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Abstract

High dimensional data are more and more frequent in many application fields.
It becomes particularly important to be able to extract meaningful features from
these data sets. Deformable template model is a popular way to achieve this. This
paper is a review on the statistical aspects of this model as well as its generaliza-
tions. We describe the different mathematical frameworks to handle different data
types as well as the deformations. We recall the theoretical convergence properties
of the estimators and the numerical algorithm to achieve them. We end with some
published examples.

Modèles statistiques d’atlas déformables pour l’analyse d’images
et de formes

Résumé
Les données de grande dimensions sont de plus en plus fréquemment collec-

tées dans de nombreux domaines d’application. Il devient alors particulièrement
important d’être capable d’extraire des caractéristiques significatives de ces bases
de données. Le modèle d’atlas déformable (Deformable template model) est un
outil maintenant répandu pour atteindre ce but. Cet article présente un panorama
des aspects statistiques de ce modèle ainsi que ses généralisations. Nous décrivons
les différents cadres mathématiques permettant de prendre en compte des types
variés de données et de déformations. Nous rappelons les propriétés théoriques de
convergence des estimateurs et des algorithmes permettant l’estimation de ces ca-
ractéristiques. Nous terminons cet article par la présentation de quelques résultats
publiés utilisant des données réelles.

Keywords: Review paper, Deformable template model, statistical analysis.
Math. classification: 62H12, 62H30, 62H35.
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1. Introduction

Due to the increasing number of images available in many fields, image
analysis has become an important challenge. This is particularly the case
in the medical domain where images of different modalities are easier and
easier to acquire. This amount of data paves the way to some population
analysis, characterizing the population in terms of representative features,
clustering the heterogeneous populations and of course classifying new
observations. This review paper focuses on methods providing a statistical
analysis of population in terms of both estimating a representative mean
image and some characteristic geometrical variations within the observed
population.
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Statistics on Deformable templates

We are interested in the study of statistical deformable models whose
ideas go back to D’Arcy Thompson in his book “On Growth and form”
[49] for the study of animal and human anatomical shapes and which were
generalized and formulated mathematically by Grenander in [31] for image
analysis. The key idea is to assume that, for a given homogeneous popu-
lation, each observation is a regular deformation of a mean representative
image, called template, plus some additive noise. The deformation does
not affect the template itself but moves the underlying space the image
is painted on, carrying the color information from one location to an-
other. The deformations are also characteristic of the population, making
a difference among populations in terms of both the photometry (through
the template) and the geometry (through the deformation distribution).
They together will be called the atlas in the sequel. The main issue is to
learn this atlas as the parameter of a statistical generative model when
we observe a population of images. We will summarize here the differ-
ent aspects of this model and the theoretical guaranties we have for this
statistical estimation problem.

The general framework in this setting is the following: let H be a sepa-
rable Hilbert space modeling a set of objects and G be a group acting on
H, meaning that for any (h, φ) ∈ H × G the (left) action · of G onto H
is such that φ · h ∈ H. Suppose that the data at hand Y1, . . . , Yn are i.i.d
random variables in H satisfying the model:

Yi = φi · T +Wi, (1.1)

where T ∈ H is an unknown template, Wi ∈ H is an additive noise
(typically due to the measurement process) independent of the {φi}1≤i≤n,
which are i.i.d random variables belonging to G modeling a geometric
source of variability in the data. Given a template, the specification of a
geometric deformation and an additive noise model, observations {Yn}n>0
can be simulated as independent realizations of the generative stochastic
process (1.1).

We present successively in this paper some classes of objects handled
by this model and some typical deformation groups. These will specify the
mathematical frameworks which have to be used to deal with the large va-
riety of observations we encounter. Some extensions of model (1.1), which
include time-dependency as well as mixture models, and enable popula-
tion clustering, are also described to overcome some model limitations. In
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Section 3, we outline the theoretical consistency of the template estima-
tor and full atlas estimation issues in some of the presented mathematical
frameworks. Section 4 presents the most efficient and popular algorithms
to numerically perform this estimation. The theoretical convergence of
these algorithms are recalled. The paper ends with presenting some re-
sults, obtained by applying these methods to several types of data sets.

2. An overview of deformable template models

The deformable template model (1.1) applies to many different situations.
In this section, we give an overview of the different aspects of the same
model focusing on the data and deformations.

2.1. Types of data
The typical data considered by the deformable template model are signals,
functions from Ω ⊂ R to R, or images of dimension d, functions from
Ω ⊂ Rd to R, where Ω is a compact subset and d = 2, 3 or 4, including
time sequences. In this setting, the Hilbert space H is the space of squared
integrable functions H = L2(Ω, dx) with respect to the Lebesgue measure.
To define the gray level of the template T on a given point x ∈ Ω, it is
required to have more regularity on this template function. It is usually
assumed that the template is at least piecewise continuous.

When we consider real data, we are usually provided with digital inputs
which are discrete, giving gray level value on a regular grid of points. To
adapt the deformable template model (1.1), we assume that T is defined
on the whole subset Ω and belongs to H whereas each observation Yi is a
discretization of the deformed template on a regular grid. This dimension
reduction step is also shared by the noise structure W which therefore
can be defined as a random vector of finite dimension. This discretization
implies that the observations do not actually belong to the same Hilbert
space as the template but for sake of simplicity we omit these two sub-
samplings for Yi and Wi in the notation of Eq. (1.1).

Concerning the action of a deformation onto such a template, the idea is
that the image (grey level map on Ω) is carried by the underlying space Ω
of Rd defined by its coordinate system. The deformation moves the points
in the space which transports the grey level information. Therefore, the
grey level at location x of the deformed template is the grey level of the
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template at location φ−1(x) when φ is invertible. This writes :

φ · T (x) = T (φ−1(x)), ∀x ∈ Ω . (2.1)

For the definition of this action, two conditions are required. First, we
need to consider invertible φ’s or to provide a meaningful approximation
of φ−1. Moreover, the deformation φ should be defined on Ω.

In many applications it is preferable to extract meaningful features from
the image data prior to perform shape analysis. Considering the case of
medical image data, such features will usually be derived from manual or
automated segmentations of anatomical landmarks on the images. From
a mathematical modeling viewpoint, such features take the form of sparse
geometrical data lying in the ambient space: points or groups of points,
curves or surfaces, needing specific models to be treated. More precisely,
if we want to stick to our template/deformation model, we need to define
specific Hilbert spaces for each kind of geometrical data in use. The first
and easier type is the so-called landmarks case, where features form a
sequence of n labeled points in space Ω. In this case we set H to be the
Euclidean space (Rd)n, and the action of any deformation map φ ∈ G on
x = (x1, . . . , xn) ∈ H will simply write φ.x = (φ(x1), . . . , φ(xn)).

When it comes to unlabeled groups of points, the previous model is not
suitable. It has been proposed in [30] to model such features as sums of
Dirac functionals embedded in the dual space of a functional Hilbert space.
More precisely, an unlabeled set of points {x1, . . . , xn} ⊂ Ω is modeled
as the measure µ =

∑n
i=1 aiδxi , where non-equal weights ai may model

differences in relevancy or confidence of locations between subsets of the
set of points. Next, assume there exists a Hilbert space H of functions
defined on Ω such that all evaluations functionals δx : f 7→ f(x), x ∈ Ω
are continuous linear forms on H, or in other words Vect{δx, x ∈ Ω} ⊂ H∗.
We setH = H∗, the dual space ofH, together with its dual Hilbert metric:
for any µ ∈ H, ‖µ‖H = Sup{µ(f), f ∈ H, ‖f‖H ≤ 1}. For the objects in
use, sums of Dirac deltas, this dual metric takes an explicit form which
gives to this model one of its main practical interest: if µ =

∑n
i=1 aiδxi ,

then

‖µ‖2H =
n∑
i=1

n∑
j=1

aiajkH(xi, xj),
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where kH denotes the reproducing kernel of space H. Indeed the assump-
tion made on H exactly states that H is a Reproducing Kernel Hilbert
Space (RKHS), and the space H is uniquely specified by its kernel kH .
The action of a deformation map φ ∈ G on an element µ ∈ H is the usual
push-forward of the measure µ, defined by duality as ∀f ∈ H, (φ.µ)(f) =
µ(φ.f) = µ(f ◦ φ). For sums of Dirac deltas, we get simply the explicit
formula: if µ =

∑n
i=1 aiδxi , then φ.µ =

∑n
i=1 aiδφ(xi).

The previous measure framework can be used directly to treat the case
of curves or surfaces embedded in Ω, because such objects can be modeled
as measures. For example let C ⊂ Ω be a curve, parameterized by γ :
[0, 1]→ Ω. Then, one can associate to C a measure µ ∈ H via the rule

∀f ∈ H, µ(f) =
∫ 1

0
f(γ(s))‖γ′(s)‖ds.

However this does not provide a purely geometric model, since the action
of deformation maps will in general modify the mass repartition on the
image curve. In other words, the measure φ.µ will not be in general the
uniform measure associated to the curve φ(C). A purely geometrical model
is obtained when one replaces measures by currents, i.e. measures acting on
spaces of differential forms. In this new setting, the space H is replaced by
a Hilbert space W of m-differential forms, where m is the dimensionality
of the data; and the current ~µ associated to an oriented m-submanifold
S of Ω is defined via the rule ~µ(ω) =

∫
S ω. In the example of curve C,

this writes ∀ω ∈ W, ~µ(ω) =
∫ 1

0 ω(γ(s))(γ′(s))ds, and the dual norm in
H = W ∗ writes in terms of the kernel kW , which in its general form is a
map from Ω2 to the space of symmetric bilinear forms of Rd:

‖~µ‖2H =
∫ 1

0

∫ 1

0
kW (γ(s), γ(t))(γ′(s), γ′(t))ds dt.

The push-forward of a deformation map φ ∈ G on an element ~µ ∈ H is
defined via duality as ∀ω ∈ W, (φ.~µ)(ω) = ~µ(φ.ω), where for all x ∈ Ω
and α1, . . . , αm ∈ Rd,

(φ.ω)(x)(α1, . . . , αm) = ω(φ(x))(dφ(x).α1, . . . , dφ(x).αm).
As opposed to the scalar case, this action is consistent with the action of
φ on subsets: if ~µ is the current associated to an oriented m-submanifold
S, then φ.~µ will be the current associated to φ(S).

We will not detail any further this specific representation and refer to
[53, 29] for developments for the case of curves and surfaces.
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2.2. Various deformation models
A simple setting to study the problem of estimating the template T in
model (1.1) is to consider the case where G is a connected, semi-simple,
and compact Lie group, and H = L2(G) the Hilbert space of complex
valued, square integrable functions on the group G with respect to the
Haar measure dφ. In [11] and [12], it has been proposed to consider the
nonparametric estimation of a complex valued template T : G → C in the
following deformable white noise model:

dYi(φ) = T (φ−1
i · φ) dφ+ ε dWi(φ), φ ∈ G, i ∈ [[1, n]] (2.2)

where the Wi’s are independent copies of a standard Brownian sheet W
on the topological space G with reference measure dφ, ε > 0 is the level
of noise in the measurements, and the random variables φi are supposed
to be i.i.d. with a known density h ∈ L2(G). The white noise model (2.2)
is a continuous model that is useful for studying the statistical estimation
of T in the asymptotic setting n → +∞ as it avoids the problem of con-
trolling the bias introduced by any discretization scheme. Some concrete
examples of model (2.2) include the analysis of translated two-dimensional
images, which corresponds to the case G = R2/Z2 (the torus in dimension
two), and which founds its applications in biomedical imaging or satel-
lite remote sensing (see e.g. [26]). Other examples are rotation models for
two-dimensional or three-dimensional images for which either G = SO(2)
or G = SO(3) (the special orthogonal group in dimension 2 or 3) when
the images at hand are observed through the action of random rotations
(see e.g. [32, 42, 45]). Note that model (2.2) corresponds to a specific case
where the group G and the domain Ω (on which the template T is de-
fined) are the same. In practice the data are rather observed on a discrete
grid of time points or pixels belonging to a convex set Ω ⊂ Rd. Thus, an
alternative model is

Yi,` = T (φ−1
i · x`) + σWi,`, x` ∈ Ω, i ∈ [[1, n]], ` ∈ [[1, p]], (2.3)

where T ∈ H = L2(Ω), the φi’s are i.i.d. random variables in G, the Wi,`

are i.i.d. standard Gaussian variables, σ > 0 is the level of additive noise,
and the x`’s are a set of p deterministic sampling points in Ω (e.g. x` = `/p
in the setting Ω = [0, 1]). Model (2.3) assumes that G is a group acting on
the domain Ω meaning φ · x ∈ Ω for any (φ, x) ∈ G × Ω. In model (2.3),
the main goal is to construct consistent estimators of the template T and
to recover the geometric variability of the data modeled by the φi’s in the
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double asymptotic setting min(n, p) → +∞ (both the number of images
and the number of sampling points tend to infinity).

The compact groups reduce to deformations which are highly con-
strained, typically rigid body deformations. Therefore, to include defor-
mations with more degree of freedom, one can think of elastic maps. A
first step in this generalization considers that a deformation is given by
the displacement of each point in the definition domain Ω. This yields the
existence of a velocity vector field, denoted v : Ω → Ω, such that for
all x ∈ Ω, φ(x) = x + v(x). Note that there is no constraint on v which
ensures the invertibility of φ. This requires to provide an adapted defini-
tion of the previously introduced actions when it involves the inverse of
φ. The inverse of the mapping is approximated at first order (‖v‖G small)
by Id− v, where Id is the identity map on Rd.

This framework has a big advantage as it provides an easy character-
ization of the deformation through v. However, this remains an infinite
dimensional variable to consider and estimate. To reduce this problem to
a finite dimensional one, one may assume that this vector has a finite de-
composition on a dictionary basis. The velocity field is stated as follows.
Given a dictionary of functions (bk)1≤k≤kG from Ω to Ω, for all φ ∈ G,
there exists (αk)1≤k≤kG such that for all x ∈ Ω

φ(x) = x+
kG∑
k=1

αkbk(x). (2.4)

The regularity of φ depends on the choice of the dictionary basis. This
parametric model aims at constructing a consistent estimator of the full
atlas as the number of observations tends to infinity.

As already pointed, the previous model of elastic, “small” deformations
does not guarantee invertibility of the maps. A more rigorous approach
takes the previous framework as a model for infinitesimal deformations
only, building a group of diffeomorphisms by integrating such displacement
fields. This construction has been introduced in several works [50, 18] and
has been intensely developed since then to derive efficient techniques for
shape registration and analysis (see e.g. [36, 44, 9, 27, 6], among many oth-
ers). The construction starts by specifying a Hilbert norm on the space V
of displacement fields (see [50]). Then we consider time-dependent families
of such vector-fields v ∈ L2([0, 1], V ). The deformation map φv associated
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to v is defined as the flow at time one of this family: φv = φ1, where φt
satisfies the O.D.E. {

∂φt(x)
∂t = vt(φt(x)),

φ0(x) = x.
(2.5)

The induced group of deformation maps G := {φv, v ∈ V } is provided a
right-invariant metric via the rule d(Id, φ) :=

√
inf{

∫ 1
0 ‖vt‖2V dt, φ = φv}.

This exactly states that G is given the structure of an infinite-dimensional
manifold, on which distances are computed as the length of minimal ge-
odesic paths connecting two elements. In fact it is possible to derive the
equations of geodesics, which can be seen as a special case of the Euler-
Poincaré equations of motion, coined as EPDiff ([35]). This allows to con-
sider a new parameterization of deformation maps φ ∈ G via the initial
velocity field v0. For simplicity, we only detail the finite-dimensional case
below.

The large deformation representation boils down to a finite dimensional
one when carried out in a discrete setting. Indeed, when the support of
the data in use forms a finite set of points (as in the case of landmarks or
point clouds), or can be approximated with a finite set of points (as e.g.
for curves, surfaces or signals/images), then one only needs to consider
initial velocity maps which are linear combinations of kernel functions
centered at these points. More explicitly, if this set of discretization points
are (xi)1≤i≤n, then the initial velocity map can be written as

v0(x) =
n∑
i=1

kV (xi, x)αi,

where the αi ∈ Rd are the coefficients of the linear combination and are
called momentum vectors. Equivalently it is possible to parameterize v0
via the velocity vectors v0(xi). The complete system of ODEs that express
the deformation map φ parameterized by a finite set of initial momentum
vectors αi is the following:

dxj(t)
dt

=
n∑
i=1

kV (xi(t), xj(t))αi(t)

dαj(t)
dt

= −1
2

n∑
i=1

∂

∂xi(t)
[kV (xi(t), xj(t))αi(t)]αj(t)

dφt(x)
dt

=
n∑
i=1

kV (xi(t), φt(x))αi(t),
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with xi(0) = xi, αi(0) = αi, φ0(x) = x. The first two equations form the
geodesic equations, while the third one is Eq. 2.5 in this discrete setting.

Note that these geodesic equations in this finite dimensional case enable
to parameterize the deformation by the initial momenta as well as the
initial control point locations.

2.3. Mixture models
In the observation model (2.2), additive random fields Wi are critical for
the modeling of statistical dependencies between values of the deformed
template φi ·T and observations Yi. For instance, when objects are images,
they describe how intensities (gray-level values) of observations relates to
the template ones. Assumptions made on the probability laws of these
fields completely determine the nature of dependencies between observa-
tions and template. In particular, the basic assumption that fields Wi are
white noises implies that dependencies have the same statistical properties
all over the space.

There are many situations where such an assumption is not valid (see for
instance [34] and Section 5.2). For instance, a problem arises in contrast-
enhanced medical imaging when two tissues having different contrast-
agent absorption properties are observed with a same intensity range be-
fore contrast injection but two different ones after injection. In such a case,
relationships between intensities of pre and post contrast images depend
on tissue types, and are not spatially invariant.

To deal with such a situation, [34] proposed to define the probability
distribution of Wi conditionally to the class of the pixel. Let us assume
that pixels of the domain Ω can be divided into K classes where template-
observation dependencies are different, and denote by Lk(x) the probabil-
ity for a pixel x to belong to the kth class. The probability distribution of
Wi(x) at x is then defined conditionally to L(x) = (L1(x), · · · , LK(x)) as
a mixture of distributions πk describing dependencies on each class k :

π(Wi(x) = wx|L(x)) =
K∑
k=1

Lk(x)πk(Wi(x) = wx), ∀ wx ∈ R.

In the defined model, the so-called class map L = {L(x`), x` ∈ Ω, ` ∈
[[1, p]]} is unknown and has to be estimated together with deformations.
In [34], the estimation of deformations and class map is jointly performed
by a MAP approach. It leads to a simultaneous classification of template
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pixels and registrations of the template and observations, which is called
classifying registration.

Besides, some spatial constraints on pixel classes can be added to the
model by specifying a probability distribution on the map L. For instance,
in the case when K = 2 (two classes), we can set that we restrict the
amount of pixels of the class 0, whereas we enforce the spatial homogeneity
of the classes.

A mixture of the deformable template model (1.1) involving several
templates can also be considered. It is particularly appealing when one
wants to extract reference curves or patterns from data featuring high
dispersion [3, 41]. In this setting, the data are described with a set of K
templates {T1, . . . , TK} and each observation Yi is assigned to a (possibly
unknown) class Ji ∈ {1, . . . ,K} such that given Ji = j, (1.1) writes:

Yi = φi · Tj +Wi . (2.6)
In a parametric approach, each elementary component is characterized

by its own parameter set θj . In particular, each has its own template
function Tj , a prior deformation distribution pj and a prior weight wj ,
such that

∑K
j=1wj = 1. As a result, the mixture of the deformable model

can be fully parameterized by θ = (θ1, . . . , θK). The number of classes is
fixed but priors on the parameters or other arguments enables to achieve
an estimation of the optimal number for the analyzed population.

Retrieving the data diversity becomes possible by using a mixture model
to estimate the templates {T1, . . . , TK}, which can then be used to perform
unsupervised classification (see section 5).

2.4. Spatiotemporal models
In some cases, observations in model (2.2) are sequential, and can be
naturally ordered by time. This is for instance the case in dynamic contrast
enhanced imaging where a series of images of a same body part is produced
to capture the dynamic of contrast agent absorption by tissues (see [33]
and Section 5.3). In such a situation, time variations of observations may
not be exclusively geometrical (i.e. caused by deformations). Variations
may also appear as changes in observation values (photometric changes
when observations are images). In dynamic contrast enhanced imaging,
these variations are due to the contrast agent diffusion. This other source
of variations can be included in the model by defining a time-dependent
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template. Letting t1 < · · · < tm be acquisition times, the observation
model is then of the form:

Y(i) = φ(i) · T(i) +W(i), (2.7)
where Y(i), φ(i), T(i), W(i) are the observation, the deformation, the tem-
plate and the noise at time ti, respectively.

However, the model defined above cannot be used without setting some
constraints on the temporal template. Indeed, defined with a large degree
of freedom, the temporal template can not only account for photometric
variations but also for geometrical variations. In other words, without
limiting the degree of freedom, the two sources of observation variations
are undistinguishable in the model. One way of fixing this issue consists in
restricting the template definition to a class of parametric functions which
is representative of the expected photometric variations. Such a solution
was proposed in [33] in the context of dynamic contrast enhanced imaging.
The template was defined using a class of functions which are known to
be well-suited for fitting dynamic curves of contrast absorption. This class
is characterized by just a few interpretable parameters.

In [33], the model is further constrained by partitionning pixels of Ω
into classes of common temporal photometric variation: for all pixels x
belonging to a same class k, T(i)(x) = fk(ti), i = 1, · · · ,m, where fk is a
parametric temporal curve for the kth class. Pixel classes and associated
temporal curves are both estimated at the same time using an iterative
algorithm, while the number of classes is set automatically during iter-
ations. In this model, photometric variations are estimated globally on
pixels of a same class rather than locally on each pixel. This reduces the
influence of local geometrical variations on the estimation of photometric
variations.

Another aspect of the dynamical model is to consider that the time
dependent template is a smooth deformation of a baseline at a reference
time point. This is particularly adapted to the evolution of shapes of
brain structures such as hippocampus, caudate or basal ganglia along de-
velopment or aging. Contrary to the spatiotemporal template previously
described, it does not enable a change in contrast or equivalently topol-
ogy of the shape. However, this framework enables to capture a subject
growth model and also to produce a global template which evolves in time
and space. This provides a mean growth scenario of given time evolving
population.
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Constructing a growth model of a single subject is similar to perform
regression on a set of images. When a sequence of images is observed for a
subject, one can estimate the evolution scenario from the first time point
to the last observed one by deforming the initial shape so that it matches
the intermediate observations. Several models have been proposed which
differ from each other in the smoothness of the time dependency of the
regression model ([22, 55, 23]). In any case, the model writes :

φ(t)(T ) , T(t) such that T(ti) ∼ Y(i) , (2.8)

where (Y(i))1≤i≤p is the longitudinal data, T is the baseline image (that
could be fixed as the first acquired image or estimated in a joint optimiza-
tion) and φ(t) is the continuous regression function.

This scheme has been extended to estimate a spatiotemporal atlas from
longitudinal data in which different subjects have been observed at several
time points. The spatiotemporal atlas consists of a mean image, its evo-
lution along time, together called the mean scenario of the population, as
well as the correspondences that map this mean scenario to evolutions of
n subjects. There are different ways to transport the mean scenario (time
varying flow of deformation) from the template space to the space of the
subject. In [46, 40, 39], the mapping is done by parallel transport. In [22],
an adjoint transport has been proposed together with possible change in
time dynamics. The observations are surfaces, the template is therefore a
current and the deformation is assumed diffeomorphic through the LD-
DMM framework introduced above. We refer to [22] for all the details of
this atlas estimation. Note that this framework applies directly with any
other type of data such as images.

3. Consistent estimation of a template

We summarize here the theoretical results of asymptotic convergence for
the template estimation problem. Considering different situations, we de-
scribe the statistical consistency properties which can be achieved.

3.1. Nonparametric approach
A nonparametric approach is to consider that the template T belongs to
an infinite dimensional space F ⊂ H such as a Sobolev ball, and that it
cannot be parameterized by a finite number of parameters. In [11] and
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[12], it is shown that, in model (2.2), the density h of the random ele-
ments φi ∈ G plays the role of the kernel a convolution operator that has
to be inverted to construct an optimal estimator of T . Indeed, in (2.2),
ET (φ−1

i φ) =
∫
G T (φ̃−1φ)h(φ̃) dφ̃ is the convolution over the group G be-

tween the template T and the density h. Hence, it is possible to build an
estimator of T using a regularized deconvolution method over Lie groups.
This class of inverse problems is based on the use of harmonic analysis
and Fourier analysis on compact Lie groups to transform convolution in
a product of Fourier coefficients. In [11] and [12], it is shown that such
estimators of T achieve an optimal rate of convergence over Sobolev balls
in an asymptotic setting, where the number n of images tends to infinity.
A more standard approach to estimate a template is a two step procedure
which consists in first computing estimators φ̂1, . . . , φ̂n of the unobserved
deformations φ1, . . . , φn and then in averaging the data after an alignment
step which yields to an estimator of the following form

T̂0(x) = 1
n

n∑
i=1
T̂i(φ̂i · x), x ∈ Ω, (3.1)

where T̂i(x) denotes some estimator of the unknown i-th image T (φ−1
i x)

in either model (2.2) or model (2.3). Such a procedure clearly depends
on the quality of the estimation of the unobserved deformations. In the
simple setting where Ω = G = S1 ' [0, 1[ (the torus in dimension 1),
the following lower bounds have been established in [10] and [12]: for any
estimators (φ̂1, . . . , φ̂n) ∈ Sn1 and under mild assumptions on T and the
density h of the random variables φ1, . . . , φn, one has that in model (2.2)

E
(

1
n

n∑
i=1

(φ̂i − φi)2
)
≥ ε2∫ 1

0

∣∣∣ ∂∂xT (x)
∣∣∣2 dx+ ε2I(h)

9
n→+∞

0 (3.2)

and in model (2.3)

E
(

1
n

n∑
i=1

(φ̂i − φi)2
)
≥ σ2

p

(∫ 1
0

∣∣∣ ∂∂xT (x)
∣∣∣2 dx)+ σ2I(h)

→
p→+∞

0 (3.3)

where I(h) =
∫ ( ∂

∂x log h(x)
)2
h(x)dx. Therefore, Eq. (3.2) shows that,

in model (2.2) and in the asymptotic setting n → +∞, it is not pos-
sible to build consistent estimators of the deformations in the sense that
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lim infn→+∞ E
(

1
n

∑n
i=1(φ̂i − φi)2

)
6= 0. Thus, in such a setting, estimators

T̂0 based on an alignment step (as defined in (3.1)) are not likely to be
consistent estimators of the template T . To the contrary, in model (2.3)
and in the double asymptotic setting min(n, p) → +∞, equation (3.3)
suggests that one can compute consistent estimators of the deformations
parameters. This implies that, in model (2.3), it is possible to construct
estimators T̂0 via an alignment procedure such that

lim
min(n,p)→+∞

∥∥∥T̂0 − T
∥∥∥2

H
= 0.

For a detailed discussion, we refer to [10].
To conclude this section, we would like to mention that another point

of view for statistical inference in either model (2.2) or (2.3), is to consider
that the deformations φi, i = 1, . . . , n are fixed (non-random) parameters
belonging a finite dimensional Lie group. For various results in this semi-
parametric framework, we refer to [13, 14, 25, 56].

3.2. Parametric models of non-rigid deformations

3.2.1. A frequentist approach using large deformations

Now consider the following case. The data are 2D images observed on a
grid of pixels x` ∈ Ω, ` = 1, . . . , p, and the deformations in model (1.1)
are large random diffeomorphisms φa of Ω that are solutions of an O.D.E
governed by vector fields va : R2 → R2 parametrized by a set of coefficients
a ∈ [−A,A]2K for a given real A > 0, see [15] for further details.

To generate a large class of random diffeomorphisms, it is proposed in
[15] to consider a random distribution on the vector a. Let us denote by
PA a probability distribution on [−A,A]2K . The data at hand are then
supposed to satisfy the model

Yi,` = T (φ−1
ai

(x`)) + σWi,`, x` ∈ Ω, i ∈ [[1, n]], ` ∈ [[1, p]], (3.4)

where the ai’s are i.i.d. random variables sampled from the distribution
PA, the Wi,`’s represent an additive noise independent from the vectors
ai, and T : Ω→ R is an unknown template.

In [15], it has been proposed to estimate T by a frequentist approach
using M-estimation techniques (see e.g. [52] for an introduction). Denote
by Z = {Z : Ω → R} a set of images uniformly bounded (e.g. by the
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maximum gray-level), and consider the generative model

Y` = T (φ−1
a (x`)) + σW`, x` ∈ Ω, ` ∈ [[1, p]], (3.5)

with a ∼ PA and W` some additive noise. Let us define the function f as

f(a,W,Z) = min
u∈[−A,A]2K

p∑
`=1

(
Y` − Z(Φ1

vu
(x`))

)2
, (3.6)

where Z is a given image in Z. Intuitively, f must be understood as the
optimal cost to align the image Z onto the random image Y = (Y`)1≤`≤p
using a deformation parametrized by some u ∈ [−A,A]2K . At last, we
define a contrast function F as

F (Z) =
∫

[−A;A]2K×RN
f(a,W,Z)dP(a,W ) = Ef(a,W,Z),

where dP(a,W ) is the tensorial product measure on a. In practice, one
can only compute the empirical contrast Fn as

Fn(Z) =
∫
f(a,W,Z)dPn(a,W )

= 1
n

n∑
i=1

min
ui∈[−A,A]2K

p∑
`=1

(
Yi,` − Z(Φ1

vui
(x`))

)2
,

where Pn(a,W ) = 1
n

∑n
i=1 δai,Wi

. Then, one can define a sequence of sets of
estimators as Q̂n = arg minZ∈Z Fn(Z), whose asymptotic behavior is com-
pared with the deterministic one Q0 = arg minZ∈Z F (Z). In [15], various
conditions are discussed to ensure the consistency of the M-estimator Q̂n
in the sense that any accumulation point of a sequence of images Ẑn ∈ Q̂n
belongs to Q0 almost surely.

3.2.2. A Bayesian approach using small deformations

We describe here the case where the template and the velocity vector fields
of small deformations can be decomposed as a finite linear combination
of some dictionary elements (see [1, 5]) as in Eq. (2.4). We focus on fixed
sub-spaces determined by two sets of landmark points (pk)1≤k≤kH covering
a larger domain Ωp sup Ω and (gk)1≤k≤kG ∈ Ω. The template -resp. the
deformation- is defined as a linear combination of a kernels KH -resp. KG-
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centered at the landmark points and are parameterized by the coefficients
w ∈ Rkp -resp. α ∈ Rd×kG . We write

Tw = KHw, where (KHw)(x) =
kH∑
k=1

KH(x, pk)w(k) , (3.7)

φ = Id+ v, where vα(x) = (KGα)(x) =
kG∑
k=1

KG(x, gk)α(k). (3.8)

The model assumes that the observations are drawn with respect to
the deformable template model (1.1). The deformations are however not
observed and are treated as hidden random variables. This implies to
state a distribution on the deformation coefficients α ∈ Rd×kG which are
assume to follow a multivariate Gaussian distribution with zero mean and
full covariance matrix ΓG . This has two advantages : first it introduces
correlations between the movement of the control points. Moreover, it
enables to catch the distribution of the observations as the marginal of
the complete data (Yi, φi)1≤i≤n. This prevents from trying to estimate the
best deformations which match the template to each observations Yi which
equals the mode of the posterior distributions of φ given Yi, T (which is
not consistent; c.f. (3.2) and (3.3)). This uncertainty is taken into account
when marginalizing with respect to the deformation.

The complete statistical model writes : for all 1 ≤ i ≤ n{
Yi ∼ T (Id−KGαi) + σWi | αi, T , σ
αi ∼ N (0,ΓG) | ΓG

(3.9)

where Wi are i.i.d standard normal random variables. Given this model,
the parameters of interest, denoted by θ, are the template T , the covari-
ance matrix of the deformation space ΓG and the noise variance σ2.

The parameter estimates are obtained by maximizing the posterior like-
lihood on θ conditional on (Yi)1≤i≤n in a Bayesian framework. It has been
proved in [1] that for any finite sample the maximum a posteriori exists and
the MAP estimator is consistent. Without assuming that the observations
are generated by the model described above but follow the distribution P
we get : Let Θ∗ = { θ∗ ∈ Θ | EP (log q(y|θ∗)) = supθ∈ΘEP (log q(y|θ))},
where q is the observed likelihood.

Theorem 3.1 (Consistency on bounded prototypes). Under mild assump-
tion on the model, we can prove that the restriction of Θ∗ to bounded
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prototypes (‖w‖ ≤ R), ΘR
∗ , is not empty and for any ε > 0

lim
n→∞

P (δ(θ̂Rn ,ΘR
∗ ) ≥ ε) = 0 ,

where δ is any metric compatible with the topology on ΘR.

4. Algorithms for atlas estimation

Now that we have the theoretical convergences ensured, the numerical
schemes to compute these estimates are described.

4.1. Deterministic approach
The usual formulation of the template estimation is done by expressing
the solution as the minimum of an energy. This energy is the sum of the
contributions of the n observation registrations. Each of these contribu-
tions is a tradeoff between a fidelity to data term and a penalty on the
deformation. This writes :

T̂ = argmin
T ∈H

min
φ1,...,φn

n∑
i=1

1
2σ2 ‖φi · T − Yi‖H + 1

2‖φi‖G , (4.1)

where the tradeoff σ2 has to be chosen by the user as a function of the
details of the registration he/she expects.

The minimization of this energy is performed by optimizing iteratively
with respect to the deformations and the template while fixing the other.
Starting for an initial template (usually the mean of the gray level im-
ages), the n matching problems can be done separately as minimizing the
n registration energies relates to the n subjects. This is computed by gra-
dient descent most of the time due to the complex non linear dependency
of the energy with respect to the deformation parameters (e.g. velocity
coefficients of the linear combination of basis elements, initial momenta,
etc). Given these best matches (φ̂i)1≤i≤n, the template is computed as the
minimum of the sum of the n energies taken at φi = φ̂i. Many applications
of this methods can be found in the literature for all the deformations and
types of data presented above and many others [15, 48, 21, 37, 54].

This optimization scheme can be interpreted in two ways. The first
one is a geometric interpretation. Looking for a template which satisfies
Eq. (4.1) is similar to find the mean image whose orbit under the ac-
tion of the group of deformations is the closest to the observations. This
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approach is similar to find the Fréchet mean of the observations seen as
random variables belonging to a nonlinear manifold. Indeed, the Fréchet
mean [24] is an extension of the usual Euclidean mean to non-linear spaces
endowed with non-Euclidean metrics. Minimizing the energy (4.1) can also
be interpreted as finding a template which minimizes a dissimilarity mea-
sure that is a tradeoff between images registration and a penalty term
to avoid too large deformations. This dissimilarity measure can be inter-
preted as a kind of “non-Euclidean metric” which makes the connection
between minimizing (4.1) and computing an empirical Fréchet mean from
the observations, see [28, 10] for further details.

The second interpretation comes from the statistical modeling of the
template estimation problem. The energy (4.1) can be seen as the log
likelihood of the observations and the deformations in the model presented
in Eq. (3.9) given the parameters θ. Minimizing this energy is equivalent
to maximizing the likelihood of both the observations and the random
deformations.

Note that this optimization algorithm tries to find the best deforma-
tions which fit the template to the observations. In the discrete setting
introduced in Subsection 2.2, we have shown that the diffeomorphic de-
formation is parameterized by both the initial momenta and the initial
locations of the control points. This allows for optimizing with respect to
both of these parameters. This optimization is detailed in [20] where the
number of control points is also optimized using an L1 penalty on the
momenta.

4.2. Stochastic approach

The deterministic approaches aims at estimating the template through
the estimation of the deformations first. Although these technics produce
really impressive results on different databases, the lower bound (3.3) sug-
gest to try some other approaches when the noise level increases. The sta-
tistical model (3.9) where the deformations are unobserved seems to be
an appropriate answer. Whereas the deterministic approach computes the
complete likelihood (observations together with random deformations),
one may rather focus on the observation likelihood only. This means to
compute the maximum of the the marginal of the previous quantity with
respect to the deformation coefficients. This falls naturally into the case
for which the Expectation-Maximization (EM) algorithm was developed.
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Let us briefly recall the EM steps. This algorithm is an iterative algo-
rithm which aims at maximizing

h(θ) = log
(∫

q(Y, φ; θ)dφ
)
. (4.2)

Starting from an initialization of the parameter sequence θ0, it creates
a sequence of estimates (θk)k∈N. First, it computes the expectation (E-
step) of the complete log likelihood with respect to the posterior distri-
bution of the unobserved data using the current parameters : Q(θ|θk) =
E [log q(Y, φ; θ)|Y ; θk] . The second steps updates the parameter by maxi-
mizing (M-step) the function Q :

θk+1 = argmax
θ

Q(θ|θk).

A wide range of model falls into the so-called exponential family as the
complete log-likelihood has the form log q(Y, φ; θ) = 〈S(Y, φ), ψ(θ)〉+Φ(θ)
where S is a vector value function called the sufficient statistics and ψ
and Φ are two measurable functions. This particular forms enables to
simplifies the computations since the E-step only requires to compute
the expectation of the sufficient statistics. Although quite complex, the
deformable template model (3.9) belongs to this family. In this setting,
the maximization step is explicit as a function of the sufficient statistics :
θk+1 = θ̂(sk) where sk is the conditional expectation of S at iteration k.

Unfortunately, the posterior distribution does not have a simple form
so that the expectation cannot be calculated. Therefore, several meth-
ods have been proposed to reach an estimate of the parameters by ap-
proximating this expectation. One option is the deterministic algorithm
presented above where the expectation is approximated by a single real-
ization of the integrant taken at the mode of the posterior distribution.
Another approach leads to the use of a stochastic version of the EM al-
gorithm called Stochastic Approximation EM (SAEM) [19] coupled with
Monte Carlo Markov Chain [5]. The E-step is replaced by a simulation of
the non-observed random variables, namely the deformations, from an er-
godic Markov chain transition kernel. A stochastic approximation is then
performed on the sufficient statistics using these samples. The M-step is
unchanged.

The almost sure convergence of this algorithm towards the MAP esti-
mator has been proved in different situations, first in [5] for the Bayesian
Mixed effect model presented in Subsection 3.2.2 and in [3] for the mixture
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of this model detailed in Subsection 2.3. The requirements for convergence
concern the Markov chain which has to be geometrically ergodic on any
compact subset. Several choices may be done to satisfy this criterion [4, 2].
In [47], some particular representations of deformations and templates are
introduced using a common finite element decomposition of the image
domain. The resulting deformation and template fields have Markovian
properties facilitating samplings and accelerating algorithm convergence.

When the data are observed sequentially, one can use the online EM [16].
Using a sequential algorithm is useful for several reasons: storing the ob-
servations throughout the process (which might be resource intensive in
case of high dimensional data) is no longer required in an online setting,
because each observation is processed only once. Then, when the E-step
conditional expectation in intractable, as it is the case in the deformable
template model, its approximation is much lighter than in a batch algo-
rithm. Finally, in cases where the observed data evolves during the acqui-
sition time, the sequential learning provides an evolution of the trend of
the parameters throughout the iterations.

Under some mild assumptions, verified by the deformable template
model, it is shown that the sequence of estimates (θk)k∈N of θ converges
with probability one to the set of stationary points of the Kullback-Leibler
divergence between the marginal distribution of the observation and the
model distribution.

Compared to the SAEM algorithm detailed earlier, the difference lies
in that the stochastic approximation involves the conditional expectation
of the sufficient statistics only given the last available observation. This
online EM can be also coupled with MCMC methods when the conditional
expectation E[S(Y, φ)|Yk+1; θ̂k] is intractable.

We can notice that at iteration k of the online EM, a single chain
targeting the posterior distribution of the deformation q( · |Yk+1; θ̂k) is
required, whereas n chains targeting the posterior distributions q( · |Y1; θ̂k),
. . . , q( · |Yn; θ̂k) are necessary in the SAEM algorithm,N denoting the total
number of observations.

However, as already noticed in [3], the mixture model suffers from its
sensitivity to the sampler which can lead to trapping states (states where
the numerical value of the acceptation ration is too low so that the chain
does not mix). In [17], it is suggested to slightly modify the original model
(Section 2.3). The sampling scheme is adapted in the way that a Markov
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Chain targeting the joint posterior distribution of the class and the defor-
mations is run on an extended state space with a Metropolis within Gibbs
algorithm. In this way, the class sampling takes advantage of all the ex-
tended hidden data and will allow to jump from one model to another,
provided that consistent deformations are proposed. With this sampling
scheme, the posterior simulation of the class random variable is performed
more efficiently as the chain visits more different models.

5. Applications

In this section, we present some of the results on template estimations
from the deformable template model.

5.1. Estimated templates
The first application is based on the USPS database. Although very simple
images, this example enables to see the challenges of this issue. In partic-
ular, it enables to clearly see some templates which look relevant, it also
allows for reconstructing synthetic samples from the estimated model to
evaluate the geometric variability which has been captures. In addition,
since a test database is available, it can be used as a classifier where each
new image is classified in the class with maximum likelihood. The images
are 16 × 16 grey level images. Fig. 5.1 presents the noisy training sam-
ple used to estimate the ten templates on the right hand side. For more
detailed results on this example, see [1, 5, 3].

Another 3D medical training set (left rows of Fig. 5.2) has been tested.
These binary images represent some murine dendrite spline excrescences
which were generated on genetically modified mice to mimic the Parkin-
son’s disease. The template is presented in Fig. 5.3 and some synthetic
examples drawn with respect to the deformable template model using the
estimated parameters are shown in the two right rows of Fig. 5.2. For more
details on this experiment, see [4, 2].

The same databases where used to estimate multicomponent atlases
when assuming that the population contained two classes. The results
are presented on the right panel of Fig. 5.3 for the murine dendrite spine
excrescences. These examples show the importance to be able to cluster the
data in a given population. Indeed, the templates are very different from
each other and therefore summarize much more precisely the population.
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Figure 5.1. Top: exemplars of the USPS training data-
base. Bottom: the ten templates estimated on this USPS
base.

5.2. Clustering and Classification

5.2.1. Classification via maximum a posteriori

Thanks to the generative model presented in Section 3.2.2, one can clas-
sify new data calculating its likelihood to belong to different classes. After
estimating the parameters of a deformable template model for each class,
classification should be performed by computing the maximum posterior
on class given the image. This classification has been performed on the
USPS (c.f. Tables 5.1). The classification results show the importance of
having enough but not too many images per components and to estimate
the complete atlas namely the template as well as the geometrical variabil-
ity (through the covariance matrix of the deformation distribution). When
allowing for at most 15 components per class (some may be empty) and
training on the whole available training sample of USPS (7291 images), the
classification performances reaches an error of 3.5%. The estimation has
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Figure 5.2. Top: Exemplars of the binary images of the
segmented murine dendrite spine excrescences. Bottom:
Synthetic samples generated from the deformable template
model with the estimated parameters.

Figure 5.3. Left: Grey level template estimated from
the 3D murine dendrite spine excrescences. Binary volume
(second image) is created by thresholding the previous con-
tinuous image. (Third and forth images) Two spine excres-
cences templates estimated from the mixture deformable
template model.

been done with the template estimated by the deterministic algorithm
(FAM-EM); however, the results are similar with the other estimation
algorithm (MCMC-SAEM) since, in the noise free case, the estimated
parameters are very close to each other. In the noisy case, however, the
stochastic algorithm outperforms the other estimation process which can
clearly be seen on the parameter estimates ([5]).
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A second test set is based on infrared images of combat aircrafts from
the French Aerospace Lab ONERA. We refer to [38] for more details on
the data and the classification performances.

Nb. of components 1 3 10
20 per class 7.36 (1.04) 7.78 (1.02) 13.71 (5.6)
40 per class 7.93 (1.06) 6.73 (0.78) 7.075 (2)
100 per class 9.4 (0.56) 5.48 (0.56) 5.43 (0.69)

Protocol Photo. +Geom. Sample mean +Geom. Photo. + Geom. Prior
Mean error 7.36 19.80 18.22
Std of error 1.04 1.38 1.05

Table 5.1. Top: Error rates using the deterministic ver-
sion of EM algorithm for different numbers of components
(column) and different numbers of training images (rows)
per class. Mean error rate and std. for 30 runs with ran-
domly selected training sets. Bottom: Comparison of par-
tial training protocols to full training protocol to highlight
the importance of both photometrical and geometrical as-
pects (20 images per class, one cluster). “Photo” stands for
estimation of photometric parameters. “Geom” stands for
estimation of geometric parameters.

5.2.2. Classifying registration

The mixture model presented in Section 2.3 was used for the registra-
tion of mammograms in the context of computer-aided detection of breast
cancer [34]. Usual automated detection techniques include comparisons of
several mammograms either from left and right breasts of a same patient,
from a same breast at different dates, or from a same breast before and
after a contrast agent injection. In general, such techniques aim at localiz-
ing abnormal image differences which are signs of lesions. However, their
application requires corrections of other differences due to normal factors.
This is illustrated on images (a) to (c) of Figure 5.4 which show a pair of
bilateral mammograms and their difference image. In image (c), observed
differences result not only from the unilateral lesion (a circular opacity
in the top left part of breast) but also from variations of breast size and
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positioning (particularly visible near the bottom left part of the breast
boundary).

In this context, image registration can be used as a mean to compen-
sate for some normal differences. However, corrections made by registra-
tion should not concern abnormal differences. Indeed, these differences
should be preserved for lesion detection to remain possible on registered
images. But, usual registration techniques do not fulfill this specific re-
quirement. Relying upon the assumption that intensity dependencies are
spatially invariant, they do not distinguish between differences on normal
and abnormal tissues, and correct both of them.

This shortcoming can be overcome using the mixture model in Section
2.3 with two classes (K = 2), one for normal tissues and another for
lesions. As shown on images (e) and (f) of Figure 5.4, this model tends
to enhance abnormal differences by reducing most exclusively the normal
ones. Moreover, combining pixel classification and image registration, it
also produces a lesion map (see image (d)) which can be directly used for
detection.

5.3. Spatiotemporal templates

The spatiotemporal model (2.7) presented in Section 2.4 was successfully
applied to dynamic contrast enhanced sequences of computed tomography
images (DCE-CT sequences) [33]; some 2D-slices taken from a DCE-CT
sequences are shown on the first row of Figure 5.5. This modality relies
upon the injection of a contrast agent into the body. It is intended to
observe during a short time period the diffusion of the agent through a
body part, and to access to absorption properties of tissues. It is particu-
larly used in cancerology for the diagnosis and the management of tumors,
which are characterized by specific absorption properties.

The interpretation of DCE-CT signals is often ambiguous due to patient
movements which produce geometrical variations interfering with contrast
variations. Hence, so as to assist the radiologist in his analysis, it is partic-
ularly useful to develop computer tools which can separate both sources
of variations, and compensate for the geometric ones. The spatiotemporal
model (2.7) can be used to achieve this task. The temporal template that
it enables to estimate is a version of the sequence which is attenuated
in noise and compensated for movements. For illustration, an estimated
temporal template is presented in the second row of the Figure 5.5.
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(a) (b) (c)

(d) (e) (f)

Figure 5.4. Images (a) and (b) form a pair of bilateral
mammograms of a same woman. Image (c) is the difference
between images (a) and (b) before registration. The image
(e) is the deformation of image (b) obtained by registra-
tion of image (a) and (b) with a classifying registration
technique. Image (f) is the difference between registered
images. Image (d) is the class map estimated by a classi-
fying registration technique.

6. Conclusion

This article summarizes the statistical aspects of the deformable template
model in different mathematical frameworks. The weakness of this atlas
estimation are of two types. First, the model itself can be optimized in par-
ticular concerning the deformation parameter distribution. The Gaussian
prior, however very convenient, is not always realistic. Other distributions
should be investigated. The other weakness concerns the numerical as-
pects. Indeed, due to the high dimension of the data and their increasing
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Figure 5.5. Abdominal sequence. Some images of original
sequence (1st row) and the estimated template (2nd row).

number, the computational power of the algorithms has to be optimized
particularly concerning the covariance matrix estimation. The estimation
of this high dimensional full matrix has to be carefully considered in order
to avoid memory issues.

However, this model features also major advantages. First, it enables
to describe a population in terms of statistical descriptors such as mean
and covariance. It also approximates the generation of these images or
shapes which allows to better understand the different aspects -geometric
and photometric- of the training set. Moreover, the generative form of
the model enables to re-sample new elements, providing an augmented
basis where subtle features may appear clearer. A second advantage of
this model and its estimation algorithms is the theoretical properties it
achieves. The consistence of the MAP estimators as well as the conver-
gence of the estimation algorithms are crucial as they ensure the relevance
of the results. Moreover, the theoretical bounds on deterministic proce-
dures also provides information about the expected accuracy of estimates.
The last major advantage of this model is that it can be generalized for
many different problems. For example, including the segmentation issue
in a probabilistic atlas estimation, dealing with multimodal databases or
forcing the deformation to be diffeomorphic are directions of current re-
searches which are all based on the described model here.
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Other challenges remain open. Dealing with in depth the convergence
issue that the deterministic algorithm has to face would enable to propose
alternative options to the user depending on the data set he / she is con-
sidering. This aspect is of great importance as it would also make the link
with the usual variational approaches and its validation. The sensitivity
of outliers is also important and particularly in the online estimation pro-
cess. These data should be detected along with the estimation and split
up from the rest. This is partially done by the multi-templates model al-
though selecting the number of components in advance remains difficult.
The very high dimension of the variables is also a challenge. Reducing
their dimension and more particularly adapting the parametric models
should be part of the estimation. Finding variables of lower dimension
may enable an easier interpretation of the estimates and also increase the
classification power.

Many other works are related to the issue of template estimation us-
ing different models (e.g. [51, 43, 8, 54]) or algorithms ([7]). The results
recalled here may be used to achieve theoretical properties of these ap-
proaches which, to the best of our knowledge, do not exists yet.
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