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Null controllability and application to data
assimilation problem for a linear model of
population dynamics

OUMAR TRAORE

Abstract

In this paper we study a linear population dynamics model. In this model,
the birth process is described by a nonlocal term and the initial distribution is
unknown. The aim of this paper is to use a controllability result of the adjoint
system for the computation of the density of individuals at some time T

Controlabilité a zéro et application a un probléeme d’assimilation
de données sur un modele linéaire de dynamique des
populations.

Résumé
Dans cet article nous étudions un modeéle linéaire de dynamique des popula-
tions. Dans ce modeéle, le processus de naissance est défini par un terme non local
et la distribution initiale des individus n’est pas connue. L’objectif ici est d’utiliser
un resultat de contolabilité du systeme adjoint pour la détermination de la densité
des individus a un instant 7'.

1. Introduction

We consider a population living in a bounded open set € of RN N >
1. The boundary of €2 that is I', is assumed to be sufficiently smooth.
Let y(t,a,z) be the distribution of individuals of age a at time ¢ and
location z € Q and let T be a positive constant. In the sequel pg(t, a, x)
and f(t,a,z) stand respectively for the natural death and birth rate of
individuals of age a at time ¢ and location . We assume that the boundary
I' is inhospitable. If the flux of individuals reads —Vy where V is the

Keywords: Population dynamics, Carleman inequality, Null controllability, data assim-
ilation problem.
Math. classification: 92D25, 93B05, 35K05.
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O. TRAORE

gradient with respect to the spatial variable, then y solves the following
system

W+ — Ay+py=0in (0,T) x (0,A) x Q
y(t,a,x) =0on (0,7) x (0,A) xT (1.1)
y(0,a,x) = yo(a,x) in (0,A4) x ’
y(t,0,x) :fOAﬁyda in (0,7) xQ

where A is the laplacian with respect to the spatial variable and yo(a, x)
is the initial distribution of individuals of age a at location z. When this
initial distribution g, is known one can use an integration along chara-
teristic lines and an orthonormal basis of eigenfunctions of the laplacian
to compute y(T,a,z), see [4]. In this paper we suppose that the initial
distribution yp is unknown and we want to compute y(T), .,.) using some
observations on the state y during an interval of time (0,7").

This is in fact a data assimilation problem. More precisely, the problem
is to predict the density of individuals at some t > T from the knowledge
of some observations during an interval of time (0, 7).

The classical way to solve such problem is to compute first the initial
distribution. This kind of problem is generally ill posed and requires
traditionally, Tychonof regularization and minimization of a quadratic
functional.[9], [7].

As soon as the initial distribution is determined, one can compute y(t, ., .)
in a classical way.

Here, we want to compute first (7, .,.) and afterwards, one can use it as
a "‘new initial distribution"’ for the study of y(t,.,.), for t > T.

The problem of recovering unknown data in population dynamics model
was extensively studied. In [12], the author performed a technique for re-
covering the natural death rate in a Mc Kendrick model. The method
there uses an overdeterminated data y(7',a) = ¥ (a) and the explicit form
of the solution. In [5] the problem is also to recover the natural birth and
death rates from the knowledge of the initial and final distribution. In
[8], the goal is different from the previous one. More precisely in [8] the
authors studied a method for determining the individual survival and re-
production function from data on population size and cumulative number
of birth in a linear population model of Mc Kendrick type. These goals are
quite different from the one we study here. Our method uses essentially
a null controllability result of an adjoint problem. Similar problem in the
framework of parabolic equation was studied earlier by JP Puel in [11].
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NULL CONTROLLABILITY AND APPLICATION

In [14], an application of the approximate controllability property to data
assimilation problems was studied by the author. The question adressed
there is whether one can use an approximate controllability result for re-
covering the initial data for a linear population dynamics model.

A lot of papers are devoted to the study of null controllability property

for population dynamics models. In [3], a null controllability result was es-
tablished for a linear population dynamics. The method used a fixed point
theorem and Carleman inequality for parabolic equations. Here, we will
establish a new observability inequality with a weight. This result allows
us to control on the whole domain (0, 4) x Q .
The remainder of this paper is as follows: in Section 2, we state assump-
tions and prove the null controllability result. The Section 3 is devoted to
the statement of an approximation method for computing the distribution
at time T

We have also included an Appendix, where we give the proof of the Car-
leman inequality with the careful study of the dependence of the constants
on s, A\, T and A.

2. Assumptions and null controllability results

We state first the hypotheses which will be used.

A po(t,a,x) = pi(a) + plt,a,z) ae in (0,7) x (0,A4) x Q with
p1 € L (0, A); p e C([0,T] x [0, A] x Q). In addition we suppose

loc

that fOA p1(a)da = o00; up >0 and p > 0.

Ay 3 € C([0, A]);8 > 0 and there exists 0 < ap < a1 < A such that
B(a) =0 a.e.in ((0,a0) U (a1, A) and a1 +ap < A.

The following notations will be used in the sequel: Q = (0,7 x (0, A) x §;
Qr=(0,T)xQ Qa=(0,4)xQ; X =(0,T) x(0,A) xTI'; Qu, = (0,T) x
(0,A) x w and C(A,[,...) are several positive contants depending on
A, (,... Sometimes we will write d@ instead of dt da dz.

Remark 2.1. Assumptions A; and Ag are classic in the study of population
dynamics. Indeed, fOA u1(a) da = +oo means that the survival likelihood
of individuals, that is exp(— [ 111(s) ds) tends towards zero as a goes to
A. In other words, all individuals die before the age A.

Assumption A, means that the young and the old individuals are not
fertile.
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The main goal of this section is to prove a null controllability result.
First, let us consider the system
9 9 Ap+ pop = Bp(t,0,2) +vly(z) in Q
p(t,a,z) =0on X
ﬁ(Tv a, x) = pg(a’7 x) in QA
ﬁ(tu A,J}) =0in QT

(2.1)

where g € L?((0,A4) x Q), w is a non empty open set of Q and p is a
function which will be precised later on.

The system (2.1) is said to be null controllable if for any g € L?(Q ) there
exists a control v € L?(Q,,) such that the corresponding solution verifies

p(0,a,2) =0 a.e.in (0,4) x Q. (2.2)

Our null controllability result is stated in the following theorem.

Theorem 2.2. Suppose that assumptions A1 — As are fulfilled. For any
g € L2(Q4) there exists a control v € L*(Q.,) such that the corresponding
solution of (2.1) verifies (2.2)

Remark 2.3. In order to work with bounded coefficients we make the
following change of variables: p = exp(— [y p1(s) ds)p. Then p solves the
problem:

_% _ % _ A]D—F up = Bp(t,o,x) —|—7T’Ulw(x) in Q

p(t,a,xz) =0on X
p(Tv a, .’E) = mpg in QA
p(t,A,z) =0 in Qr

where 7(a) = exp(— [¢ u1(s) ds) and § = 0.

The problem is reduced to find for any g € L?(Q4) a function v € L*(Q.)
such that the corresponding solution p verifies (2.2).

On the other hand it is obvious that 3 verifies As.

In this section, we will consider the previous system and we write 3 instead

of 3.

We want now to give a Carleman inequality from which we will derive
an observability inequality.
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NULL CONTROLLABILITY AND APPLICATION

Let us introduce the following adjoint system of (2.3) in which 2y €

L*(Qa)
% 192 _Nztpuz=0 in(0,T)x (0,4) x Q

z(t,a,x) =0 on X (2.4)
2(0,a,x) = zo(a,x) in (0,A4) x Q '
z(t,0,z) = fOA Bzda in (0,7) x Q.

We recall that for any nonempty open set wp C w there exists a func-
tion denoted ¥ € C?(Q) such that ¥(z) = 0,Vx € 99Q; V¥(x) # 0,
for z € Q —wp and ¥ (z) > 0,V € Q, see [6].

. 2P | oo — AT () AW (x)
Setting n(t,a,x) = W and ¢(t,a,x) = m we have

the following result.

Proposition 2.4. There exist positive constants A\g > 1 and C(V) such
that for X > Ao and

2 A2
5> s0(\) = C(\I/)TTAeQ)‘H\PHsQ <T4A + 1243+ T3A? + T + A)

such that for all solution z of (2.4) the following inequality holds:
/ e 2em (s)up V2| 4 s3 A3 ]2]2) dQ < Cs?’)\4/ @3 2M22dQ. (2.5)
Q Qu

Remark 2.5. The proof of this Carleman inequality follows the method of
[10] for parabolic equation. In [13] we have established similar Carleman
inequality, but without the particular form of the constants.See also [2].
For completeness and in order to justify the particular form of the con-
stants Ao and sg(\) we give the entire proof in the appendix, at the end
of the paper.

The goal now, is to derive from the Carleman inequality the following
observability inequality which is helpful for the proof of Theorem 2.2.

Proposition 2.6. Suppose that A1 — As are fulfilled. Then there exists a
positive constant C' depending only on ag, A, ¥,Q and T such that

/ p(a)2*(T,a,z) dzda < C 22(t,a,z) dt dz da. (2.6)
Qa Quw
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where
ATl

pla) = exp(—25— (2.7)

Zala-T)
and s > so(A).

Proof. Let us assume first that T' > A. We will prove in this case that

/ 22(T,a,z)dzda < C 22(t,a, ) dt da dz. (2.8)
A Qw

Note that this implies inequality (2.6) since p(a) < 1. Let 0 € (T'— A, T),
we set q(a,z) = z(0 + a,a,x), f(a,z) = plo + a,a,2), a € (0,T — o).
Then, since z solves (2.4) it follows that g solves the system:

% _ Ng+fi(a)g=0 in (0,T—0)xQ
q(a,z) =0 on (0,T —0)xT (2.9)
q(0,2) = 2(0,0,7) in Q

Multiplying (2.9) by ¢ and integrating the result over (0,7 — o) x Q, we
get:

/qQ(T—a,x)dazg/QQ(O,x)d:ﬁ. (2.10)
Q Q

Since ¢(0,z) = z(o,0, z), using (2.10) and (2.4), and thanks to the Cauchy
Schwarz inequality we get:

/QQQ(T—U,x)dxgC(ﬁ)/azl/QzQ(a,a,x)dada:. (2.11)

Note that
1 .
v(o,a,z) > 1272 in Q.
As ag < A — ay, one obtains:
2A Yl oo
2s

e 25n(002) > o TART-NT =)y (T — A T) x (ag,ar) x

2T g

Subsequently, setting 0(T — o) = e S"g(T’A)(T"’), (2.11) yields:

/ 0T — 0)*(T — 0,z) dx < Co/ e 20322 (0,0, x) dadr  (2.12)
Q

A
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NULL CONTROLLABILITY AND APPLICATION

where Cy = ASTSC(3, ¥).
This means :

/ 0T — 0)2*(T,T — 0,z) dx < CO/ e 2103220, a, ) da dz.
Q

A

An integration on (T — A, T) with respect to o yields:

T
/ / O(T — 0)22(T, T — 0,2) do dz < Cy / e 21p322(0, a,x) do da dx.
T-AJQ Q
Therefore:

/ 0(a)2*(T,a,z) dadr < C’o/ e 2322 (0,a,2) dodadr  (2.13)
Qa Q

Let € < Min (T — A, ap). From (2.13) we get:

0s gﬂmmn
/ / (T,a,z)dx <e Co/ 2322t a, x) dt da d.
(2.14)

2A ¥l 0o

25% Cy it follows

Using now (2.5), and setting C' = e
A
/ / 22(T,a,x)dvda < C | e *"1p322(t,a,2) dt dadz. (2.15)
€ Q Qu
Note that (2.15) holds for all ¢ < T such that t — A > e.

Let now o € (T'—¢€,T). On the one hand we have 0 — A>T — A —¢€ > e.
On the other hand, let us consider system (2.9). Inequality (2.11) yields:

A
/ (T —o,z)dx < C’(ﬁ)/ / 22(0,a,z) dz da. (2.16)
Q € Q
This gives

/922(T,T—J,.%') dx < C(B) /eA/sz(a,a,x)dxda. (2.17)

Combining (2.15) and (2.17) we obtain:

/ 2(T,T — o,z)dx < C(B)C/ e 232t a,x) dt dade.  (2.18)
Q Qu

Integrating now both sides of (2.18) over (1" —¢,T") with respect to the
variable o, one deduces after a standard change of variables:
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//22(T,a,x)d:nda§0 e p322(t, a, ) dt da da. (2.19)
0 JQ Qu

Adding (2.15) and (2.19) we get (2.8).
We suppose now that 7' < A. Let 0 € (0,A — T'). Consider the charac-
teristic line C' = {(t,o +t);t € (0,7)} and set q(t,x) = z(t,0 + t,z). It
follows immediately that g solves the following system:

—Aq+npg=0 in (0,7) xQ
q(t,x) =0 on (0,7)xT (2.20)
q(0,z) = z(0,0,2) in Q

Using now the standard observability inequality for the heat equation [6],
we infer that:

/Qq2(T,x) dr < C(%,T,u) /OT/WQQ(t,x) dx dt. (2.21)

This is equivalent to:

1 T
/ZQ(T,O'—FT,:E)dwﬁC(T,T,,u)/ /zQ(t,a—l—t,x)dxdt. (2.22)
Q 0 Jw

Integrating both sides over (0, A — T') with respect to the variable o
gives:

A-T
/ / 22(T,0 +T,z)dx do
0 Q

A-T
<O(= T,u/ // (t,o+t,2)dedtdo. (2.23)

Making the following change of variables: a = o + T in the left hand
term, and @ = ¢ + ¢ in the right hand term we get:

// (T,a,z)drda < C(= Tu/// (t,a,z)dz dtda.

(2.24)
Let us now take o € (0,7") and consider the following characteristic line
C ={o+a,a),a € (0,T —0)}. Let g(a,z) = z(0 + a,a,x). One can see
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NULL CONTROLLABILITY AND APPLICATION

that g solves the system (2.25) below:

—Aqg+pg=0 in (0,7 —0)x
qg(a,z) =0 on (0,7 —0o)xT (2.25)
q(0,2) = 2(0,0,2) in

Let us multlply (2.25) by ¢ and integrating over (0,7 — o) x 2. We obtain
recalling system (2.4):

A
/ (T —o,z)dx < A/ / 322%(0,a,z) da dx (2.26)
Q QJo

From the assumption A and the boundedness of n and ¢ on (ag,a1) x €2
we have:

A
/ p(0)*(T — o,z) dz < Cl/ / ©*(o,a,2)e 22%(0, a,x) da dx
Q aJo
where C1 = |82, a®(A — ag)T§.

Then, we deduce after an integration over (0,7") with respect to the vari-
able o:

T
/ / p(0)(T — o, 2) dzdo < Cl/ ©2e 2220, a,z) do da dzx.
0 Ja Q

Using now the last definition of g;inequality (2.5) and setting a = T —o,
we get:

// 22(T,a,z)drda < C1C(¥ /// (t,a,z)dQ. (2.27)

Adding now(2.24) and (2.27) and taking into a account that p(a) < 1
we obtain (2.6) where C' = maw(ClC(\Il),C(%,T, 1)). The proof is now
complete. 0

Let us prove now the Theorem 2.2.

Proof. We assume that A; —As are satisfied. For g € L?(Q 4), we introduce
for a > 0 the functional J, defined on L?(Q,,) by:

1 4 1
Jo(v) = %/0 /QpQ(O,a,x)dadquQ 0 v?da dx dt (2.28)
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where p solves (2.3). The functional J,, is continuous, convex and verifies:

lim Ju(v) = +o0.

[0l =00

Consequently, J, achieves its minimum at a unique point v,. Moreover
the maximum principle gives:

Vo = —Zaly (2.29)

where z, solves

BZ“ + 5% 820‘ —DNzg 4+ pzq =0 in (0,T) x (0,4) x Q
za(t,a,x)fo on (0,T)x (0,A) xT 5 30
24(0,a,x) = fpa(() a ac) in (0,A4) x Q (2.30)
2a(t,0,z) = fo Bzada in (0,T) x Q.
and p, is the solution to
*%*%*ApajLﬂpa :ﬂpa(t,(),x)+7rva1w(x) in Q
p(t,a,x) =0on X (2.31)

pPa(T,a,xz) =mpgin Q4
Palt,A,x) =0 in Qp

Multiplying (2.31) by z, and integrating over () we obtain:

A 1 4
/ /za(T,a,x)pﬂg(a,x) dxda——/ /pi(o,a,x) dx da
0o Jo aJo Jo
A T
:/ / /vid:cdadt.
0 0 Jw
Then,

1 74 A T
*/ /Pi(O,avl“)dedaJr/ / /vidadmdtg
o Jo JQ

2/ /pz (T,a,z)dadx + = / /pﬂ'g (a,7)dadz.

This yields using inequality (2.6) and (2.29)

LAy 1 2 2
5/0 /Qpa(O,a, x) dx da + 3 /Qw vadt dadz < 2C([pgll72(0,4)x) -
(2.32)
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NULL CONTROLLABILITY AND APPLICATION

Consequently, the sequence (vq,ps) is bounded in L?(Q.) x L*(Q).
Then, when o — 0, after extraction of a subsequence, the sequence still
denoted (vq,pq) converges weakly towards (v, p), which solves (2.3). Par-
ticularly, we have p, (0, .,.) — p(0,.,.) in L? ((0, A) x Q) weakly so that p
verifies (2.2). Note that the following inequality holds too:

/ v2dt dadx < 2C g*da dz. (2.33)
w Qa

Let us prove that (va,pa) converges strongly to (v,p) in

L*(Qu) x L*(Q).

Since vy, is the unique minimizer of J,, we infer that J,(v,) < Ju(v). This
gives

[vallr2q.) < I0llL2q.,) -

Consequently, the weak convergence of v, towards v, yields that v, con-
verges strongly to v in L?(Q,,) as n goes to co. This implies obviously that
pa converges strongly to p in L2(Q). So, the sequence (v, pa) converges
strongly to (v, p) in L?(Q) x L?(Q). This ends the proof. O

3. Recovery of the state value y(7T)

We give here our data assimilation result. This result uses mainly the null
controllability result proved above. Next, we give a possible approxima-
tion method of the null controllability problem by means of some optimal
control problems.

Beforehand, we will first prove the following proposition.

Proposition 3.1. The space L? ((0, A) x Q) has an orthonormal basis of
the form pgy,with the function gr € L?((0,A) x Q); k = 1,2, ... where p
is defined by (2.7).

Proof. We will prove the proposition when A > T', the case A < T can be
proved using analogous arguments.

This proof will be done in two steps:

Step 1: construction of an adapted countable and dense set.

Let O = ((0,T)U(T,A)) x Q. For m =1,2,... we set

1 1 1
Om = {(a,x) €0;a>—;la—T| > —;dist (x,00) > }
m m m
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It follows that for all m, O,, is a bounded subset of O. Now, let P be
the set of all polynomials on RV*! with rational coefficients. Let P, =
{flo,,; f € P}. The set G = Uy;,>1 Py, is countable and is dense in L?(O).
See [1, page 29]. Let us consider f € G, there exists an integer m such
that f € Py,. Let g = p~!(a)f. From the defintion of P, it follows now
that the function g € L?(0). Furthermore, writting Go = {p~'f; f € G}
and F = {pg; g € Gy} it follows that F is countable and dense in L?(O).
Step 2: construction of the orthonormal basis.

Let us write f1, fo,... the functions of F. It suffices to extract from this
sequence an infinite and dense sequence of linearly independent elements,
and after to apply the orthogonalization method. For this aim, we exclude
from the sequence (fj;) all function f; which can be represented as a linear
combinaison of f; with ¢ < j. We obtain thus doing, the desired sequence.
The proof is complete. O

We assume that the initial distribution yo belongs to L? (Q4). This
assumption is natural since y stands for the density of the population.
Therefore, it follows that y(T),.,.) € L*(Q4).

Now, let us consider an orthonormal basis of the form (pgx) with g €
L?(Q4). Then, on the one hand, we have:

y(T7 a, 33) = Zzg)ykp(a)gk(a’ QZ‘) a.e. € QA

where yp = Ji* Joy(T, a,2)p(a)gi(a, z) dz da.
On the other hand, for all k, by virtue of Theorem 2.2, there exists 0(gx) €
L?(Q.,) such that the associated solution § of (2.1) verifies (2.2). Then,

multiplying (1.1) by p and integrating the result over @), we obtain
pgx(a, z)y(T,a,z)dadr = / Ur(9)(t, a,2)y(t,a,x) dt dadz. (3.1)
QA w

Therefore,
ve= [ o)t a.a)y(t,a.z)dt dads. (3.2)
Qu

This equation gives the coefficients of the desired state value y(7T') from
the measurements of the solution on the subset w. At the same time, if we
use an approximation of the exact value of y on w, this formula describes
the effect of the error on the coefficients of y(T).
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NULL CONTROLLABILITY AND APPLICATION

Using (3.1), we get thanks to the Cauchy Schwarz inequality:

/ pgila, 2)y(T, a, z) da da
Qa

1/2 1/2
<C (/ p*gi(a, ) da dm) </ y*(t, a, ) dt da daz) .
QA Qw
This yields

/ y2(T,a,z)dadr < C/ y2(t, a, ) dt da de. (3.3)
QA Qw

Note that (3.3) is a stability inequality.
We now, summarize the method for retrieving the state value y(7') in the
following Proposition.

Proposition 3.2. Let us consider an orthonormal basis of L*(Q4) de-
noted by (p(gr)r>1)-

Suppose that A1 — As are fulfilled.

i) For a > 0 there exists a unique minimizer v, € L*(Qu) of Jo and
Va,k U5 characterized by the optimality system

Opa K '
— ek — Bk Apo i+ ok = BPak(t,0,7) + Tvakle in Q

Pak(t,a,z) =0 on X
Pak(T,a,x) = prgr(a,z) in Qa
pa,k(ta Av J}) =01n QT

(3.4)
0zq 0zq .
Zat’k + Za”“ — DNzgp+ p(t,a,x)zq, =0 in Q
Zak(t,a,z) =0 on X (3.5)
za,k<07 a, w) = %pj,k(ov a, .Z') m QA ’
Zak(t,0,2) = |5 Bzardain Qr
Vak = —Zak-lw a.e Q. (3.6)

i) When « tends towards zero, va ) — vk in L*(Qw), Pak — Pk in L2(Q)
where (v, pi) satisfies:

— 9 — Ok — Apy + ppy, = Bpi(t,0,7) + gl in Q
pk(t,a,x) =0on X
pe(T,a,x) = prgp(a,x) in Qa
pr(t,A,x) =0in Qr

(3.7)
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and
pr(0,a,2) =0 a.e. in Qa (3.8)
iii) The state at time T, y(T,..) is given by
y(T,a,x) Zykp a)gr(a,x) a.e.in Qa (3.9)
k>1
where
yk:/Q viydt da dx. (3.10)

4. Concluding Remark

This paper adresses the essential problem of data assimilation. Here, we
have shown that from the knowledge of the density of individuals on a
small open set and during the interval of time (0,7"), one can compute
ye :=y(T, a,x), the density at the time 7. From this, we can now compute
this density at any time ¢ such that 7' < t < T by means of the following
system:

Gt 5L = Dy +poy=0in (T,T') x (0,4) x Q
y(t,a,x) =0on (T,7") x (0,A) x T
y(T, a,x) - Wilyc(aax) in (O7A) x
y(t,0,2) = [§* Byda in (T,T") x Q

(4.1)

The method we have been studying here gives a theoretical result but
it could also be used for a pratical recovery of the state value y(7") from
measurements of the solution on a small open set. We then have to recover
an approximation of y(7") on a finite dimensional basis.

The choice of this basis is crucial as it has to provide a good approxima-
tion for y(T') but it has to contain a small number of elements to minimize
the adjoint control problems to be solved. This will be the subject of a
forthcoming work and we will compare the results given by this method
with classical methods using Tychonov regularization.

5. Appendix: proof of Proposition 2.4

Here, we suppose that the function z € C?(Q) and verifies
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24— Nztpz=f in (0,7)x(0,4) x Q
z(t,a,z) =0 on X
2(0,a,x) = zp(a,z) in (0,A) x Q
2(t,0,z) = fOAﬁzda in (0,T) x Q.

where f € L?(Q) and we prove the following more general Carleman
inequality

(5.1)

Proposition 5.1. There exist positive constants Ao > 1 and C(¥) such
that for A > Ao and

TA T2 A%
s> s0(A) = C(W)TG”‘H‘I’HSQ (4 +T2A3 4+ T3A? + T + A>
and all solution z of (5.1) the following inequality hold:

I(s,\) < C/ efzs”fzdtdadx—i—C/ s A3 22 dadr dt (5.2)
Q Qu

where 1(s,A) = g e~ 2 (s)up IVz|? + s3\4p? \z|2> da dz dt.
Taking f = 0 one obtains inequality (2.5).

Proof. We make the following change of variables © = e™*"z. Then imme-
diately it follows by using the definition of  and z that:

u(0,a,2) =u(T,a,x) =0 in (0,A4) x (5.3)
u(t,0,2) =u(t,A,x) =0 in (0,T) x £ (5.4)

and
u(tya,0) =0 in (0,T) x (0,A) x 09Q. (5.5)

Observe that:

Vn=—-ApVV¥ (5.6)

and
Vi = ApVV. (5.7)

Using once again the definition of  and ¢ one can prove that:

on

TA? d T°A
< 2w A 2. ‘"‘ < A 2.
Ja 4

4 ot
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n | _ o 9%y T°At
< 2 A3 || < 2 3
dadt| = © 7o | =° 17
and 2 443
O oxppl TA° 5
Z <« iy
da2| = ¢ 1 7
Similary we get:
op|  T2A 2, O T?A 2, D%p
rl <« 2 < TAL?
da| = 4 ‘ "4 77 |daot 7
0%p|  T3A* | DPp|  TA3
— d |==| < 3
012 14 7 52| = T
Note also that ¢ < T16 3. All these inequalities will be used in the
sequel.
We have:
Oou  Ou on 8?7) —sn <8z 8z>
— 4+ —= — . 5.8
ot " oa S<8t+8a e \o T da (5:8)

From (5.6) and (5.7) we get:
Au = sAATpu + s\ VU2 pu — 22\ VU] ?u+

2sApVU.Vu + e ¥ Aw. (5.9)
Consequently:
ou Ou s 9 2
a—l—a——Auﬂ—uu—e f— s\ up |VU|" = 2s\pVU.Vu+
A2 VU2 u — s (?Z + gn> u — SAQuAW. (5.10)
This equation can be rewritten as:
Piu+ Pou=gs (5.11)
where
Bu ou 9
Piu = e 8 + 25Ap V.V + 250\ uep |V |? (5.12)
a
0 0
Pyu = _Au+8<87t7 + a”)u—s2)\2g02|v\112u (5.13)
and
gs = € f 4+ sA2up VU2 — jiu — sAupAU. (5.14)
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Taking the square of (5.11) and intregrating the result over @ yield:
/ Pruf? dQ + / |Pyul? dQ + 2/ PyuPudQ — / 2dQ.  (5.15)
Q Q Q Q

Let us compute K = fQ PyuPiud@. This computation gives twelve terms
denoted I; j,i =1,...,4.5 = 1,2,3.
We have by integration by parts:

ou Ou Ju 0 9
Ly= —AudQ =— | —— — .
1,1 o Ot dQ = Dt dtdado + - 5 /Q 5 [Vul”d@Q
Hence using (5.5)and (5.3) it follows.
Ii; = 0. (5.16)
B ou (On  On
Il’Q_S/Q(")t (8& 8a> ud@.
An integration by parts leads to:
n_, on
— —7/ 2 2 < aa> dQ. (5.17)
o 2)2
11,3 = —5°)\ (‘9t |V\If| dQ
This gives
2)2 2
Iz = 5 Oyl O V|2 dQ.

2 Jg Ot
Keeping in mind (5.3), an integration by parts with respect to the variable
t yields:

I1,3=s2>\2/ > 201w ao. (5.18)
Likewise, one gets easily that:
Iy =0; (5.19)
:_7/| 22 ( i gz>dQ (5.20)
and
1273252A2/Q¢| ul? 2 [V Q. (5.21)
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Now, we are concerned by the term I3 ;.
We have:
Is1 = —23/\/ VU . VulAudQ.
Q

Then we have by an integration by parts:

I3, = —23)\/ goV\IJ.Vugudt da do + 23)\/ Vu.V(eV¥.Vu) dQ.
by v Q

From the definition of ¥ and since (5.5) is fulfilled we see that for all
o € 0f) we have

Vu(t,a,o) = (Vu(t,a,o).v(o))v(o)

and
VU(o) = (V¥(o).v(o))v(o).

As a consequence, it follows, using also (5.7) that

I3 = —25)\/ o(VU.0) |[Vu.v|? dt dado + 28)\2/ |Vu. V| odQ+
by Q

ou 0%*u OV ou 0*°T  Ou
2sALN._ / —d 22
A= ( 8% Ox;0x; Oz Q-+ 8:51 x;0x; Oz Q) (5:22)
We have
6‘u %u OV 9
25A%; —dQ = . .
SAN g 3$z Juidx, O, dQ = s)\/ch(v v) |Vu.v|® dt da do

—S)\Q/ Vul? |V ? wdtdadw—s)\/ ©|Vul? AVdt da dx.
Q Q
Therefore,
I3; = —SA/ o(VU.1) ]Vu.y\thdada—i—Qs)\z/ \Vu. VU ? odt da dz
= Q

_5)‘2/ \Vul? V| odt da dz — 8)\2/ |Vul? |[VO|? pdt da dz—
Q Q

R\ 87u ou
gp@xiaxj 8$j 8%

s)\/ ¢ |Vul? A\I/dtdadx+2s/\2” 1 dt dadz (5.23)

I3 = 232>\/ ©VU.Vu (an + 0) udt da dz.
’ Q ot Oa
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Classical computations give:

I3 = 52>\2/ o |Vip|? |ul? (a” + g") dt da dz—

2/\/ u> V. (vqf (g’z g“)) dqQ. (5.24)

I3 = —233>\3/ VUV [V udQ.
Q

Equality (5.7) and an integration by part give:

I35 =353\ /Q O [VITdQ+s3\3 /Q O P V.(VE VT dQ. (5.25)
Now we compute the terms Iy ;.
I = 25)\2/ngu ]V\Il\2AudQ = 28)\2/QV(QDU |V\Il\2).VudQ.
Consequently,

I = 23)\3/Q<puV\If.Vu|V‘IJ|2dQ+25>\2/QSD’VU|2|v‘1’|2 dQ+

25)\2/ ouVu.V (|V\II|2) dQ. (5.26)
Directly, we have: ¢
142:232)\2/ 0|V ( i gD uf? dQ (5.27)
and
Iz = —283A4/Q¢3 VU |* u2dQ. (5.28)

Grouping all the terms I; ; one can write:
2/QP1uP2udQ =X+ Xo+ X3 — QSA/EWW.V |Vu.v|? dt da do+
4522 /Q ©|Vu. VU2 dQ + 2522 /Q o |Vul* |V dQ+
253\4 /Q O3u? |Vt dQ (5.29)
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where
?U  Qu du
0
:_,/, P (o )d@+ W/W 2oVl dQ
0
5 [ g (G ) a@+ 22 [ olul? 2 IVl dQ+

on  On n 077) 2
2 212
/\/ olul* V. (V@(at 8a>)+28 A /cpyv\m ( + 5 lu? dQ

X5 — 23/\3/ UV .V V|2 dQ + zsv/ V.V VU2 dQ
Q Q

verify:
X, < C () S)\/ o |Vul? dQ; (5.30)
2 2 2 4A
X5 < C (W) A /go\Vu| dQ + 52\ /cp wW?dQ  (5.31)
Q 256
and
TA o\ w| 3012
X <O P ATA) [ FPuld  (532)
Q
where

T2 A%

C(s,\, T, A) = 52)\2< +T2A3+T3A2+T+A>.

Note that v is the outward normal vector to 0{2. So, using the fact
that U(z) > 0 for all x € Q and V(o) = 0 for all o € 92 we infer that
VV¥.v < 0. As a consequence, (5.29) yields:

2/ PiuPyudQ > X1 + Xo + X3 + 23>\2/ o |Vul? |VI|* dQ+
Q Q
2531 / o3u? |Vt dQ. (5.33)
Q
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Note also that ¥ € C?(Q2) and |V¥| # 0 in Q —@. Consequently, there
exists a positive constant ¢ such that [V¥| > 6 in Q — .
So that (5.33) gives:

2/ PiuPoudQ + 2s\262 / ® ]Vu|2 dQ + 2532164 / ouldQ >
Q q q
X1+ X0+ X3+ 25>\252/ ©|Vul>dQ + 233/\464/ O udQ  (5.34)
Q Q
where ¢ = (0,7) x (0,A4) x @.
Furthermore, we have:
/Qgng < /Qe2s"f2dQ + X1 + Xo + X3, (5.35)

Then, it follows from (5.15) and (5.34):
/ e £24Q + X1 + Xo + X + 253215 / o [uf? dQ+
Q q
23/\252/<p|Vu\2dQ z/ |P1u]2dQ+/ | Pyul? dQ+
q Q Q

28)\2(52/ o |Vul?dQ + 233/\454/ o [ul? dQ. (5.36)
Q Q
Recalling (5.30)-(5.31), one can choose s and A sufficiently large so that
sw?/ o |Vul2dQ + 83A454/ 2 [uf2dQ > Xy + Xo + Xs.
Q Q

This means more precisely that there exists positive constants Ay > 1 such
that:

)\>)\0:>)\2>C(\If)<1+2).

Furthermore since

X, < C(\If)%e%”q’”

214 %A% 2 43 3 42 3112
X %A 1 +TA+TA+T—|—A/g0|u\dQ
Q
let us take

2 A2
s > C(\I/)TTAeQ)‘H‘I’Hﬁ <T4A CTAR L TRA2 4T+ A) .
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It follows that
/ 291 £240) 1 26 A1 / [uf? dQ + 25725” / o |Vul2dQ >
Q

/]Plu\ dQ—i—/ | Pyul? dQ+s)\252/ © |Vul? dQ+33)\4(54/ 3 [ul? dQ.
Q Q Q Q
(5.37)

Actually, we want now to eliminate in (5.37) the term
23>\262/<p|Vu\2dQ.
q
For this aim, we introduce a cut-off function « such that: o € C3°(w);

0<a<l;and a=1on Q.
Multiplying Pyu by pa?u and integrating the result over @ leads to:

n  On
2 2
/(pa uPrud@ = / <9t Ja >u<pa dQ

82)\2/ u24p3a2|\II|QdQ—/ uAupa’dQ. (5.38)
Q Q
Note that:

/ uAupaldQ = —/ |Vul? pa’dQ — )\/ uVu.V¥eatdQ—

Q Q Q

2 / uVu.VapadQ. (5.39)
Q
Then,

/ potuPoudQ = —s/ (gj + ?7) uw?pa’dQ — 82)\2/ w30 0| dQ+
Q Q

/ |Vu\2<pa2dQ+)\/ uVu.V\IftpanQ+2/ uVu.VapadQ. (5.40)
Q Q Q

This gives:
/Q\VUIQ waldQ = 32/\2/ w30 U2 dQ + s / ( 77) u?pa’dQ+
/ waluPoudQ — )\/ uVu.VUpa?dQ — 2 | uVu.VapadQ. (5.41)
Q Q Q
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Note that:
1
—)\/ uVu.V¥paldQ < C’)\Q/ [u? pa?dQ + 5/ IVul? pa?dQ
Q Q Q

where C' is a positive constant.
Now, since ¢ < Cp? with C a positive constant, and using the properties
of o and ¥ we deduce:

/~|Vu]2cpa2dQ < C’/QQOQQUPQUdQ—I-
q

052)\2/Qu2<,03a2dQ+C/Qucp1/2|Vu| ©'%adQ. (5.42)

Therefore we deduce from the previous estimate that:

1
2$A252/|Vu|2 ed@ < 5/ |P2u|2dQ—|—CSQ)\2/u2903dQ (5.43)
q Q q

where C' is a positive constant.
Combining (5.37) and (5.43) we get:

C(/ e‘QS"deQ—i—s?’)\A‘/goSquQ) z/ ]Plu\2dQ+/ | Pyul? dQ+
Q q Q Q

s)\2/ g0|Vu|2dQ—|—53)\4/ ©*u?dQ. (5.44)
Q Q

We want now to turn back to the variable z. Note that u = e™%7z. Then,
we have:

/ <p3|u]2dQ:/ 6_287](,03 ”LU‘Q dQ
Q Q
and
[ utaa = [l aq.
q q
As a result, one gets from (5.44)

83/\4/ e 2M224Q < C/ e_QSnf2dQ+083)\4/6_2877903Z2d@ (5.45)
Q Q a

On the other hand we have Vu = sAe™¥"VWz + ¢ 5"V z. Then it follows
that

eV < C (sQ)\Qe_?S" VU |? 22+ |Vu|2> .

397



O. TRAORE

Integrating this over @) and using (5.44) and (5.45) we derive that:

/ e N5 \p |V2[2dQ < C </ e 2 £2dQ —|—/ 83)\4g03e_25n22dQ> .
Q Q

w

(5.46)

Adding now (5.46) and (5.45) one gets (5.2). O
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