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Christian Maire
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Abstract

Much recent progress in the 2-class field tower problem revolves around demon-
strating infinite such towers for fields – in particular, quadratic fields – whose class
groups have large 4-ranks. Generalizing to all primes, we use Golod-Safarevic-type
inequalities to analyse the source of the p2-rank of the class group as a quantity
of relevance in the p-class field tower problem. We also make significant partial
progress toward demonstrating that all real quadratic number fields whose class
groups have a 2-rank of 5 must have an infinite 2-class field tower.

p2-rangs et p-tours de Hilbert
Résumé

Les récents progrès sur le problème de la 2-tour de Hilbert des corps de nombres
portent sur l’infinitude – en particulier pour les corps quadratiques – quand le
groupe des classes a un grand 4-rang. Généralisant à tout nombre premier p, nous
utilisons les inégalités de type Golod-Safarevic afin d’analyser la contribution du
p2-rang du groupe des classes à l’étude de la p-tour de Hilbert. Nous apportons
également des résultats partiels en direction de l’infinitude de le 2-tour de Hilbert
des corps quadratiques réels lorsque que le 2-rang du groupe des classes vaut 5.

1. Introduction

The p-class field tower problem for a number field K is the question of
whether the maximal unramified p-extension K̃/K is an infinite extension,
or equivalently, whether G = Gal(K̃/K) is infinite. The first positive
answer to the class field tower problem, demonstrating number fields
for which K̃/K is infinite, came from the landmark paper of Golod and
Safarevic [2]. This is done via what is now known as (one of many forms
of) the Golod-Shafarevich inequality, dictating that if G is finite, then for

Keywords: Hilbert class field towers.
Math. classification: 11R29, 11R34, 11R37.
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all t ∈ (0, 1) we have the polynomial inequality

∞∑
k=2

rkt
k − dt+ 1 > 0.

Here, d = dp Cl(K) denotes the p-rank of the class group of K, and
the various rk are invariants of G defined from the Magnus embedding
of G into the ring of formal power series over Fp in d non-commuting
variables. We will not need the precise definitions of these rk, but note
that while difficult to compute, they were computable enough to permit
the first demonstrations of infinite class field towers. For example, from
this it can be deduced that a quadratic field whose class group satisfies
d2 Cl(K) ≥ 6 has an infinite class field tower. A variant of this result due
to Schoof [4] gives the same inequality but with the rk replaced by certain
cohomologically-defined invariants r′k. These new invariants, while still
difficult to compute, greatly expanded the collection of number fields for
which we could affirmatively answer the class field tower problem.

The central tool of the current paper is a third version of the inequality,
due to Maire [3]. Here, the invariants rk or r′k are replaced by yet another
set, mk, which thanks to their concrete arithmetic interpretation can be
explicitly computed for many examples. Our main result (Theorem 2.2)
is an explicit formula for the second such invariant, m2, in terms of the
arithmetic of K and that of its maximal elementary abelian unramified
p-extension L. This calculation affords us several significant corollaries, two
of which we mention here. The first is a correction of a claim in [3] about
the effect of the p2-rank of the class group on the class field tower problem.
The second is an application to 2-class field towers over real quadratic fields:
We recall that the original argument of Golod and Shafarevich proves that
such towers are infinite when d2 Cl(K) ≥ 6. The article [1] asks if this
requirement can be relaxed to d2 Cl(K) ≥ 5. Corollary 4.2 gives significant
partial progress toward an affirmative answer to this question, showing that
it is true under any of a wide range of additional arithmetic hypotheses.
Finally, while explicit relationships between the sequences mk, rk, and r′k
are in general hard to come by, Section 4.3 demonstrates examples where
they are provably not all equal.
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Notation and Setup

For a group A, we denote its p-rank by

dpA = dimFp A/A
p[A,A] = dimFp H1(A,Fp)

and define its p2-rank by dp2A = dp(Ap). Let K be a number field and p
a prime. We denote by K(1) the Hilbert p-class field of K, the maximal
unramified abelian p-extension of K, and define the p-class field tower over
K recursively by K(n) = (K(n−1))(1) for n ≥ 2. We let K̃ denote the top of
the tower: K̃ = ∪K(n). It is easily verified that K̃/K is Galois, and we put
G = Gal(K̃/K) for the remainder of the paper. Let Li = K̃Gi denote the
fixed field of K̃ corresponding to the i-th lower central subgroup Gi of G,
defined recursively by G1 = G and Gi = Gpi−1[Gi−1, G]. Let L = L2, the
maximal unramified p-extension of K whose Galois group is elementary
abelian. Let EK and AK = Clp(K) respectively denote the unit group and
p-class group of K, and we define the generator and relation rank of G
respectively by

d = dp(G) = dpAK = dpH1(G,Fp) and r = dpH2(G,Fp).

2. Statement of the Main Theorem

We now turn to the construction of the invariants mi, which form the foun-
dation for the third variant of the Golod-Shafarevich inequality mentioned
in the introduction. For each i ≥ 1, define

Λi = {x ∈ L×i | (x) = Qp for some ideal Q of L}.

Then when G is finite, i.e., K has a finite p-class field tower, there is an
isomorphism ([3], Proposition 4.2)

∆i := Λi
L×pi NK̃/Li

(EK̃)
≈ H2(Gi,Fp),

giving a concrete arithmetic interpretation to the relation rank. We then
filter ∆1 by the images of the higher ∆i, setting:

Mi = Im(∆i−1 → ∆1)
Im(∆i → ∆1)

59



C. Maire & C. McLeman

for i ≥ 2, where the arrows are the obvious norm maps. Finally, we
define the invariants mi by mi = dimFp Mi and note that by the filtration,∑
i≥2mi = r.

We can now state the main result of [3]:

Theorem 2.1. If G is finite, then for all t ∈ (0, 1) we have∑
i≥2

mit
i − dt+ 1 > 0.

Theorem 2.1 can be used to prove class field towers infinite using the
same type of argument as used in the original Golod-Shafarevich examples:
For example, we can re-derive the famous inequality r > d2

4 for finite towers
from the standard argument that the inequality

0 <
∑
i≥2

mit
i − dt+ 1 ≤

(∑
i≥2

mi

)
t2 − dt+ 1 = rt2 − dt+ 1 (2.1)

is violated at t = d
2r if r ≤ d2

4 .
The goal of the current article is to use the invariants mi to prove certain

class field towers infinite, analogously to how refinements of the Golod-
Shafarevich theorem (e.g., the refinements of Koch-Venkov [6] and Schoof
[4]) provided new examples of infinite class field towers. In particular,
whereas Koch-Venkov and Schoof used symmetry arguments to prove that
the even invariants vanish (r2k = r′2k = 0 for k ≥ 1), we will compute
the early m-invariants (in this article, specifically m2) in terms of the
arithmetic of K and L.

The algebra behind the subsequent numerical results is then rather
straight-forward, as in (2.1): Since tk ≤ t2 for all k ≥ 2 and all t ∈ (0, 1),
stronger results come from Theorem 2.1 if we can bound m2 from above.
The article’s main result follows this path, culminating in an explicit
computation of m2 in terms of the arithmetic of K and L.

Theorem 2.2. With L/K as above, we have

m2 = d+ dp
EK

Ep
K (EL∩N(ΛL)) − dpN(AL[p]).

Here and elsewhere, we abuse notation in using the symbol N = NL/K

for all of the obvious norm maps from L to K (e.g., norms of units, ideals,
ideal classes,...). This calculation corrects an earlier attempt to bound m2
from above, namely, the claim given in [3] that we have
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m2 ≤ d+ dpEk − dp2AK . (2.2)
As a consequence of the theorem, we can see that this inequality does

not in general hold without further assumptions, and demonstrate other
bounds to replace it. For example, we can deduce the following:

Corollary 2.3. We have
m2 ≤ d+ dpEK − dpN(AL[p]).

If N : AL[p]→ ApK [p] is surjective, then inequality (2.2) holds, i.e.,
m2 ≤ d+ dpEK − dp2AK .

We will give the explicit counter-example of K = Q(
√
−3 · 13 · 61) to

inequality (2.2) in the case that this restricted norm map is not surjective
in Example 4.1.

3. Proof of the main theorem

We begin with the following easily-verified diagram of fields and their
Galois groups. In particular, we note that since L/K is the maximal
elementary abelian sub-extension of K(1)/K, the Galois group Gal(L/K)
is the maximal elementary abelian quotient of AK , isomorphic to (Z/pZ)d.

K

K(1)

L

L(1) with Galois groups:

Gal(K(1)/K) ≈ AK
Gal(L(1)/L) ≈ AL
Gal(K(1)/L) ≈ ApK
Gal(L/K) ≈ (Z/pZ)d

We begin by identifying the kernel and image of the norm map on ideal
classes.

Lemma 3.1. For N : AL → AK , we have

ker(N) ≈ Gal(L(1)/K(1)) and im(N) = ApK .
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Proof. This follows from the fact that under Artin reciprocity, the norm
map on ideal class groups corresponds to the restriction map on Galois
groups. That is, we have the following commutative diagram:

AL AK

Gal(L(1)/L) Gal(K(1)/K)

N

∼= ∼=

res

Now, via the Artin map, we have

ker(N) ∼= ker(res) ∼= Gal(L(1)/K(1))
and

im(N) ∼= im(res) ∼= Gal(K(1)/K(1) ∩ L) = Gal(K(1)/L) ∼= ApK .

�

Lemma 3.2. Given a commutative diagram of vectors spaces with exact
rows as below,

1 V1 V2 V3 1

1 W1 W2 W3 1

f1 f2 f3

we have
dim im(f2) = dim im(f1) + dim im(f3) + dim(∂(ker(f3))),

where ∂ : ker(f3)→ cok(f1) denotes the connecting homomorphism from
the snake lemma.

Proof. From the snake lemma we have an exact sequence

1 ker(f1) ker(f2) ker(f3)

cok(f1) cok(f2) cok(f3) 1
∂

where ∂ is the standard connecting homomorphism. From this we obtain
the following short exact sequence:
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1 cok(f1)
∂(ker(f3)) cok(f2) cok(f3) 1

Taking an alternating sum of dimensions of this sequence gives the result.
�

Next, for any subfield F ⊂ K̃, recall/define

∆F = ΛF
F×pNK̃/F (EK̃) and E′F = EF

EpFNK̃/F (EK̃)
and consider the following commutative diagram:

1 E′L ∆L AL[p] 1

1 E′K ∆K AK [p] 1

N

φL

N N

φK

Here the two rows are the well-known exact sequences stemming from
the morphism φL defined by φL([x]) = [Q], where Q is an ideal of L chosen
so that Qp = (x), and the two rows are connected by the appropriate norm
maps N = NL/K . In anticipation of applying Lemma 3.2, we note that
the connecting map ∂ can be made explicit in our context as follows: For
c ∈ ker(N) ⊂ AL[p], choose [x] ∈ ∆L such that (x) = Qp for some Q ∈ c.
Then by commutativity of the rightmost square, N([x]) = [N(x)] ∈ ∆K is
in the kernel of φK , so by exactness ∂(c) := [N(x)] ∈ E′K . It is now easy
to characterize the subgroup of elements of

cok(N : E′L → E′K) ∼=
EK

EpKN(EL)
which are in the image of ∂. Namely, [u] ∈ E′K is in the image of ∂ if and
only if there exists x ∈ ΛL whose class [x] ∈ ∆L satisfies N([x]) = [u].
That is,

∂ (ker(N : AL[p]→ AK [p])) ∼=
EK ∩N(ΛL)
EpKN(EL) .

This is the last ingredient needed to apply Lemma 3.2 to the commutative
diagram above, which yields the following formula for the key dimension
of interest:

dp(Im(∆L → ∆K)) = dpN(E′L) + dpN(AL[p]) + dp
EK∩N(ΛL)
Ep

KN(EL) .

63



C. Maire & C. McLeman

This calculation reduces the proof of the main theorem to combining a
collection of established identities:

Proof of Theorem 2.2. The isomorphism ∆K ≈ H2(G,Fp) provides via the
bottom row of the diagram above that r − d = dpE

′
K . By definition of m2

we have m2 = r − dim(Im(∆L → ∆K)). Finally, we note that we have
dpE

′
K − dpN(E′L) = dp

EK

Ep
KN(EL) . Combining these gives

m2 = r − dim(Im(∆L → ∆K))

= d+ dpE
′
K − (dpN(E′L) + dpN(AL[p]) + dp

EL∩N(ΛL)
Ep

KN(EL) )

= d+ dp
EK

Ep
KN(EL) − dpN(AL[p])− dp EL∩N(ΛL)

Ep
KN(EL)

= d+ dp
EK

Ep
KN(EL)(EK∩N(ΛL)) − dpN(AL[p])

= d+ dp
EK

Ep
K(EK∩N(ΛL)) − dpN(AL[p]),

completing the argument. �

The theorem and Lemma 3.1 combine to explain the appearance of the
p2-rank in the p-class field tower problem. Namely, since N(AL) = ApK ,
we have N(AL[p]) ⊂ ApK [p], and so the dimension of this norm group is
bounded above by the p2-rank of AK . In cases where this norm map on the
p-torsion ideal classes is surjective, we can thus get a lot of mileage from
Golod-Shafarevich type arguments by using a large p2-rank to demonstrate
a small value of m2. Unfortunately, this norm map is not always surjective,
as we shall see in the next section.

4. Consequences

Before turning to explicit corollaries of the main theorem, we pause for
the brief general remark that the theorem implies that the ultimate goal
of bounding m2 from above can be achieved via two principal routes:

• Finding elements of AK [p] which are norms from AL[p]; and

• Finding elements of EK which are norms from ΛL (including, in
particular, norms from EL).
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This illuminates the perspective that the likelihood of a number field K
having an infinite p-class field tower increases directly with the non-triviality
of the norm maps on ideal classes and units from L.

4.1. A Counter-Example to Inequality (2.2)
All computations were done in SAGE [5].

Example 4.1. Consider the number field K = Q(
√
−3 · 13 · 61) and let

p = 2. We have AK ∼= (4, 4), so d = d2AK = d4AK = 2, and d2EK = 1.
Then the claim of inequality (2.2) predicts that

m2 ≤ d+ dpEK − dp2AK = 2 + 1− 2 = 1.

We will show that, to the contrary, m2 = 2, but first note that verifying
that m2 ≥ 2 is easier. We simply compute in SAGE that both norm maps
N : EL → EK and N : AL[2]→ AK [2] are the trivial map. Then the Main
Theorem gives

m2 = d+ d2
EK

E2
K(EK∩N(∆L)) − d2N(AL[p]) = 2 + d2

EK
EK∩N(∆L) − 0 ≥ 2.

We include some auxiliary calculations to show that in fact m2 = 2
by showing that −1 ∈ N(∆L). The genus field L of K is given by L =
K(
√

13,
√
−3), and AL ∼= (8, 8, 4). We have SAGE choose a basis {ci}3i=1

of AL[2], choose representative ideals Ii ∈ ci, and let xi be a generator for
I2
i . We check that for SAGE’s particular choice of x1, x2, and x3, we have

NL/K(x1) = 729 = 36

NL/K(x2) = −729 = −36

NL/K(x3) = −764411904 = −220 · 36.

From this we see that the image of NL/KΛL mod squares is {±1} = EK ,
so −1 ∈ N(ΛL) and m2 = 2.

Incidentally, this computation makes clear the oversight which led to
the inequality. The claim in the proof of [3, Corollary 3.2] that we can
find the described elements σ1, . . . , σ4 is tantamount to the claim that the
surjection AL → A2

K necessarily restricts to a surjection AL[2] → A2
K [2]

on 2-torsion. The example above shows how this can be false from a
purely group-theoretic perspective: Taking abstract groups G = (8, 8, 4)
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and H = (4, 4) as in the class groups of the example above, there is no
surjection from G to H2 which restricts to a surjection G[2]→ H2[2].

4.2. Real Quadratic Fields with d = 5.
Next, we return to the application from the introduction concerning real
quadratic fields. Suppose K is real quadratic with fundamental unit ε,
and d = d2AK = 5. Then as in the first sentence of the proof of the main
theorem, we have

r − 5 ≤ d2
EK

E2
KN(EK̃) =: e

and so r ≤ 5 + e. Now by Theorem 2.1, if K has a finite 2-class field tower,
then for all t ∈ (0, 1), we have

0 <
∑
i≥2

mit
i − 5t+ 1

≤ (r −m2)t3 +m2t
2 − 5t+ 1

≤ (5 + e−m2)t3 +m2t
2 − 5t+ 1.

It is trivial to verify that for each possible value of e (note e ≤ 2 for real
quadratic fields), this inequality is violated for some t ∈ (0, 1) if m2 ≤ 7−e.
Using Theorem 2.2 to compute m2, this is equivalent to

5 + d2
EK

E2
K N(EL) − d2N(AL[2]) ≤ 7− e,

or
d2

EK

E2
K (EK∩N(ΛL)) + d2

EK

E2
KN(EK̃) ≤ 2 + d2N(AL[2]). (∗)

This inequality thus provides a sufficient condition for K to have an
infinite 2-class field tower. We continue to develop this expression. In
particular, note that since EL ⊂ ΛL, we have

NK̃/K(EK̃) ⊂ NL/K(EL) ⊂ EK ∩NL/K(ΛL),

and so
0 ≤ d2

EK

E2
K(EK∩N(ΛL)) ≤ d2

EK

E2
KNK̃/K(EK̃) ≤ 2. (∗∗)

It is easy to enumerate the list of possible dimensions of the three F2-
vector spaces appearing in (∗) for which the inequalities in (∗) and (∗∗)
are all satisfied, providing the next corollary.
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Corollary 4.2. Suppose K is a real quadratic field with d2AK = 5. Then
K has an infinite 2-class field tower if either

d2
EK

E2
KNK̃/K(EK̃) < 2

or
d2

EK

E2
KNK̃/K(EK̃) = 2 and d2

EK

E2
K(EK∩N(ΛL)) ≤ d2N(AL[2]).

It is desirable to have a version of this result which does not depend
on knowing anything about NK̃/K(EK̃). To that end, we extract from the
previous corollary a slightly weaker sufficient condition that is in practice
vastly simpler to evaluate.
Corollary 4.3. Suppose K is a real quadratic field with d2AK = 5. Then
K has an infinite 2-class field tower if

d2
EK

E2
K(EK∩N(ΛL)) ≤ d2N(AL[2]).

Even more directly, we note that this condition is satisfied, and hence
K has an infinite 2-class field tower, if any of the following hold:

• d2(N(AL[2])) ≥ 2;

• d2(N(AL[2])) = 1 and at least one of −1 or ε are norms from ΛL.

• Both −1 and ε are norms from ΛL.
Finally, to return to the topic of p2-ranks, recall that d2N(AL[2]) is

bounded above by the 4-rank of AK . This tells us, for example, that if
d4AK = 0, only the third of the three conditions in the above list will be
viable as an argument to show that K has an infinite 2-class field tower
via this method.

4.3. A Comparison of Invariants
While the computation of m2 does not improve upon the result of Koch-
Venkov for quadratic imaginary number fields and p odd, the simplicity of
Theorem 2.2 in this case permits us to demonstrate a distinction between
the m-invariants and the two types of r-invariants in this case. Namely, by
Koch-Venkov [6] and Schoof [4] respectively, we have r2 = 0 and r′2 = 0.
Applying Theorem 3, since EK = EpK = {±1}, we conclude simply that
m2 = d− dpN(AL[p]). But since N(AL[p]) ⊂ ApK [p], we conclude m2 = d
if, for example, K has a cyclic class group.
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Example 4.4. For Q(
√
−23), of class number 3, we have r2 = r′2 = 0 but

m2 = 1.
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