma(t,y) |de
_ a'ﬂ’” O (1) / / ty) dma(t,y)]dr

/bo by aarzx 733;) /ao /a1 w((ﬂ; /\); (t,y)) de(t7 y)} dr dx.

al

Then, the result follows from the hypothesis i) and the fact that f and
all its derivatives are bounded on R2.

e If f is any function in L' ([ag, bo] X [a1, b1]; dma(r,x)); then for all € > 0,
there exists g € S(R?) such that

/bo /bl ‘f(n ;(;) — g(?", x)’ de(T’, .f) < € 1

2||¢lloo
Consequently;
by b1
F(r, @) (1, X); (v, 2)) dma(r, )|
1
bo b1
< g(r, @)% (1, N); (r, 7)) dma(r, )|
and the required result follows from the first case. O

Ezample 3.2. Let a be a positive real number and let
¢ : R?x[0,a] x [~a,a] — C
defined by

DN (1)) = (1) 2 (rpr) €0 oo (1)-

From the asymptotic expansion of the function j, [12, 22]; it follows that

the functions
2 ja(r)

re=—r
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ON THE RANGE OF THE FOURIER TRANSFORM

and .
o) = [ s jals)ds
0
are bounded on [0, +co[. On the other hand, for all (u, \) € R?;

[

a
(r,z) ‘dmg r,z) < %/0 |(7’u)°‘+%ja(r,u)]dr
a? 1
+7 .
< 2 il
e For all [ao, Bo] C [0,a] and [aq, B1] C [—a,al;

/ﬁo /ﬁ1 (e, A); (r, ) dma(r, z)

ag Jai
Ler @t —em g(fop) — glaop)
T i U '

IhllS,
li oo A d =0
im S A); (ryx)) dma(r,x) =
i , /al (s A); (r,@)) dma(r, )

uniformly for [ag, Bo] C [0,a] and [a1, 1] C [—a,a].

Consequently; from lemma 3.1, we deduce that
V f € LY[0, +oo[xR, dma(r, z));

a a .
lim Fr,@) (rp) 2 jo(rp)e™ ™ dmo(r,x) = 0.
p2HA2—+00 S0 J—qa

In the following, to give a nice description of rapidly decreasing func-
tions; we need the following notations

o _10
op*  pop
0 d
o ( aA_)\a/ﬂ
% 2a+10
T
or? r Or
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L.T. RacHDI AND A. Rouz

82
L,=1,+—=—
* + Ox?

0 0
o Ko=(12+ )‘2)(872)2 2o+,

0 0
[ ] Aa:Ka_}—(a_)\ai'u?)Q:Ka_FCQ

Then, for all f € S,(R?); we have the following properties

0 0
B(Wf) = 5,250 (3.1)
e For all (ki, ko) € N?;
1 0 \ky _ 1 (k2
B(If (53)"1) = K C#B(p). (5.2)
e For all k e N;
B(LEf) = AEB(§). (3-3)

Where B is the mapping given by the relation (2.7).
Now, we are able to prove the main result of this section.

Theorem 3.3. Let f € L*(dv,). Then, the following assumptions are
equivalent
1. For all (ki, ko) € N%; the function

(r,x) — rklxk2f(r, x)

belongs to the space L?(dvy,).
2. The Fourier transform Z,(f) of f satisfies the following properties

i. The function F,(f) is infinitely differentiable on T', even with re-
spect to the first variable.

ii. For all (ki,ks) € N2 the function KE1C*2 7, (f) € L?(dva).
iti. For all (ky, ko) € N%;

2a+1
im (14 (20 ) KECRZa(f)(1,)) = 0.
u2+2)\2—>+oo

(p,N)er
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ON THE RANGE OF THE FOURIER TRANSFORM

iv. For all (k1, ko) € N?;

2043 ()
li 2401 L Khok g, JA) =0.
u2+2)1\£Ii>+oo (1 ) o2 () (ps A)
(mA)ET

Proof. e Suppose that for all (ki, k2) € N?; the function
(r,z) — rF1zk2 f(r, x)

belongs to the space L%(dv,). Then, for all (I3, l3) € N?; the function
(r,x) — a2 f(r, z)

belongs to L!(dvy).
i. From the relation (2.2), we deduce that for all k € N and s € R;

UOIESE (3.4)

then, by derivative’s theorem, it follows that the function
ZalD@N = [ [ Fraialrm)e  dva(r.a)

is infinitely differentiable on R?, even with respect to the first variable.
Hence, from the relation (2.6), the function .%,(f) is infinitely differen-
tiable on I', even with respect to the first variable.

ii. For all (k1, ko) € N? and using the relations (2.6) and (3.2), we get

KR CRZ.(f) = KEC%(B(Za())))
o —
_ ki1 Y \k
= B(1 (57" Za(h)
= B(Zal(=r*)(=in) )
= Fal(=r*)" (—ix)* f).
Since, the function
(r,z) — gk f ()
belongs to the space L?(dv,); by Plancherel theorem’s; the function
KN O Zo(f) = Fal(—r)M (—iz) 2 f)

belongs to L?(dyy).
iii. For all f € L!(dv,); the function %, (f) belongs to the space € o(R?)
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L.T. RacHDI AND A. Rouz

(the space of continuous functions g on R?; even with respect to the first

variable and such that lim  g(p,A) =0). Then,
p24+A2— 00

im  KRCRFa(f) (1)) =

24222 — 400
(p,\)er
m  Fo((—r?)M (—ia)h 24 A2)) = 0. 3.5
P Bl D) (3.5)
WA)E

On the other hand; for all (i, \) € [0, +oo[xR, we have

2a+1 —

w2 Fa (=M (=) f) (u, 0)
Jo S a2 (=) £ (r, 2)pot 2 o (rp)eNor 2 drda
20T (o + 1)V27
A Sio ooy, (Z2M (—i)2 £ (r, 2) O 2 o (rpp)e X020 dr dar

20T (o + 1)V/27

where a > 0 and [, = [0,a] X [—a,a]. Let

C, = sup |s°‘+%ja(s)],
s=>0

and [ € N such that

//+Oo dr d$ < +
oo
R Jo (1+T2+x2)2l ’
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ON THE RANGE OF THE FOURIER TRANSFORM

we have;

1 ati —IAT . 200
S Jioooper, (Z72)E (i)™ f (r, @) o 2 o (rp) e Ao T drdz
20T (o + 1)V27

2R || k2 | f(r, CL‘)‘T‘OH_%CZT dx

Ca
<
QQF(a + 1)V2r //0 +00[xR\I,

/+°°/ drdx )%
X
2ara+1 27r (1+72+a2%)%

(/. o (172 o a2 o 22 £ (r, ) P2 e

[NIES

/+°O drdz )%x
l 2 2)2
(zar(a+1 o) ? (1 +7%+2%)

N

(f o (L 7+ a2 22 £ )P 2) - (36)
, OO a
Let € > 0. Since,
“+oo
[ [ et a2 ) Pdva(r, ) < +oo
by (3.6); there exists a > 1 such that
. 1. i
[ ], O i e v )| <
oo a
Let 7 be the function defined in example 3.2 by
1 i 1
w((,ua )‘)7 (7“,.1‘)) - MOH_Q Ja(rﬂ) € i Ta+21[0,+00[(ﬂ)

DN ™

and )
g(ra 1’) = <_1)k1r2k1+a+§(_ix)sz(n .I')
By Holder’s inequality, we have

/+°°/ ]g(r,x)|dm2(r,x) :/+°°/ P29 F2| £ (r, ) [Pt 5 dima (1, )

<2°‘F(a+1 277 /+°°/ dma(r, x) )%
(1472 +22)2

400
([T [a+r e a)rtiafo)? dvalra)® < +oo.
0 R

D=

367



L.T. RacHDI AND A. Rouz

Applying the result of example 3.2; we deduce that

Y AP ki, 2ki4+204+1(_: Nk , —iX P +X =400
[ [ ety 2ot e () o (rp)e Mdrda "
0 J—a

This shows that

. atl = .
T () (i) ) (1, 2) = 0

and consequently;

im (2422 Fa () (—ix) f) (a2 + A2 N) = 0.

24222 — 400
(m,A)ET
(3.7)
Combining the relations (2.6), (3.2), (3.5) and (3.7), we get
2a41
im (14 (200 KB CR 2o (f)(12) =0,
w4222 —+o00
(mN)Er
iv. From the relation
D Gulrm) = = () (8)
8M Ja Tl - 2(a+ 1) Ja+1\TH), .

and from the derivative’s theorem, We have
2a+3 a -

Fal(=r (=i)= £ X) = 555

2
n g
+o0 3 .
[ [t ia= it s (e odva(r ).
0 R
Using the same argument as in iii) and the example 3.2, with

(1A, (r,2)) = ()T 2 fa (ri)e Lo 4 oog (),
and
glr,z) = (~Lltip2atets gk (1)
we deduce that

2a+3 3 g
2 [

lim Fro (=) (—iz)*2 ) (u, ) = 0,

22— +o0 8/1,2

and therefore

. 2003 0 2\k1 ;-\ —
o Bl % 5 m Fal(=r) (=) 1)) (0, 2) = 0.
(pA\)e T
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ON THE RANGE OF THE FOURIER TRANSFORM

Wich means that

2043
lim (PN T g K3 CRZ(f) (,N) = 0.

124202 — 400 o
(mA)e T

e Conversely; suppose that f € L?(dv,) and .%,(f) satisfies the asser-
tion 2) of theorem. In particular; for every (ki,k2) € N2, the function
Kk C*2 Z,(f) belongs to L?(dy,). In virtue of the relations (2.5) and

(3.2), we deduce that for all (ky, ko) € N2; the function I¥1 (—— 0 )kQ%(f)

oA
belongs to L?(dvy).
Let’s denote by A,; n € N*, the usual Fourier transform defined on

L' (dm,) by
N = [ fa@) e O dm, (@)

and F, the Fourier Bessel transform defined on the space
1

L ([0, +o0], ¥t ) 1)r2a+1 dr)
by
Fa(f)0) = gapes [ 90 dalr) 2404
o 1 = BT (et r) ja(rp) r r.

Let £ € N. Since
+o0 o b~ 9
L [N Zath )| e 3) < +oo
0 ROA

then, there exists a null set Ny C [0, 4+o00]; such that for all p € Nf;

/‘m )Mm<+m (3.9)
For ;o € NY; we put

Fealt) = (5) Zal£)(m1)

and .
9= [ feuedm(@); ne N
By (3.9); the function fy , belongs to L?(dm;) and
lim  gi, = A7 (fry)  in LP(dmy). (3.10)

n—--400
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However; by integration by parts; we have

e ityfkfl,u(t)]in — /_7; fk,lw(t)iyeitydml(t). (3.11)

gk,p(y) o

On the other hand, from the hypothesis iii) and by writing

(142l (;A)b%(f)(m A)

= {1+()\2 (12— 22) T ]K’“C'”ﬂ (D2 =22,

if > |\ and
2041 0 —~
(L4 7218 (53) " ZalF) (1)

241
=1+ 02 D) | Kb ez a3 - ), (312)
if 1 < |\|. We deduce that for all (kq, ko) € N?;

)
i 1 1k
Mmlggm( + )ik (57

by
*Fa(f) (1 A) = 0.
In particular; for all p € [0, 4o00];

i 0 k=1 = B
im0 Fam ) =0

Consequently; for all € Nf;

lim [e fk_l,#(t)}fn = 0. (3.13)

n—-s-4o0o

Combining the relations (3.11) and (3.13), we get

lim _gh(o) =t (=ip) [ feru®) ¢ dmi (o)

and by iteration, we deduce that

tim g7, (o) = (~ig)* tim [ fo,(t) edma (o).

n—---+00 n—->--400

Using the relation (3.10), we obtain
AT () = (=in)* AT (fo)- (3.14)
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ON THE RANGE OF THE FOURIER TRANSFORM

Since the usual Fourier transform A; is an isometric isomorphism from
L?(dmy) onto itself, the relation (3.14) involves that

/R [ fon0)Pdmi(\) = /R AT (fo) () Pdmy (A)

/R‘((f)\)k%(f)(ud)rdmlo\) :/ ‘2

N Eo (£ ) (1)
R

dm1 ()\)

T2a+1 dr

20T (a+ 1)
the fact that the Fourier-Bessel transform F,, is an isometric isomorphism
2a+1

20T (a+ 1)

Integrating over [0, +oo[ with respect to the measure and using

from L2 ([0, +o0], dr) onto itself, we deduce that

/0+OO A1 0 Pl 3) = f%\@fﬁ(ﬁ(w W a3

<+ 00

which shows that for all £ € N;

/+<>0/ |2 f(r, :L')‘2dl/a(7",$) < +o0. (3.15)
0 R

By the same way, and using the fact that for all k£ € N;

+oo L = )
/0 /R’la Fo(f) (1, /\)‘ dve(p, A) < 400,

we deduce that there exists a null set No C R such that for all A € Ng;

+o0 — 2 90
/0 | Fa ) (1, M| 17T dp < 400

Let
ealr) 20<F(;+ 1) /0" o FalF) (1, A) Jo(rp)*® ™ dp
then;
im B () = Fa (I Fal)(50)(0) (3.16)
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T2o¢+1

. L2
in L*([0, o0, 726!1_‘(& Y

dr). Now; integrating by parts; we have

Al = gy o S (5 Za( )00 )]

T 20T (a+1
n

[ a b Fa D]} = (), @)

On the other hand, from the hypothesis iii) and by the relation (3.12), we
deduce that for all k € N;

. 2a+1 k g o
pam (T+p72)16Za(F) (1, A) = 0.

In particular, for all A € R;

lim %2 18 Zo(f)(p.A) = 0. (3.18)

H—>+00

However, from the relation (3.8) we have,

2 )l a0

Ca+1 —a+l a4lie—1 &
< o Lot e I F () (A
et Fu )

and by the relation (3.18), we deduce that for all A € R

0 —
. 20+1 . k—1 o —
} 11151_ i o (Ga(ru))le™" Fa(f)(pu,A) = 0.

By the same way, we have

o (i) uza“ai(lfil ZalF)1, V)|

< Cy ottt 2 (5L Za () (11, M)
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using the relation (3.1) and (3.2), we get

iar) 241 5 (5 Zul) (V)] < Ca

2a+3 0
(A2 + (u® = N%) 7 aTLQKi:%(f)(\/u?—A?,A), if > |A;

. 0 .
(N2 + (iV/A2 — p2)?) 1 a2 Kl Z,(H) (VA2 =20, if p<|A
By the hypothesis iv), it follows that for all A € R;

P —
- ~ 2041 k=1 7 _
. th.qr Ja(ru) p o (157 Za(f) (1, N) = 0. (3.19)

Combining the relations (3.16), (3.17), (3.18) and (3.19), we deduce that
for all A € N§; the function

r—s (=12) Fy (51 Z0(f) (L, N) ()

p20+1
20T (a 4+ 1)

Fa(lf Zal£)(N)(r) = (=) Falls™" Zal£)(N) ().
By iteration, for all A € N§, the function

r— (=12)* Fo(Za(£)(,N)(r)

belongs to L2([0, +o0], dr) and

p20+1
belongs to L?([0, +oc], mdr) and we have
Fa(le, Za(H)(0)(r) = (=r%)" Fa(Zal£)( 2) (1)

= (=) Aa(f(r, ) (V). (3.20)

Integrating over [0,4o00[xR, with respect to the measure dv,(r,\) and
using the Fubini’s theorem and Plancherel theorem’s, respectively for Fy,
and Ap; the relation (3.20) leads to

/0+OO /R 2% £ (r, w)|2 dvg(r, x)

+o0o .
= [ [ Zan e dva(r ) < +oc.
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This shows that for all k € N;

/+Oo/ [ f(r, )P dva(r, z) < +oo. (3.21)
0 R

Thus, by the relations (3.15), (3.21) and the Cauchy-Shwartz inequality,

we deduce that for all (kq, k2) € N2, the function
(r,z) — r*1zk2 f(r, z)

belongs to L?(dv,). This completes the proof of theorem 3.3.

4. Best charcterizations of the spaces S.(R*)and S,(T).

In this section, using the theorem 3.3, we give new characterizations of
the Schwartz’s spaces S, (R?) and S,(I'). For this, we need the following

important result

Proposition 4.1. Let f be a continuous function on R?, even with respect

to the first variable. Then, the following assumptions are equivalent.

i. For all (ky, ko) € N?; the functions
(ry@) — % &2 f(r,@) and (1, A) — 1™ N2 Fo(f) (1, A)
are bounded on [0, +oo[xR.
ii. For all (ki,ks) € N?; the functions
(row) — ™ &2 f(r,w) and (i, A) — ™ N2 Fo () (1, A)
belong to L?(dvy,).
Proof. e It’s clear that, if for all (k1, ko) € N?; the functions
(ry@) — ™ 2 f(r,z) and  (u,A) — g A2 Zo () (1, N)
are bounded on [0, +-00[xR, then for all (I1,l3) € N?; the functions
(r,z) — 1! 22 f(rz) and  (,A) — u X2 Za(f)(p, N)

belong to L%(dv,).
e Conversely, suppose that for all (ky, k2) € N?; the functions

(r,z) — ¥ 2k f(r,z) and  (, A) — @t X2 Zo () (1, A)
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belong to L?(dv,). Then by Hélder’s inequality, we deduce that for all
(I1,12) € N?; the functions

(ryx) — 't 2 flrz) and  (u,A) — p't A2 Zo(f) (1, A)

belong to L!(dv,), and by derivative’s theorem, the relation (3.4) and the
inversion formula for the transform .%#,, that is

$i0) = [ [ Falf) ) dalr) € d0

we deduce that the functions f and %( f) are infinitely differentiable on
R?, even with respect to the first variable. Moreover, for all (ky, k2) € N?;
. O ki, O ks B
lim (5) (%) f(r,x) =0 (4.1)

r2+z2—+o00

and a 3
k1 ko = _

1. For all (kq, kg) € N?: such that k; > 2a + 1; the function
(r,x) — ph gk f(r,x)

belongs to L!([0, +00[xR, dma(r,)). Indeed

/OJrOO/R’rlﬁ ke f(?”,ZC)|dm2(r’ x)
1 L N
:/0 /R!r 2 f(r, ) |dma(r, )
+/+OO/ |T’k1 ;I;kQ f(’r’,flf)|dm2(r7:1;)

gm\;;l /|a:k2fr:c|d1/ar:z
+/ /}rklxsz(r,:v)}dya(r,m)}
<20¢F / /|xk2f7“a:|duara:

—i—/o /R\rkl:rk?f(r,x)\dua(r,x)}

< +00.
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2. For all (k1,k2) € N? and a € R; a > 0, the function
(ryx) s M k2 f ()
is bounded on [0, +-00[xR.

2(a+1)

In fact; let m € N; m > 3 and m > . By a simple calculus and

a
using the fact that f and all its derivatives are bounded on [0, +oo[xR;
we deduce that for all (k1,k2) € N?; there exists Cky ka,m,a > 0 such that

B2 [(phree ot f(m:))mH

Ckl,kg,ma « {’7, (k1+a)— mkgfl f(,,,7 (L’)| + ’Tm(k1+a)fl xmkg f(?“, :IZ)|
+ |,r,m(k1+a) xmkg—l f(?“,$)’ +2 |rm(k1+a) xmkg f(’l”, 17)|},

and by 1) of this proof, we deduce that the function

(r,z) — ;i} [(rk1+a z*2 f(r, x))m}

is integrable on [0, +00[xR with respect to the measure dms(r, z) and by
(4.1), we have

(rkl‘f‘a ku f(’f' x))m
/ / c‘)tay (e ™ f(t,y)"|dt dy, if ks > 1

/ / 5 ay tk1+a &) }dt dy,  if ky = 0.
This shows that the function
(r,x) — rF1te k2 ()
is bounded on [0, +oo[xR and for all (r,z) € [0, +00[xR;

. 0 0 a_ ks
|7"lir zk2 f('f'yw)‘ (27T||ara (Tlir : f)Hl,mz)

3. For all (ki, k2) € N2; the function

(r,x) — rk gk f(r,x)

3=
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belongs to L!([0, +00[xR, dma(r,)). Indeed
+o00 1
/ /|rk1 xh2 f(r, x)|dm2(r, x) :/ /|1”k1 k2 f(r,a:)|dm2(r,x)
0 R o Jr
—+o00
—I—/ /R|rk1 k2 f(r,:v)|dm2(r,$).
1

From 2) there exists C, r, > 0 such that

C
¥ (r2) € [0, +oolxRs [ ot f(ra)| < =B,
thus;
' 1 L dr 1
k1 ,.k2 < - IR
»/O/R|T 2% f(r,z)|dma(r,z) < 27r0k1’k2/0 NG R(1+$2>dm
= Cky k-

On the other hand;

/1+oo/R|rk1 k2 f(r, $)|dm2(7~7x) <

which proves that for all (kq, ko) € N?;

+o0
/ / ‘rkl P f(ryz)|dma(r, z) < +oo.
0 R
4. For all (ki, ks) € N?; the function
(r,x) — ¥ 2k f(r )

is bounded on [0, +oo[xR. Indeed; for k; > 1, the result follows from 2)
Let’s prove that for all £k € N; k > 1; the function

2 T(a+1)
V2r

Hrklxk2f||1’ya7

(r,z) — zF flr,x)

is bounded on [0, +00[xR. From the fact that f and all its derivatives are
bounded, we deduce that there exists C}, > 0 such that;

V (r,x) € [0, +o00[xR;
0 0 3 -
oy 5@ 1)) < C{ e f ) + 2% f (),
and by 3) we deduce that the function

() — o2 (& 7, 2)’]
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belongs to L!([0, +00[xR, dma(r,z)), and by (4.1) we have;

(2 / /8t8 (" £(ty))°]dt dy.

Consequently, for all (r,z) € [0, +oo[xR;

2 216k )

By the same method and using the relatlon (4.2), we prove that for all
(k1, ko) € N?; the function

(s A) > pF X2 20, () (1, )

is bounded on [0, +-00[xR.
This achieves the proof of proposition 4.1. O

2% fr.2)| < (27

In the sequel; we give a new description of the Schwartz’s space S, (R?).
Namely, we have

Theorem 4.2. Let f be a continuous function on R?, even with respect
to the first variable. Then, the following properties are equivalent.

i. For all (ki, ko) € N%; the functions
(ry) e ™ a2 f(r) and - (uN) — pf N2 Fo(f) ()
are bounded on [0, +oo[xR.

ii. The function f is infinitely differentiable on R?, even with respect
to the first variable, bounded together with all its derivatives on
[0, +00[xR and for all (k1,k2) € N?; the function

(r,x) — r* 2k f(r 2)
is bounded on [0, 400 xR.
iii. The function f belongs to the space S,(R?).
iv. For all (k1,k2) € N?; the functions
(ro) 7 abe f(ra) and - (uA) — i X2 o (1) (. N)
belong to L?(dvy,).
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Proof. e From the proof of proposition 4.1, we deduce that ii) holds if i)
is satisfied.
e Suppose that f satisfies ii). Then, for all (ki, k) € N?; we have

r o 0 87
/0 121 az2k2|8—{(t,m)\2dt :/0 12k g2k af(t x)(ajtt)(t z)dt

= [ a0 (]| - /OTx%?f(t,x)2/~c1t2k1_1(g{)(t,x)dt

T
/0 a?k2 (¢, )tk ( mf ) (t, z)dt

= 0 2 ) (L) ) — 2k [P () () )

- [, (2D, aya
0 o2

And by hypothesis, we deduce that for all (k1, ko) € N?; the function
(r,x) r—>/ 2 x2k2|%:(t,x)}2dt (4.3)
0

is bounded on [0, +oo[xR.
By the same way, for all (k1, ko) € N?; the function

(7“, x) »—>/ rzkl ka’zyg(r, y)‘zdy (4.4)
0 Y

is bounded on [0, +oo[xR.
On the other hand, for all (ki, ko) € N?;

9 k1 .3ka of 3\ _ 3k1—1 _.3ko ﬁ 3
g (r ((97“ (r,z)) ) =3k 7 x (81" (r,z))

8 2
+ 33k m3k2(a—f(r,x)) o J;(r x).

Consequently,

0 0 0
(rPt o2 8—£(r, )’ = 3k:1/0 g3kt BkQ(E){(t x))Z(a—‘:(t,m))dt

2
+3/ 13k g3k ( af (t x))zgtf(t, z) dt.
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From (4.3), we deduce that for all (k1, ko) € N?; the function

0
(ry) k1 2t 9 )
is bounded on [0, 4+oo[xR. By the same way, and using (4.4) it follows
that the function 3
(r,x) — rFt zke 8—£(T, x)
is bounded on [0, +oo[xR.
. Of of .. . .
Thus, the functions o and —— satisfy the same hypothesis as the function
r x
f. By iteration, we deduce that for all (I1,l) € N?; the function
0.1, 0 .
kl k}2 . 1 . 2
(r,z) — rix (ar) (&U) f(r,x)

is bounded on [0, +oo[xR.

Which means that the function f lies in S, (R?).

e It’s clear that if f belongs to S,(R?), then for all (ki,ks) € N?; the
functions

(r,z) — 1" 2 frz) and  (u,\) — Pt N2 Zo(F) (N

belong to L?(dv,), because the transform .%, is an isomorphism from
S, (R?) onto itself.

e Lastly, if the hypothesis iv) is satisfied, then by proposition 4.1 we deduce
that i) holds. O

Corollary 4.3. Let f be a continuous function on I', even with respect to
the first variable. Then the following assertions are equivalent.

i. For all (ky, ko) € N?;
k
sup ‘(/ﬁ + )\2)71)\k2f(,u7 )\)’ < +oo
(/’L7>‘)EF+

and

sup ‘rkl k2 9gl(f)(r, x)‘ < +00.
(rz)eRL xR

ii. The function f is infinitely differentiable on I", bounded together
with all its derivatives on Ty, and for all (kyi,ks) € N?; the func-
tion

(1, A) — (1 + Az)%Aka(M, )
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is bounded on T';.
iii. The function f belongs to S.(T).
iv. For all (ki,k2) € N?; the functions
k1
(1, A) > (1 4+ X3) 2 A% f(p, \)
respectively
(r,x) — 8 2P Z7L(f)(r, 2)

belong in L?(dvy), respectively L?(dvy).

Proof. let f be a continuous function on I', even with respect to the first
variable. We consider the function g defined on [0, +00[xR by

f(Wr2—z22), ifr> |z
fva? —r2x), ifr<|z|

g(r,m) =

Then,

e For all (u,\) €T
B(g)(/" )‘) =gc° 9(”7 >‘) = f(#v )‘)

k
sup |7J€1 xk‘Q g(T, 33)‘ = sup ‘(MQ + AQ)TIAka(M, )\)|
(r,z)€R4 xR (uN) el

e For every (r,z) € [0, 4+00[xR;
Fal9)(r,x) = FZ () (r,—2).
So, if the function f satisfies the assertion i) of this corollary; then for all
(k1, ko) € N?; the functions
(r,x) — r* 22 g(r, 2)

and .

(11, A) — 1M A®2.Z0 (9) (1, V)
are bounded on [0, +00[xR. Consequently, the result follows from theorem
4.2 and the fact that for all g € S,(R?); the function f = g o § belongs to
S (). O
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5. Fourier transform of functions with bounded supports.

In this section, we characterize some spaces of functions by their Fourier
transforms. More precisely, we establish a real Paley-Wiener theorem and
a Paley-Wiener-Schwartz theorem for the Fourier transform connected
with the Riemann-Liouville operator.

Theorem 5.1. (Paley-Wiener) Let f be a function in L*(dv,) and
9=7'(f)

i. If g has a compact support, then f satisfies the assertion 2) of
1
theorem 3.3. Moreover, the sequence (HAZ(?oé(g)HQQﬁY ) converges
y & n

to o4, where
og =sup {|(r,z)]; (r,2) € supp g}; |(r,2)] = Vr? + a2,

ii. Conversely, let g € L*(dvy) such that Z,(g) satisfies the assertion
1
2) of theorem 3.3 and the sequence (HAgﬁ\a(g)HS"7 ) has a finite
Eged n

limit o, then g has a compact support and o = oy.

Proof. i. Suppose that g has a compact support, then for all
(k1, ko) € N?; the function

(r,z) — r* 2™ g(r,z)

belongs to L?(dv,). By theorem 3.3, we deduce that the function
f = Z.(g) satisfies the assertion 2) of theorem 3.3. From the relation
(3.3), we have;

VnelN; Aj fioz(g) = B(ng‘\a<g)).
Then, by (2.8), we get
JA2a @y, = IE8Falo)l,,
= [|Fa(= (0 +2*)"g)]l,,, -

Applying Plancherel theorem for the transform ,9};, it follows that for all
n €N;

n o ﬁ _ 2 2\n ﬁ
|2 Za ()2 = 1162 + 2% (5.1)

2vq "
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Thus, for every n € N;

|ALZa(9) |13, < oy gl

and consequently;

limsup ||Ap.Za (g ||2% < (5.2)
n—--4+00

On the other hand, from (5.1), for all ¢ > 0 and n € N; we have
1
AL Z o ( // 2 + 222 g(r, z)Pdvg(r,z)) "
145703, 2 ([ [, 0 gt Pdvatr, )

1
2 4n
> (-9 [ /(TQHQ)}(GN)Q l9(r, ) Pdva(r,2)) ™.

2
//r2+x22(09—5)2 |g(r,x)’ dva(r,z) >0

Hence, for all € > 0;

where,

fmint 487a0) 75, > o0 =<,

which implies that

lim inf ||A%.Z0 (g

n—-s-4o00 ||2 e

>From (5.2) and (5.3), we deduce that the sequence (HAZJQ H2%>

is convergent and

lim ||ALZa(g

n—-s—4o00 H2 Vo

ii. Let g € L?(dv,) such that .%,(g) satisfies the assertion 2) of theorem
1

3.3 and the sequence (HAZﬁa(g)H;"W ) has a finite limit o.
) n

Suppose that there exists € > 0 such that the set

{(r,x) ERy xRy Vr24a2>o0+e g(rz) #0}
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has a positive measure. Then

AR Z o (g)| 27

1
3. = 0% +2)"gll3;

2,V
ee 2 2\ 2n 2 ﬁ
- (/0 /R(T +a°) |9(7';$)| dVa(r,x))
1
z (//2+ 2> (0+e)? r? +x2)2n‘9(7’7 5‘7)|2d’/a(7‘736)) "

1
>4 ([ [ om0 Pavatra) ™,
™ x OT¢€&

and by hypothesis, we get;

c>o0+¢

which is impossible. This shows that g has a bounded support and by the
proof of i) we can show that o = o,. O

In the following, we shall give a new characterization of infinitely dif-

ferentiable functions with bounded supports, by means of their Fourier

transforms. For this, let (01,02) € (R%)?; we denote by

o H(71:92)(C?); the space of entire functions g on C2, slowly increas-
ing of exponential type, i.e, there exists an integer k such that

‘g(/‘bv )\) |€—01|%mu\—02|%m)\\

sup < +o0.

whneez (14 [pl2 + [AR)F

° H(”l’@)((c2); the space of entire functions f on C2, rapidly de-
creasing of exponential type, i.e for all k € N;

sup |f(,ua A)‘ (1 + |M|2 + |>\|2)k6—01\%mu|—02|%m>\| < 400.
(1,A)€C?

and H&Ulm)(cz), its subset consisting of even functions with re-
spect to the first variable.

° H*(CZ) _ U Hial’m)(CQ).

(01,02)€(RY)?
e &(R?), the space of infinitely differentiable functions on R2.
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/

o &

(01,02
[*0'1, 0'1] X [*0’2,0’2].

)(Rz); the space of distributions on R?, with support in

e S'(R?), the space of tempered distributions on R2.

o 7°v72)(R2), the space of infinitely differentiable functions, even
with respect to the first variable and with support in
[—01,01] X [~02,09].

e 2.R) = |J 2R
(01,02)€(RY)?
e For all f € H(@1:92)(C?);
afi=sup {|Pi(r,x)|; (r,x) € suppAy (Ty)}; i€ {0,1},
with Py(r,z) = r and Pi(r,x) = x; (r,z) € R? and T} the tem-
pered distribution given by the function f.

The following result is a consequence of Bernstein’s inequality and the
theorem of Kolmogoroff [1, 5, 17].

Proposition 5.2. Let 0 = (01,02) € (R%)% For all f € H(C?) N

LP(dms); p € [1,+00], the functions or and of belong to H?(C?) N

LP(dmg); and we have o or
i.
19 Pl < 0 15l
ii.
o Flpy < 92 171

Proposition 5.3. Let p € [1,+0o0] and f € &(R?) such that, for all
(I1,12) € N?; the function

() — (5)" (50) 1)

belongs to LP(dmsg). Then, for alln € N* and k € N; 0 < k < n, we have
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(G sl < G I Na) 1

[ < Gy I 1) S

e In the case p = 400, the proof can be found in [17].

e Suppose that p € [1, +oo[ and let

F

(&) fr2) |(5)" fra)f”
k k -1

() F ) G A

where p’ is the conjugate exponent of p. Then

[l =1 (5.4)

P’ ma

hi(r,x) =

d
[ [t () s mamatrn) = ()| 59)

an
p,ma
Let

F(r)://R2 ha(t, @) f (r + £, 2)dma(t, ).

Applying lemma 8 of [17] and using the hypothesis, we deduce that
the function F' is infinitely differentiable on R, and we have

G0 = [ [ o) st aama(t); 0<k<n

Then, by Holder’s inequality, we get
0 \k
(3" 1,
and by (5.4), we deduce that forall k e N; 0 <k <n

[FO)] < b

p/7m2

0 \k
(k) el
[F™| g < H(ar) prm. (5.6)
On the other hand, using the relation (5.5) we have
N
F® )| = ||(5- : 5.7
EOO) =0 (5.7)
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However, applying the theorem of Kolmogoroff to F' [11, 17], we
obtain
k

s < G IEIS D IFOL, e

Combining the relations (5.6), (5.7) and (5.8) we obtain

[ ] < Grusiilao

(& (5.8)

e We obtain the result by the same way and using the function

Gla) = [ [ halt.y) f(ta+) dma(t,y)

where

hao(r,x) =

() 1) (@) fera)f”
[CANICEIINIIC v S W

Flo gl

O

Theorem 5.4. Let p € [1,+00] and let f be a function satisfying the
hypothesis of proposition 5.3.

1. If o050+ 051 < +00, then the sequences (H(8 ) f||pm2) nd

<H(8x) pr m2) converge respectively to oyg and oy 1.
2. If there exist (M, Ma) € (R%.)? such that for all (I1,l2) € N?

0.1, 0\
1) Ly, < Ml 22 5]
then, opo < +oo and of1 < +oo. Moreover, the sequences

(H(ﬁr) f}|pm2) and (H(8 ) f||pm2) converge respectively to
opo and oy 1.

p,m2

Proof. 1. If f satisfies the hypothesis of Proposition 5.3, then T} and
A5 H(Ty) belong to S'(R?). Suppose that ofg+ o1 < +00.
Since the Fourier transform Ag is an isomorphism from é?(af 007 1)(RQ)

onto H(7£.0911)(C?), the function f lies in H(7#.0:77.1)(C?).
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On the other hand, by proposition 5.3, for all n € N* and k € N;
0 < k < n; we have

0 k % k L 0 n %
6o R L el 16 (5.9)

Applying the proposition 5.2, we get

O \k %

[y <og0 GF sl

then,

%Efﬂﬂi“ S (5.10)
Now, from the inequality (5.9), we deduce that for all k € N*;

O \k %
|G ] G Il < ming [[()" %

then,

1HDSUPH( =) ¥

— 400

< Jiminf ()1

p,ma k——s4o00 pyma’

This shows that the sequence (H (= B ) f Hp mZ) converges and by (5.10)

k —

o0 < 0fQ.
p,ma 0x0f0

0
lim H(E)kf

k—s 00

Let’s prove that oo = 0. Indeed, suppose that g < oy
e The case p = +oc.
let € > 0 such that
oo +2 <oy (5.11)
then, there exists M > 0 such that
a k k
VEEN; (5l <M (o0 +2)" (5.12)
From proposition 5.2 and the relation (5.12), we deduce that, for
all (I1,02) € N;

[e55

Y ) g < M (0 +2)1 ol
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Let (1, \) € C%, u=x1 +iy; and A\ = z2 + iyo, we have

roo | (200 G0 o) i) (i)'

Z 111!

l1,l2=0
~+o00 1 1 +oo 2 lo
(o0 +¢)|y1|™ of1lyel
<an (oo uinlty 5 et

= M exp ((00 + €)|Smp| + o1|SmA|).
This shows that f belongs to the space H(70+¢:97.1)(C?). Again, by
Paley-Wiener Theorem’s it follows that
supp Ay H(Ty) C [~00 —€,00 + €] X [~of1,071].
Consequently;
o0 < 0g+Ee,
which contradicts (5.11).

e The case p € [1 +o0.
Let ¢ € 2,(R?); 0 < ¢ < 1 such that

// o(r,z) dma(r,z) = 1.

We put;
on(r,x) = n2g0(m", nx); n € N*
and
Fura) = [ [ f0+taty) ealty) dmaltiy). (519

By applying lemma 8 of [17] and using the hypothesis, we deduce
that for all n € N*; the function F), is infinitely differentiable on
R? and for all k£ € N; we have

(%)an(r, r) = / - (%)kf(r +tx 4+ y)en(t y) dma(t,y).

By Holder’s inequality, we get

0 \k
157) Frll oo mg < H( ) prm?H%Hp/,mQ

< ()| (5.14)

p,m2
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where p’ is the conjugate exponent of p, then,

0
[ Falh g < GO A, (5.15)

>From the relation (5.13), we deduce that the function F), can be
written in the form

Ey(r,x) = f*pu(r,x),
where * is the usual convolution product in R?.
So,
AN (Tr,) = Aalpn) A3 (Ty).
In particular,
0r,0+top,1 <-4o0.

Using the case p = +oo and the relation (5.15), we deduce that

Vn € N*; 0F,,0 < o9 < 0f,0- (5.16)
Consequently,
%E?f OF,0 < O0f0-

Suppose that
liminf op, 0 <oy,

n—--+4o00

then, there exists 7 € Py(supp A '(T})) such that

’7“‘ > ilE)Hlofo OF,0 = Q.

We assume that r» > 0 (the same proof holds if r < 0).
Let ¢ > 0 such that a < r — 3e. There exists a subsequence

(O'Fe(n>70)n satisfying,
Vn €N op,, 0 <r—2e (5.17)

Now, since the sequence (¢p), is an approximate identity and
using the relation (5.13), we deduce that

lim || Fyp(n) — f]|

n—s—+oo p,m2

and consequently,

lim Ay (Tg,,,) = Ay (Ty) (5.18)

n—--+o0o
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in S'(R?).
Let 1 € Z,(R?) such that
Py(supp(¥)) C [r—e,r + €]

and

< AN (Ty), 0 > # 0.
However, by (5.17) for all n € N;

< Agl(TFe(n)% Y >=0
and by (5.18)

<A NTp), ¥ > = 0.
Which gives a contradiction. Hence,

liminf o = 0o7p.
amint oF, 0 1,0

Using, the relation (5.16), we deduce that

o) — O'f’()
which means that
tim () 7%, = o
k—s+oo ' OT p,ma2 ’

By the same way, we prove that

: O \k,k
hm ||(£) f||]’7c7m2 = O-fvl‘

k—+o00
2. Suppose that there exists (M7, Ms) € (R%)? such that

O b, Ok
Viki ko) €N ()" (5)" f

e The case p = +c.
Let z1 = x1 + iy and z9 = x9 + 1y2; we have

| < Mg
p,m2

p,m2

0k, O & . .
> \<azl> () F ) () (i)'
e Ky ko
k:l k2
o (Mify])™ &K (Malysl)
< Mooy 22 7 — 22
k1=0 ko=0

— ||f|| eM1|%mZ1‘+M2|§mz2|
00,m2 :
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This shows that the function f is entire on C2, slowly increasing
of exponential type and by Paley-Wiener theorem’s for the distri-
butions, we deduce that

supp AQ_I(Tf) C [—Ml,Ml] X [—MQ,MQ].

In particular, oy o+ oy is finite and from the first assumption of
this theorem, the sequences

0 k 1 0 k 1
(G 15, med (1) AR,
converge respectively to oo and oy 1.

e The case p € [1,+0o0].
Let (F), be the sequence defined by

F,(r,z) = //R2 fr+tx+y) pnlt,y) dma(t,y).

By the relation (5.14); for all (ki, k2) € N?;
3}

0 \k k 1
I (2Rl < 161, 0 AR DL

>From the case p = 400; we deduce that for all n € N, the function
F, is entire on C2, and for all (21, z2) € C?;

1
|[Fn(21,22)] < nv || f]]
which implies that for all n € N*;
supp Ay H(Tr,) C [—My, My] x [—Ma, My).

Since, (A;l(TFn))n converges to Ay (Ty) in S'(R?), we deduce
that;

eM1 |Sm21 H—Mg|%mZ2|
00,m2 ’

supp Ay H(Ty) C [=My, My] x [—Ma, My).

This achieves the proof.

We denote by
® 7, the measure defined on '} by
. 2T (v + 1
Ao p; A) = ( )a+;
V2 (p2 4+ X2)7 2

dYa(p, A)-
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o [P(d7,); 1 < p < +oo the space of measurable functions on I'y
satisfying

( /] !f(u,A>|pd%(u,A>>p < too, 1< p < +00;

((ess)sup |f(pA)] < 400, if p = +o0.
Ma

71,5

p'Ya

Lemma 5.5. The mapping W, defined on 2,(R?) b

1 too a1
Wealg)(r,x :—/ 2 —r2) " 2g(t, x) 2t dt
W)= o [ @ et

is a topological isomorphism from 2,(R?) onto itself.
The inverse isomorphism is given by

Wt (1) = (0 W (o) ().

Moreover, for all g € P,(R?);

sup{|B(r,x)|; (r,z) € supp Wo(9)} = sup{|Pi(T,x)]; (r,x) € supp g}
(5.19)

The proof of this lemma can be found in [19, 20]

Proposition 5.6. Let f be a function in S.(R2). Then, the function

Fa ()

belongs to the space D,(R?) if, and only if for all p € [1,+00], there exist

(My, M>) € (R%)? such that
0

Y(ky, ko) € N2 H(* 0

k
o)) e < g |

)2 f
p

pma’

Moreover, the sequences (H( ) prm2> (H( ) pr m2) converge
respectively to oyo and oy,1.

Proof. e Suppose that .Z, 1(f) belongs to the space Z,(R?).

Since, the transform .%, is an isomorphism from %, (R?) onto
H.,(C?), then there exist (o1,02) € (R%)? such that

f e Horo2)(C?) ¢ Hlono2)(C?),
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and from Proposition 5.2, we have

H( ) iy < 1 15,
and

(5, )szllpm o5 Il

Then, for all (/ﬁ, ko) € N2,

p,ma’

0 ki, O ko
IG" G2)
and by assertion 2) of theorem 5.4, we deduce that the sequences

(H(6 ) f”me) and <||(8 ) f||pm2) converge respectively to
oroand oy 1.

< op o3 ||/

‘P,mz pima2

e Conversely, suppose that there exists (M, M) € (R% )? such that
0 ki, 0 \ky
87“) (8:1:)
Again, From the second assertion of theorem 5.4, we deduce that
the distribution A5 1(Tf) has a bounded support. Since, the map-
ping A is a topological isomorphism from S,(R?) onto itself, then
A1 (f) lies in Z,(R?). Now, from the relation
Fl=WitoAy!

[0}

V(i ka) € N3 |( < Mg ||

‘p,mz pima2’

and by lemma 5.5, it follows that .%_(f) belongs to Z,(R2).
O

Remark 5.7. For every f € S,(R?) and (ki, k2) € N2, we have

1 0% B(f) = B((2) (L) )

where 5
1

E= 2+ M) —

W+ 2% 5 2

B and C are defined as above. Then, by the relation (2.8), we deduce that

0\ ki, Ok

) (o)

5 (o (5.20)

|E* ¢ B(f), 5, = ||(

‘pva
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Theorem 5.8. (Paley-Wiener-Schwartz) Let f be a function in S.(I).

Then, the function Z;1(f) belongs to the space Z.(R?) if, and only if for
all p € [1,400], there exist (M, Ms) € (R%.)? such that

V(ki ko) €N |BR CR ()| o< Mg | ]

DY PV

1
Moreover, the sequences (HEk(f)H;; )k and (HC’“(f)HE; )k converge Te-
spectively to 0y and dy,1; where

6f7i:sup{|P@-(r,:L‘)|; (r,x) € supp fa_l(f)}; i€ {0,1}.

Proof. We know that the Fourier transform %, is a topological isomor-
phism from S,(R?) onto S,(T'), where the isomorphism inverse is given
by

Z 00w = [ [ 5N gualrada(n ).

Also; the Fourier-Bessel transform .%,, is a topological isomorphism from
S.(R?) onto itself. Then, from the relation (2.6), we deduce that the map-
ping B defined by the relation (2.7) is an isomorphism from S, (R?) onto
S, (T).
Let f € S.(T') and g = B~!(f), we have;

T () = F9):

(e}

>From proposition 5.6, % 1(g) belongs to Z,(R?) if, and only if for all
p € [1,+0c], there exists (M, Ms) € (R%)? such that

0k, 0k
V(k1, ko) € N H(@) (5,) 9 ‘pm < MPMy? gy, (5:21)
Using the relation (5.20), when applied to the function g and the fact that
1715, = lgll,

we deduce that, the function .Z;'(f) belongs to Z.(R?) if, and only if,

[0}

for all p € [1,+00], there exists (M7, M) € (R%)? such that
V(ky, k) € N%; HE’“ Ck: fH o< MPME ||~
PYa PYa

From the relation (5.21) and proposition 5.6, the sequences
0.k L 0 \k
(1G5 0l1%,,), amd (I1(5,)"l
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converge respectively to 0,0 and o4 1. However,

Vie {0,1}; o4 = sup{‘Pi('r, ac)|7 (r,x) € supp Az_l(g)}

and by the relation (5.19);

ogi = sup{|P(r,z)|; (r,z) € supp Wt (A (g)))

= sup{‘Pi(?”,xH; (T,x)GSUPp yoa_l(f)}
= 5f,i-
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