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Polynomiality of shifted Plancherel averages and
content evaluations

Sho Matsumoto

Abstract

The shifted Plancherel measure is a natural probability measure on strict parti-
tions. We prove a polynomiality property for the averages of the shifted Plancherel
measure. As an application, we give alternative proofs of some content evaluation
formulas, obtained by Han and Xiong very recently. Our main tool is factorial
Schur Q-functions.

Résumé

La mesure de Plancherel décalée est une mesure de probabilité naturelle
sur les partitions strictes. Nous démontrons une propriété de polynomialité pour
les moyennes de mesures de Plancherel décalées. Comme application, nous don-
nons une nouvelle preuve de certaines formules d’évaluation des contenus obtenues
par Han et Xiong très récemment. Nous utilisons, comme outil principal, les Q-
fonctions de Schur factorielles.

1. Introduction

1.1. Partitions
Following to Macdonald’s book [16], let us recall the basic knowledge on
strict partitions. A partition is a finite weakly-decreasing sequence λ =
(λ1, λ2, . . . , λl) of positive integers. The integer `(λ) = l is the length of λ
and |λ| =

∑l
i=1 λi is the size of λ. If |λ| = n, we say that λ is a partition

of n.
A partition λ is said to be strict if all λi are pairwise distinct, and

λ is said to be odd if all λi are odd integers. Let SPn be the set of all
strict partitions of n and OPn the set of all odd partitions of n. The
fact that their cardinalities coincide is well known: |SPn| = |OPn|. Set
SP =

⋃∞
n=0 SPn and OP =

⋃∞
n=0OPn. For convenience, we deal with
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the empty partition ∅ , which is the unique partition in SP0 = OP0 with
length 0.

For each λ ∈ SP, we consider the set
S(λ) = {(i, j) ∈ Z2 | 1 ≤ i ≤ `(λ), i ≤ j ≤ λi + i− 1}.

The set S(λ) is usually drawn in a graphical way, and called the shifted
Young diagram of λ. Each element � = (i, j) ∈ S(λ) is often called a box
of λ.

Let λ, µ be strict partitions such that S(λ) ⊃ S(µ). Put k = |λ| − |µ|.
A standard tableau of shape S(λ/µ) is a sequence of strict partitions
(λ(0), λ(1), . . . , λ(k)) such that λ(0) = µ; λ(k) = λ; and that for each
i = 1, 2, . . . , k, the diagram S(λ(i)) is obtained from S(λ(i−1)) by adding
exactly one box. We denote by gλ/µ the number of standard tableaux of
shape S(λ/µ). We set gλ/µ = 0 unless S(λ) ⊃ S(µ). Define gλ = gλ/∅.

1.2. Shifted Plancherel measure
In this paper, we consider the following probability measure on SPn, stud-
ied in many papers, e.g., in [1, 10, 17].

Definition 1.1. The shifted Plancherel measure Pn on SPn is defined by

Pn(λ) = 2n−`(λ)(gλ)2

n! .

This indeed defines a probability since the identity [9, Corollary 10.8]∑
λ∈SPn

2n−`(λ)(gλ)2 = n!

holds. For example, if n = 5 then P5((5)) = 16
5! , P5((4, 1)) = 72

5! , and
P5((3, 2)) = 32

5! .
For a function ϕ on SP, we call

En[ϕ] =
∑

λ∈SPn
Pn(λ)ϕ(λ) =

∑
λ∈SPn

2n−`(λ)(gλ)2

n! ϕ(λ)

the shifted Plancherel average of ϕ.
Let {x1, x2, . . .} be formal variables, then for each positive integer r,

the r-th power-sum symmetric function is defined by
pr(x1, x2, . . . ) = xr1 + xr2 + · · · .
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It is well known that the algebra of symmetric functions is generated
by the family {pr}. We denote by Γ the subalgebra generated by
{p2m+1}m=0,1,2,.... Elements in Γ are sometimes called supersymmetric
functions, adapted to strict partitions. The following theorem claims a
polynomiality of En[f ] for any supersymmetric function f .

Theorem 1.2. Suppose that f is a supersymmetric function. Then

En[f ] =
∑

λ∈SPn

2n−`(λ)(gλ)2

n! f
(
λ1, λ2, . . . , λ`(λ)

)
is a polynomial function in n.

We introduce a notation x↓k as

x↓k = x(x− 1)(x− 2) · · · (x− k + 1)

for a variable x and a positive integer k. If n is an integer with 0 ≤ n < k
then n↓k = 0. We also set x↓0 = 1.

In some supersymmetric functions f , we give the explicit expressions
of En[f ] as linear combinations of descending powers n↓j . In fact, we will
show

En[p3] =
∑

λ∈SPn

2n−`(λ)(gλ)2

n!
(
λ3

1 + λ3
2 + · · ·+ λ3

`(λ)

)
= 3n↓2 + n,

En[p5] =
∑

λ∈SPn

2n−`(λ)(gλ)2

n!
(
λ5

1 + λ5
2 + · · ·+ λ5

`(λ)

)
= 40

3 n
↓3 + 15n↓2 + n,

En[p2
3] =

∑
λ∈SPn

2n−`(λ)(gλ)2

n!
(
λ3

1 + λ3
2 + · · ·+ λ3

`(λ)

)2

= 9n↓4 + 54n↓3 + 31n↓2 + n.

1.3. A deformation

Fix a strict partition µ of m. We define the measure Pµ,n on SPn+m by

Pµ,n(λ) = m!
(n+m)! 2n−`(λ)+`(µ) g

λ

gµ
gλ/µ (λ ∈ SPn+m) . (1.1)
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Note that Pµ,n(λ) = 0 unless S(λ) ⊃ S(µ). We will prove that Pµ,n is a
probability, i.e.,

∑
λ∈SPn+m Pµ,n(λ) = 1. For a function ϕ on SP, define

Eµ,n[ϕ] =
∑

λ∈SPn+m

Pµ,n(λ)ϕ(λ)

=
∑

λ∈SPn+m

m!
(n+m)! 2n−`(λ)+`(µ) g

λ

gµ
gλ/µϕ(λ) .

The summation Eµ,n[ϕ] is considered in [8]. Note that E∅,n[ϕ] is nothing
but En[ϕ]. The following theorem is a slight extension of Theorem 1.2.

Theorem 1.3. Let µ be a strict partition. Suppose that f is a supersym-
metric function. Then Eµ,n[f ] is a polynomial function in n.

1.4. Content evaluations
For each box � = (i, j) in S(λ), we define c� = j−i and call it the content
of �. We deal with symmetric functions evaluated by quantities ĉ�, where

ĉ� = 1
2 c�(c� + 1) .

Theorem 1.4. For any symmetric function F , there exists a unique su-
persymmetric function F̂ in Γ such that

F̂ (λ1, λ2, . . . , λ`(λ)) = F (ĉ� : � ∈ S(λ))
for any λ ∈ SP. Here F (ĉ� : � ∈ S(λ)) is the specialization of the sym-
metric function F (x1, x2, . . . ) such that the first |λ| variables are substi-
tuted by ĉ� for boxes � in S(λ), and all other variables by 0.

From Theorems 1.3 and 1.4, we obtain the following corollary immedi-
ately. This result was first obtained in [8] very recently.

Corollary 1.5. Let µ be a strict partition of m. For any symmetric func-
tion F , ∑

λ∈SPn+m

m!
(n+m)! 2n−`(λ)+`(µ) g

λ

gµ
gλ/µF (ĉ� : � ∈ S(λ))

is a polynomial function in n.

In [8], the reason why they consider the quantity F (ĉ� : � ∈ S(λ))
is not presented. We note that the multi-set {ĉ� | � ∈ S(λ)} forms the
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collection of squares of eigenvalues with respect to projective analogs of
Jucys–Murphy elements, see [20, 23, 26, 27] and also [1, Theorem 3.2].

We give the explicit expressions of some content evaluations. In fact,
we will show

En[p̂2] =
∑

λ∈SPn

2n−`(λ)(gλ)2

n!
∑

�∈S(λ)
(ĉ�)2 = 2

3n
↓3 + 1

2n
↓2,

En[p̂(12)] =
∑

λ∈SPn

2n−`(λ)(gλ)2

n!

 ∑
�∈S(λ)

ĉ�


2

= 1
12(n↓4 +4n↓3−8n↓2−2n) .

Furthermore, we will give a new algebraic proof of the identity

Eµ,n[p̂1 − p̂1(µ)] = 1
2n
↓2 + |µ|n,

which is given in [8, Theorem 1.3].

1.5. Related research and the aim
Let Pn be the set of all (not necessary strict) partitions of n. The (tradi-
tional) Plancherel probability measure PPlan

n on Pn is defined by

PPlan
n (λ) = (fλ)2

n! ,

where fλ is the number of standard tableaux of shape Y (λ). Here Y (λ) is
the ordinary Young diagram of λ: Y (λ) = {(i, j) ∈ Z2 | 1 ≤ i ≤ `(λ), 1 ≤
j ≤ λi}. Let F be a symmetric function. In [25] (see also [7]), Stanley
proves that the summation∑

λ∈Pn
PPlan
n (λ)F (h2

� : � ∈ Y (λ))

is a polynomial in n. Here h� denotes the hook length of the square � in
the Young diagram Y (λ). Panova [22] shows an explicit identity for the
symmetric function F = Fr(x1, x2, . . . ) =

∑
j≥1

∏r
i=1(xj − i2).

Moreover, Stanley [25] proves that the content evaluation∑
λ∈Pn

PPlan
n (λ)F (c� : � ∈ Y (λ)) (1.2)

is also a polynomial in n. Olshanski [21] finds that the functions λ 7→
F (c� : � ∈ Y (λ)) are seen as shifted-symmetric functions in variables
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λ1, λ2, . . . and obtains an alternative algebraic proof for the polynomiality
of (1.2). Some explicit formulas for particular F are obtained in [5, 6, 14,
15, 18, 19]. Just as an example, in [6] the identity

∑
λ∈Pn

PPlan
n (λ)

∑
�∈Y (λ)

k−1∏
i=0

(
c2
� − i2

)
= (2k)!

((k + 1)!)2n
↓(k+1)

is obtained.
We emphasize the fact that the content evaluations are related to ma-

trix integrals ([18, 19]). For example, let us consider the unitary group
U(N) with the normalized Haar measure dU and suppose n ≤ N . Then
Weingarten calculus gives the following identity∫

U(N)
|u11u22 · · ·unn|2 dU

=
∞∑
k=0

(−1)kN−(n+k) ∑
λ∈Pn

PPlan
n (λ)hk(c� : � ∈ Y (λ)) .

Here hk are complete symmetric functions. More general identities (for
other classical groups) can be seen in [18, 19].

The quantity F (ĉ� : � ∈ S(λ)) in Subsection 1.4 is a natural projective
analog of F (c� : � ∈ Y (λ)), because the c� are eigenvalues of Jucys–
Murphy elements of the symmetric groups, while the ĉ� come from their
projective version. Unfortunately, it is not known any direct connection
between matrix integrals and the projective content evaluation F (ĉ� : � ∈
S(λ)).

Our results in this paper are seen as the counterparts of the con-
tent evaluation [21] in the theory of the shifted Plancherel measure. As
Olshanski does in [21], we employ factorial versions of symmetric func-
tions. Specifically, we introduce a new family of supersymmetric functions
(pρ)ρ∈OP . The function pρ is also regarded as projective (or spin) irre-
ducible character values of the symmetric groups. For ordinary partitions,
the counterpart is the normalized linear character, which has been studied
in e.g. [2, 3, 4, 12, 24], and written as p#

ρ , χ̂ρ, Chρ, . . . in their articles.
We will provide explicit values of shifted Plancherel averages Eµ,n[pρ] for
all strict partitions µ and odd partitions ρ.

As mentioned above, Corollary 1.5 is obtained by Han and Xiong [8].
Our purpose in this paper is to provide more insight for their result, based
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on the theory of factorial Schur Q-functions. As a result, we can obtain
some new identities given in Subsections 1.2 and 1.4 in a simple way.

1.6. Outline of the paper

The paper is organized as follows. Section 2 gives definitions and basis
properties of Schur P - and factorial Schur P -functions. A more detailed
description can be seen in [10, 11, 16]. In Section 3 we introduce new
supersymmetric functions pρ and provide some necessary properties. In
Section 4 we give the proofs of Theorem 1.2 and Theorem 1.3. New iden-
tities presented in Subsection 1.2 are also proved. In Section 5 we give a
proof of Theorem 1.4 and present some examples of content evaluations.
In Section 6 we deal with some family of functions on SP introduced in [8]
and show that they are supersymmetric functions. We comment on some
remaining questions in Section 7.

2. Supersymmetric functions

2.1. The algebra of supersymmetric functions

A symmetric function is a collection of polynomials F = (FN )N=1,2,... with
rational coefficients such that

• each FN is symmetric in N commutative variables x1, x2, . . . , xN ;

• the stability relation FN+1(x1, . . . , xN , 0) = FN (x1, . . . , xN ) holds
for all N ≥ 1.

We often write F as F (x1, x2, . . . ) in infinitely-many variables x1, x2, . . . .
For each r = 1, 2, . . . , the r-th power-sum symmetric function pr is

given by
pr(x1, x2, . . . ) = xr1 + xr2 + · · · .

It is well known that the pr generate the algebra of all symmetric functions
and are algebraically independent over Q.

Definition 2.1. Let Γ denote the subalgebra of symmetric functions gen-
erated by p2m+1, m = 0, 1, 2, . . . . We say elements in Γ to be supersym-
metric functions.
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Let us review supersymmetric functions along [16, Chapter III.8]. Define

pρ = pρ1pρ2 · · · pρl
for ρ = (ρ1, ρ2, . . . , ρl) ∈ OP. The pρ form a linear basis of Γ by definition.
The scalar product on Γ is defined by

〈pρ, pσ〉 = 2−`(ρ)zρδρσ (2.1)

for ρ, σ ∈ OP, where
zρ =

∏
r≥1

rmr(ρ)mr(ρ)! ,

and mr(ρ) is the multiplicity of r in ρ: mr(ρ) = |{i ∈ {1, 2, . . . , `(ρ)} | ρi =
r}|.

Given an element f in Γ and a strict partition λ, we denote by f(λ) the
value

f(λ1, λ2, . . . , λ`(λ), 0, 0, . . . ) .

For example, p3(λ) = λ3
1 + λ3

2 + · · · + λ3
`(λ). Elements in Γ are uniquely

defined by their values on SP, i.e. two elements f, g in Γ coincide with each
other if and only if it holds that f(λ) = g(λ) for every strict partition λ.

2.2. Schur P -functions

Let us review the Schur P -function, which is the particular t = −1 case
of the Hall–Littlewood function with parameter t. We use the definition
in [10]. See also [16, Chapter III.8] and [9] for details.

Definition 2.2. Let λ = (λ1, λ2, . . . , λl) ∈ SP. Suppose that N ≥ l =
`(λ). We define a polynomial Pλ|N by

Pλ|N (x1, . . . , xN ) = 1
(N − l)!

∑
ω∈SN

ω

xλ1
1 xλ2

2 · · ·x
λl
l

∏
i:1≤i≤l,
j:i<j≤N

xi + xj
xi − xj

 ,
where the symmetric group SN acts by permuting the variables x1, . . . , xN .
If `(λ) > N , then we set Pλ|N (x1, . . . , xN ) = 0. Then the collection
(Pλ|N )N=1,2,... defines an element Pλ in Γ. Define Qλ by Qλ = 2`(λ)Pλ. We
call Pλ and Qλ a Schur P -function and Schur Q-function, respectively.
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Proposition 2.3.

(1) The family (Pλ)λ∈SP forms a linear basis of Γ.

(2) 〈Pλ, Qµ〉 = δλµ for λ, µ ∈ SP.

(3)
∑
λ∈SPn 2−`(λ)〈f,Qλ〉〈g,Qλ〉 = 〈f, g〉 for f, g ∈ Γ.

(4) Suppose |λ| ≥ |µ|. Then gλ/µ = 〈p|λ|−|µ|1 Pµ, Qλ〉 for λ, µ ∈ SP,
where gλ/µ is the number of standard tableaux of shape S(λ/µ). In
particular, gλ = gλ/∅ = 〈p|λ|1 , Qλ〉.

Proof. (1), (2): See [16, Chapter III, (8.9) and (8.12)].
(3): By linearity, it is enough to show the identity for f = Pµ and

g = Qν with |µ| = |ν| = n. Then both sides are equal to δµν by (2).
(4): We recall a special case of the Pieri-type formula for Schur P -

functions ([16, Chapter III, (8.15)]): for µ ∈ SP,

p1Pµ =
∑

µ+:µ+↘µ
Pµ+ ,

where the sum runs over strict partitions µ+ obtained from µ by adding
one box. Put k = |λ| − |µ|. The integer gλ/µ is the number of sequences
(λ(0), λ(1), . . . , λ(k)) of strict partitions such that λ(0) = µ, λ(k) = λ, and
such that λ(i) ↘ λ(i−1) for each i = 1, 2, . . . , k. Therefore we find the
formula

pk1Pµ =
∑

λ∈SP|µ|+k

gλ/µPλ .

(4) now follows from (2). �

For a strict partition λ and odd partition ρ of sizes k, we define

Xλ
ρ = 〈pρ, Qλ〉. (2.2)

Equivalently, the quantities Xλ
ρ are determined as transition matrices via

pρ =
∑

λ∈SPk

Xλ
ρPλ or Qλ =

∑
ρ∈OPk

2`(ρ)z−1
ρ Xλ

ρ pρ . (2.3)
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The quantity Xλ
ρ is a character value for a projective representation of

symmetric groups, see [9, Chapter 8]. One can compute values Xλ
ρ recur-

sively if we use a Murnaghan–Nakayama rule ([16, Chapter III.8, Exam-
ple 11]). Note that Xλ

(1k) = gλ and X(k)
ρ = 1. Equivalently,

pk1 =
∑

λ∈SPk

gλPλ and Q(k) =
∑

ρ∈OPk

2`(ρ)z−1
ρ pρ .

Proposition 2.4. For ρ, σ ∈ OPk,∑
λ∈SPk

2−`(λ)Xλ
ρX

λ
σ = δρ,σ2−`(ρ)zρ .

Proof. It follows from (2.3) and Proposition 2.3(2) that

〈pρ, pσ〉 =
〈∑

λ

Xλ
ρPλ,

∑
µ

Xµ
σPµ

〉
=
∑
λ,µ

Xλ
ρX

µ
σ 〈Pλ, Pµ〉 =

∑
λ

Xλ
ρX

λ
σ2−`(λ),

the left hand side of which equals 2−`(ρ)zρδρσ by (2.1). �

2.3. Factorial Schur P -functions

The next definition is due to A. Okounkov and given in [10].

Definition 2.5. Let λ = (λ1, . . . , λl) ∈ SP. Suppose that N ≥ l = `(λ).
We introduce a polynomial P ∗λ|N by

P ∗λ|N (x1, . . . , xN ) = 1
(N − l)!

∑
ω∈SN

ω

x↓λ1
1 x↓λ2

2 · · ·x↓λll

∏
i:1≤i≤l,
j:i<j≤N

xi + xj
xi − xj

 .
If `(λ) > N , then we set P ∗λ|N (x1, . . . , xN ) = 0. The collection
(P ∗λ|N )N=1,2,... defines an element P ∗λ in Γ. Define Q∗λ by Q∗λ = 2`(λ)P ∗λ .
We call P ∗λ and Q∗λ the factorial Schur P -function and Q-function, re-
spectively.

Remark that Pλ is homogeneous, whereas P ∗λ is not. Let us review
some properties for factorial Schur P -functions. See [10, 11] for detail. We
note that (1)–(3) in the next proposition are immediately comfirmed from
definitions, while the proof of (4) requires a more careful work.
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Proposition 2.6.

(1) P ∗λ = Pλ + g, where g is a supersymmetric function of degree less
than |λ|.

(2) The family (P ∗λ )λ∈SP forms a linear basis of Γ.

(3) P ∗µ(λ) = 0 unless S(µ) ⊂ S(λ).

(4) It holds that

P ∗µ(λ) = |λ|↓|µ| g
λ/µ

gλ
= |λ|↓|µ| 〈p

|λ|−|µ|
1 Pµ, Qλ〉

gλ
. (2.4)

On the right hand side of (2.4), we can think |λ|−|µ| being nonnegative,
because if |λ| < |µ| then |λ|↓|µ| = 0.

Next we give a formula for an expansion of Pλ in terms of P ∗µ . Recall
the Stirling numbers T (k, j) of the second kind defined by

xk =
k∑
j=1

T (k, j)x↓j (k = 1, 2, . . . ) . (2.5)

Proposition 2.7. Let λ be a strict partition of length l. Then

Pλ =
λ1∑
j1=1
· · ·

λl∑
jl=1

T (λ1, j1) · · ·T (λl, jl)P ∗(j1,...,jl) .

Here we set P ∗(j1,...,jl) = 0 if j1, . . . , jl are not pairwise distinct, and

P ∗(j1,...,jl) = (sgn π)P ∗µ
if (j1, . . . , jl) = (µπ(1), . . . , µπ(l)) for some strict partition µ = (µ1, . . . , µl)
of length l with a permutation π.

Proof. The definition of P ∗λ|N (x1, . . . , xN ) in Definition 2.5 makes sense
even if (λ1, . . . , λl) is replaced with any sequence of positive integers
(j1, . . . , jl). From the alternating property

π

 ∏
i:1≤i≤l,
j:i<j≤N

xi + xj
xi − xj

 = (sgn π)
∏

i:1≤i≤l,
j:i<j≤N

xi + xj
xi − xj
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for a permutation π ∈ Sl acting on variables x1, . . . , xl, we have
P ∗(jπ(1),...,jπ(l))|N (x1, . . . , xN ) = (sgn π)P ∗(j1,...,jl)|N (x1, . . . , xN ) .

In particular, P ∗(j1,...,jl) = 0 if js = jt for some s 6= t. Our proposition
follows from the definitions of Pλ, P ∗µ , and Stirling numbers. �

3. New supersymmetric functions

Recall the fact that two families (Pλ)λ∈SP and (P ∗λ )λ∈SP are liner bases
of Γ. Define a linear isomorphism Ψ : Γ→ Γ by

Ψ(Pλ) = P ∗λ (λ ∈ SP) .
Note that Ψ−1(f) coincides with the top-degree term of f by Proposi-
tion 2.6(1).

Definition 3.1. For each ρ ∈ OPk, we define the supersymmetric func-
tion pρ by pρ = Ψ(pρ). From (2.3), we have

pρ =
∑

λ∈SPk

Xλ
ρP
∗
λ .

For an odd partition ρ, we denote by ρ̃ the odd partition obtained
from ρ by erasing parts equal to 1. For example, if ρ = (5, 5, 3, 1, 1), then
ρ̃ = (5, 5, 3). Note that |ρ| = |ρ̃|+m1(ρ) and `(ρ) = `(ρ̃) +m1(ρ).

Proposition 3.2.

(1) pρ = pρ + g, where g is a supersymmetric function of degree less
than |ρ|.

(2) The family (pρ)ρ∈OP forms a linear basis of Γ.

(3) For ρ ∈ OP and λ ∈ SP,

pρ(λ) = |λ|↓|ρ| 〈p
|λ|−|ρ̃|
1 pρ̃, Qλ〉

gλ
= |λ|↓|ρ|

Xλ
ρ̃∪(1|λ|−|ρ̃|)
gλ

.

Here ρ̃ ∪ (1k) denotes the odd partition (ρ̃, 1, 1, . . . , 1︸ ︷︷ ︸
k

).

(4) For ρ ∈ OP and λ ∈ SP,
pρ(λ) = (|λ| − |ρ̃|)↓m1(ρ)pρ̃(λ) .
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(5) If |ρ̃| > |λ|, then pρ(λ) = 0.

Proof. (1): It follows immediately from (2.3) and Proposition 2.6(1).
(2): It follows immediately from (1) and the fact that (pρ)ρ∈OP form a

linear basis of Γ.
(3): Set k = |ρ|. From Proposition 2.6 (iv), (2.3), and (2.2), we have

pρ(λ) =
∑

µ∈SPk

Xµ
ρ P
∗
µ(λ) =

∑
µ∈SPk

Xµ
ρ |λ|↓k

〈p|λ|−k1 Pµ, Qλ〉
gλ

= |λ|↓k 〈p
|λ|−k
1 pρ, Qλ〉

gλ
= |λ|↓k

Xλ
ρ∪(1|λ|−k)
gλ

.

Note that ρ ∪ (1|λ|−k) = ρ̃ ∪ (1|λ|−|ρ̃|).
(4): Since |λ|↓|ρ| = |λ|↓|ρ̃| · (|λ| − |ρ̃|)↓m1(ρ), (3) implies that

pρ(λ) = |λ|↓|ρ̃| · (|λ| − |ρ̃|)↓m1(ρ)
Xλ
ρ̃∪(1|λ|−|ρ̃|)
gλ

= (|λ| − |ρ̃|)↓m1(ρ)pρ̃(λ) .

(5): If |λ| < |ρ̃|, then |λ|↓|ρ̃| = |λ|(|λ| − 1) · · · (|λ| − |ρ̃| + 1) = 0, and
therefore we obtain pρ(λ) = 0 from (3). �

Substituting ρ = (1k) in Proposition 3.2 (iv), we obtain p(1k)(λ) = |λ|↓k.
Using Stirling numbers defined in (2.5), we find

p(1k) =
k∑
j=1

T (k, j)p(1j) .

More generally, a power-sum function pρ can be expanded as a linear
combination of pσ in the following way. First, we expand pρ in terms of
Pλ by using (2.3). Second, each Pλ is expanded in terms of factorial Schur
P -functions P ∗µ by Proposition 2.7. Finally, each P ∗µ is expanded in terms
of pσ by the formula

P ∗µ =
∑

σ∈OP|µ|

2−`(µ)+`(σ)z−1
σ Xµ

σpσ ,

which is the image of the second equation on (2.3) under Ψ.
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Example 3.3.

p(1) = p(1) ,

p(12) = p(12) + p(1) ,

p(3) = p(3) + 3p(12) + p(1) ,

p(13) = p(13) + 3p(12) + p(1)

p(3,1) = p(3,1) + 3p(3) + 3p(13) + 7p(12) + p(1) ,

p(14) = p(14) + 6p(13) + 7p(12) + p(1) ,

p(5) = p(5) + 10p(3,1) + 35
3 p(3) + 40

3 p(13) + 15p(12) + p(1) ,

p(3,1,1) = p(3,1,1) + 7p(3,1) + 3p(14) + 9p(3) + 16p(13) + 15p(12) + p(1) ,

p(15) = p(15) + 10p(14) + 25p(13) + 15p(12) + p(1) .

Remark 3.4. For two ordinary partitions λ, µ, we consider

Chµ(λ) =

|λ|↓|µ|
χλ
µ∪(1|λ|−|µ|)

fλ
if |λ| ≥ |µ|,

0 if |λ| < |µ|,

where χλ
µ∪(1|λ|−|µ|) is the value of the irreducible character χλ of the sym-

metric group S|λ| at conjugacy class associated with µ ∪ (1|λ|−|µ|). The
functions Chµ on the set of all partitions are called the normalized char-
acters of symmetric groups, and have rich properties and applications.
See [4, 13, 24]. Note that the function is written as p#

µ in [13]. Our func-
tion pρ is a projective analog of Chµ since Xλ

ρ is a character value for a
projective representation of symmetric groups.

4. Shifted Plancherel averages

4.1. Proof of Polynomiality

In the present section we give a proof of Theorems 1.2 and 1.3. Let m be
a nonnegative integer. Fix µ ∈ SPm. For each ρ ∈ OP, we consider the
summation

Eµ,n[pρ] =
∑

λ∈SPn+m

m!
(n+m)! 2n−`(λ)+`(µ) g

λ

gµ
gλ/µpρ(λ) .
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Since Proposition 3.2 (iv) implies that

Eµ,n[pρ] = (n+m− |ρ̃|)↓m1(ρ)Eµ,n[pρ̃] , (4.1)

it is sufficient to compute Eµ,n[pρ] for odd partitions ρ with no part equal
to 1.

The following lemma is seen in [16, Chapter III.8, Example 11].

Lemma 4.1. For f, g ∈ Γ,

〈p1f, g〉 = 1
2

〈
f,

∂

∂p1
g

〉
.

Here the differential operator ∂
∂p1

acts on functions in Γ expressed as poly-
nomials in p1, p3, p5, . . . .

Theorem 4.2. Let ρ be an odd partition such that m1(ρ) = 0. Then

Eµ,n[pρ] = pρ(µ). (4.2)

Proof. First of all, if n+m < |ρ|, then we have pρ(λ) = 0 for all λ ∈ SPn+m
and pρ(µ) = 0 by virtue of Proposition 3.2(5), so that Eµ,n[pρ] = 0 =
pρ(µ). Consequently, we may assume |ρ| ≤ n+m.

Using Proposition 2.3(4) and Proposition 3.2(3), we see that

Eµ,n[pρ] =
∑

λ∈SPn+m

m!
(n+m)! 2n−`(λ)+`(µ) g

λ

gµ
〈pn1Pµ, Qλ〉

× (n+m)↓|ρ| 〈p
n+m−|ρ|
1 pρ, Qλ〉

gλ

= m!
gµ

(n+m)↓|ρ|

(n+m)!
∑

λ∈SPn+m

2n−`(λ)〈pn1Qµ, Qλ〉〈p
n+m−|ρ|
1 pρ, Qλ〉

= m!
gµ

(n+m)↓|ρ|

(n+m)! 2n〈pn1Qµ, p
n+m−|ρ|
1 pρ〉 , (4.3)

where we have used Proposition 2.3(3) for the last equality.
We next compute the scalar product 〈pn1Qµ, p

n+m−|ρ|
1 pρ〉. Assume that

|ρ| > m. Expanding Qµ in pσ (see (2.3)), we have

〈pn1Qµ, p
n+m−|ρ|
1 pρ〉 =

∑
σ∈OPm

2`(σ)z−1
σ Xµ

σ 〈p
n+m1(σ)
1 pσ̃, p

n−(|ρ|−m)
1 pρ〉 .
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Here all the scalar products of the right hand side vanish by (2.1) because
m1(ρ) = 0 and n + m1(σ) ≥ n > n − (|ρ| − m). Therefore it follows
from (4.3) that

Eµ,n[pρ] = 0 if |ρ| > m.

On the other hand, pρ(µ) = 0 if |ρ| > m by Proposition 3.2(5), hence
Eµ,n[pρ] = 0 = pρ(µ) in that case.

We finally assume that |ρ| ≤ m. Using Lemma 4.1 we have

〈pn1Qµ, p
n+m−|ρ|
1 pρ〉 = 1

2n
〈
Qµ,

(
∂

∂p1

)n
p
n+m−|ρ|
1 pρ

〉
= (n+m− |ρ|)↓n

2n 〈Qµ, pm−|ρ|1 pρ〉

= (n+m− |ρ|)↓n

2n
gµ

m↓|ρ|
pρ(µ) ,

where in the last equality Proposition 3.2(3) is applied. Combining this
with (4.3) gives

Eµ,n[pρ] = (n+m)↓|ρ| (n+m− |ρ|)↓nm!
(n+m)!m↓|ρ|

pρ(µ) .

A straightforward computation gives the desired expression. �

Substituting ρ = ∅ in Theorem 4.2, we obtain
Eµ,n[1] = 1,

which shows that Pµ,n defined in (1.1) is a probability measure on SPn+m
and that Eµ,n is the average with respect to Pµ,n.

Corollary 4.3. For ρ ∈ OPk,

En[pρ] = δρ,(1k)n
↓k.

Proof. Notice that En[pρ] = n↓m1(ρ)En[pρ̃] by (4.1). Substituting µ = ∅ in
Theorem 4.2 implies that En[pρ̃] = δρ̃,∅. Therefore En[pρ] survives only if
ρ = (1k), and En[p(1k)] = n↓k. �

Now the polynomiality of Eµ,n[f ] becomes trivial.

Proof of Theorems 1.2 and 1.3. Since the pρ, ρ ∈ OP, form a linear basis
of the algebra Γ of supersymmetric functions, we obtain Theorem 1.3 from
Theorem 4.2. Theorem 1.2 is a special case of Theorem 1.3 with µ = ∅. �

70



Polynomiality of shifted Plancherel averages

4.2. Orthogonality for pρ

We can also easily compute the Pn-average of products pρpσ.

Theorem 4.4. Let ρ and σ be odd partitions such that m1(ρ) = m1(σ) =
0. Then

En[pρpσ] = δρ,σ2|ρ|−`(ρ)zρn
↓|ρ| .

Proof. We may suppose n ≥ max{|ρ|, |σ|} by virtue of Proposition 3.2(5).
It follows from Proposition 3.2(3) that

En[pρpσ] =
∑

λ∈SPn

2n−`(λ)(gλ)2

n! · n
↓|ρ|

gλ
Xλ
ρ∪(1n−|ρ|) ·

n↓|σ|

gλ
Xλ
σ∪(1n−|σ|)

= n↓|ρ|n↓|σ|

n!
∑

λ∈SPn
2n−`(λ)Xλ

ρ∪(1n−|ρ|)X
λ
σ∪(1n−|σ|).

Using Proposition 2.4 and the fact that m1(ρ) = m1(σ) = 0, it equals

= n↓|ρ|n↓|σ|

n! 2n−(`(ρ)+n−|ρ|)zρ∪(1n−|ρ|)δρ,σ = n↓|ρ|2|ρ|−`(ρ)zρδρ,σ . �

Substituting σ = ∅ in Theorem 4.4 recovers Corollary 4.3.

4.3. Bound for degrees
The following proposition is a direct consequence of Corollary 4.3.

Proposition 4.5. Let f be a supersymmetric function. If we expand f as
a linear combination of pρ:

f =
∑
ρ∈OP

(finite sum)

aρ(f)pρ ,

then
En[f ] =

∑
r≥0

a(1r)(f)n↓r.

In particular, if a(1r)(f) vanish for all r > k, then En[f ] is of degree at
most k.

Inspired by [12], we define a degree filtration of the vector space Γ by
deg1(pρ) = |ρ|+m1(ρ) .
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More generally, for f =
∑
ρ aρ(f)pρ ∈ Γ, define

deg1(f) = max
ρ:aρ(f)6=0

(|ρ|+m1(ρ)) .

Proposition 4.6. The degree of En[f ] as a polynomial in n is at most
1
2 deg1(f).

Proof. It is sufficient to check this for f = pρ. By virtue of Corollary 4.3,
we have: if ρ 6= (1k) then En[pρ] = 0; if ρ = (1k) then En[pρ] = n↓k and
deg1(pρ) = 2k. �

4.4. Examples
We show some explicit expressions of En[pρ], which are presented in Sub-
section 1.2. In Example 3.3, we give expansions of some pρ in pσ. By
Corollary 4.3, we obtain the following identities immediately.

En[p3] = En
[
p(3) + 3p(12) + p(1)

]
= 3n↓2 + n,

En[p5] = En
[
p(5) + 10p(3,1) + 35

3 p(3) + 40
3 p(13) + 15p(12) + p(1)

]
= 40

3 n
↓3 + 15n↓2 + n.

Moreover, Theorem 4.4 gives

En
[
p2

3

]
= En

[
(p(3) + 3p(12) + p(1))2

]
= En

[
p(3)p(3) + 6p(3)p(12) + 2p(3)p(1) + 9p(12)p(12)

+ 6p(12)p(1) + p(1)p(1)
]

= 12n↓3 + 0 + 0 + 9n↓2 · n↓2 + 6n↓2 · n+ n2

= 9n↓4 + 54n↓3 + 31n↓2 + n.

5. Content evaluations

5.1. Supersymmetry
In this section, we give a proof of Theorem 1.4. Let λ be a strict partition
and recall the shifted Young diagram

S(λ) =
{

(i, j) ∈ Z2
∣∣∣ 1 ≤ i ≤ `(λ), i ≤ j ≤ λi + i− 1

}
.
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For each � = (i, j) ∈ S(λ), its content c� is defined by c� = j− i. We find
{c� ∈ Z | � ∈ S(λ)} = {j − i | 1 ≤ i ≤ `(λ), i ≤ j ≤ λi + i− 1}

= {j − 1 | 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}
as multi-sets.

Lemma 5.1. For each m = 0, 1, 2, . . . ,

p2m+1(λ) =
∑

�∈S(λ)

{
(c� + 1)2m+1 − c2m+1

�

}
for any strict partition λ.

Proof. Consider the function

Φ(u;λ) =
`(λ)∏
i=1

1 + λiu

1− λiu
.

The Taylor expansion of log Φ(u;λ) at u = 0 is

log Φ(u;λ) =
`(λ)∑
i=1
{log(1 + λiu)− log(1− λiu)}

=
`(λ)∑
i=1

∞∑
r=1

ur

r
{1 + (−1)r−1}λri = 2

∞∑
m=0

u2m+1

2m+ 1 p2m+1(λ) .

On the other hand, since

1 + λiu

1− λiu
=

λi∏
j=1

(1 + ju)(1− (j − 1)u)
(1− ju)(1 + (j − 1)u) ,

we see that

Φ(u;λ) =
`(λ)∏
i=1

λi∏
j=1

(1 + ju)(1− (j− 1)u)
(1− ju)(1 + (j− 1)u) =

∏
�∈S(λ)

(1 + (c� + 1)u)(1− c�u)
(1− (c� + 1)u)(1 + c�u) .

In this expression, the Taylor expansion of log Φ(u;λ) at u = 0 is

log Φ(u;λ) = 2
∞∑
m=0

u2m+1

2m+ 1
∑

�∈S(λ)

{
(c� + 1)2m+1 − c2m+1

�

}
.

Comparing coefficients in two expressions of the Taylor expansion, we
obtain the desired formula. �
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Lemma 5.2. Let R(X) be a polynomial in a variable X. Put Y =X(X+1).
Then there exists a polynomial R̃ in Y such that R̃(Y ) = R(X) if and only
if R satisfies the functional equation R(X) = R(−X−1). Moreover, if the
top-degree term of R is aX2m then the top-degree term of R̃ is aY m.

Proof. First we suppose that R(X) can be expressed as R(X) = R̃(Y ).
Since Y = X(X + 1) is invariant under the change of variable X 7→ X̄ =
−X − 1, we obtain the functional equation R(X) = R(−1−X).

Next suppose that R(X) satisfies the functional equation R(X) =
R(−1 − X). In general, a polynomial function y = r(x) is symmetric
with respect to the y-axis in the xy-plane if and only if r is of the form

r(x) =
m∑
j=0

ajx
2j

with certain coefficients aj . We may suppose am 6= 0. Put R(X) = r(X+1
2).

We can observe that the symmetry r(−x) = r(x) is equivalent to the
functional equation R(−X − 1) = R(X). Moreover, R(X) is of the form

R(X) =
m∑
j=0

aj
(
X + 1

2

)2j
=

m∑
j=0

aj
(
X(X + 1) + 1

4

)j
=

m∑
j=0

aj
(
Y + 1

4

)j
=: R̃(Y ) .

The top-degree term of R(X) is amX
2m, whereas that of R̃(Y ) is

amY
m. �

Define
ĉ� = 1

2c�(c� + 1)

for each � ∈ S(λ).

Proposition 5.3. Let k = 1, 2, 3, . . . . The function p̂k on SP defined by

p̂k(λ) = pk (ĉ� : � ∈ S(λ)) = 2−k
∑

�∈S(λ)

{
c�(c� + 1)

}k
is supersymmetric. Moreover, if we set p̂0(λ) = |λ|, then p̂0 is also super-
symmetric.
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Proof. First, we see that p̂0(λ) = |λ| = λ1 + λ2 + · · · = p1(λ), and hence
p̂0 is supersymmetric.

Let m be a nonnegative integer and λ a strict partition. Lemma 5.1
says that

p2m+1(λ) =
∑

�∈S(λ)

{
(c� + 1)2m+1 − c2m+1

�

}
.

Since the polynomial function R(X) := (X + 1)2m+1 − X2m+1 = (2m +
1)X2m + · · · clearly satisfies the functional equation R(X) = R(−X − 1),
it can be expressed as a polynomial in Y = X(X + 1) of degree m by
Lemma 5.2. Hence there exist universal coefficients amr (r = 0, 1, 2, . . . ,
m− 1) such that

p2m+1(λ) =
∑

�∈S(λ)

[
(2m+ 1){c�(c� + 1)}m +

m−1∑
r=0

amr{c�(c� + 1)}r
]

= 2m(2m+ 1)p̂m(λ) +
m−1∑
r=0

2ramrp̂r(λ) .

This relation implies that for each k = 0, 1, 2, . . . ,

p̂k = 1
2k(2k + 1) p2k+1 +

k−1∑
r=0

bkr p2r+1 (5.1)

with some rational coefficients bkr. Therefore p̂k belongs to Γ. �

Proof of Theorem 1.4. Let F be any symmetric function. It is well known
that F can be uniquely expressed as a polynomial in variables p1, p2, . . . .
Hence the function F̂ on SP defined by

F̂ (λ) = F (ĉ� : � ∈ S(λ))

is a polynomial in p̂1, p̂2, . . . . Theorem 1.4 follows from Proposition 5.3.
�

The family (p̂k)k=0,1,2,... is an algebraic basis of Γ by (5.1). This shows
that Theorem 1.3 and Corollary 1.5 are equivalent. Furthermore, we have
obtained the following proposition.

Proposition 5.4. The algebra Γ coincides with the algebra generated by
the function λ 7→ |λ| and the functions F̂ , where F are (ordinary) sym-
metric functions.
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5.2. Examples

We give some examples of Eµ,n[F̂ ], where F is a symmetric function. It is
easy to see that

p̂1 = 1
6p3 −

1
6p1 , p̂2 = 1

20p5 −
1
12p3 + 1

30p1 .

Indeed, for example, p̂1 is computed as follows:

p̂1(λ) =
∑

�∈S(λ)

1
2c�(c� + 1) = 1

2

`(λ)∑
i=1

λi∑
j=1

(
j2 − j

)

=
`(λ)∑
i=1

λ3
i − λi

6 = 1
6(p3(λ)− p1(λ)) .

Using Example 3.3 and Corollary 4.3, we have

En[p̂1] = En
[1

6p(3) + 1
2p(12)

]
= 1

2n
↓2 .

Similarly, we have

En[p̂2] = En
[ 1

20 p(5) + 1
2 p(3,1) + 1

2 p(3) + 2
3 p(13) + 1

2 p(12)

]
= 2

3n
↓3 + 1

2n
↓2.

Moreover, Theorem 4.4 gives

En
[
(p̂1)2

]
= En

[(
1
6p(3) + 1

2p(12)
)2
]

= 1
36 En

[
p(3)p(3)

]
+ 1

6 En
[
p(3)p(12)

]
+ 1

4 En
[
p(12)p(12)

]
= 1

36 · 12n↓3 + 1
4n

2(n− 1)2

= 6
(
n

4

)
+ 8

(
n

3

)
+
(
n

2

)
.

The following example is seen in [8, Theorem 1.3]:

Eµ,n[p̂1 − p̂1(µ)] = 1
2n(n− 1) + n|µ| .

We can give its simple proof as follows. Since p̂1 = 1
6p(3) + 1

2p(12), we have
p̂1(µ) = 1

6p(3)(µ) + 1
2 |µ|(|µ| − 1), and Eµ,n[p̂1] = 1

6p(3)(µ) + 1
2(n+ |µ|)(n+
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|µ| − 1) by virtue of Theorem 4.2 and (4.1). Therefore we have

Eµ,n[p̂1− p̂1(µ)] = 1
2(n+ |µ|)(n+ |µ|−1)− 1

2 |µ|(|µ|−1) = 1
2n(n−1)+n|µ|.

6. Remarks on functions introduced by Han and Xiong

We identify a strict partition λ with its shifted Young diagram S(λ) as
usual. A box � = (i, j) in S(λ) is said to be an outer corner of λ if we
obtain a new strict partition by removing the box � from S(λ). A box
� ∈ Z2 is said to be an inner corner of λ if we obtain a new strict partition
by adding the box � to S(λ). Denote by Oλ and by Iλ the set of all outer
and inner corners of λ, respectively. For example, if λ = (5, 4, 2), then we
have Oλ = {(2, 5), (3, 4)} and Iλ = {(1, 6), (3, 5), (4, 4)}.

For each integer k ≥ 1, we define a function ψk on SP by

ψk(λ) =
∑
�∈Iλ

{c�(c� + 1)}k −
∑

�∈Oλ

{c�(c� + 1)}k .

In their paper [8], Han and Xiong first introduced those functions. Remark
that these are denoted by qk (or by Φk) in their articles with slight change
ψk = 2kqk. Our purpose in this short section is to give an alternative
simple expression of ψk and to show that they are supersymmetric.

Proposition 6.1. For each λ ∈ SP, we have
`(λ)∏
i=1

1− λi(λi − 1)u
1− λi(λi + 1)u = exp

( ∞∑
k=1

uk

k
ψk(λ)

)
. (6.1)

Proof. We prove the formula by induction on |λ|. If λ = ∅, then (6.1) holds
true because ψk(∅) = 0 for all k ≥ 1. Let λ be a strict partition and put

Φ̃(u;λ) =
`(λ)∏
i=1

1− λi(λi − 1)u
1− λi(λi + 1)u and Φ̃(u;λ) = exp

( ∞∑
k=1

uk

k
ψk(λ)

)
.

Consider a strict partition λ+ obtained by adding a box � to λ. The added
box � is an inner corner of λ and of the form � = (r, λr+r), where r is an
integer in {1, 2, . . . , `(λ) + 1} and we set λ`(λ)+1 = 0. Notice that c� = λr.
It is easy to see that

Φ̃(u;λ+)
Φ̃(u;λ)

= (1− λr(λr + 1)u)2

(1− (λr + 1)(λr + 2)u)(1− (λr − 1)λru) .
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If we show the same identity for Φ̃ then the induction step is completed.
A careful observation of the difference between Iλ tOλ and Iλ+ tOλ+

implies that

ψk(λ+)−ψk(λ) = {(c� + 1)(c� + 2)}k + {(c� − 1)c�}k− 2{c�(c� + 1)}k

= {(λr + 1)(λr + 2)}k + {(λr − 1)λr}k− 2{λr(λr + 1)}k

see also [8, (3.10)]. Therefore we have

Φ̃(u;λ+)
Φ̃(u;λ)

= exp
( ∞∑
k=1

uk

k
(ψk(λ+)− ψk(λ))

)

= (1− λr(λr + 1)u)2

(1− (λr + 1)(λr + 2)u)(1− (λr − 1)λru) ,

as desired. �

The function ψk is simply given as a polynomial in variables λ1, λ2, . . . .

Proposition 6.2. For each k ≥ 1 and strict partition λ, we have

ψk(λ) =
`(λ)∑
i=1

λki {(λi + 1)k − (λi − 1)k} = 2
∑

1≤s≤k
odd

(
k

s

)
p2k−s(λ) .

In particular, ψk is a supersymmetric function.

Proof. Taking the logarithm of (6.1), we find

∞∑
k=1

uk

k
ψk(λ) =

`(λ)∑
i=1

log 1− λi(λi − 1)u
1− λi(λi + 1)u .

Expanding the logarithm functions and comparing the coefficient
of uk on both sides, we obtain the first equality in the theorem. The
remaining equality is obtained by applying the binomial theorem for the
first equality. �

For example:

ψ1 = 2p1 , ψ2 = 4p3 , ψ3 = 6p5 + 2p3 , ψ4 = 8p7 + 8p5 .
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7. Open problems

7.1. Degree functions on Γ
In Subsection 4.3, we introduced the filtration deg1 on the vector space Γ.
We remain a conjecture:

Conjecture 7.1. The filtration deg1 is compatible with the multiplication
of Γ in the following sense. Define the structure constants fρστ by

pσpτ =
∑
ρ

fρστpρ .

For fρστ 6= 0 then,

|ρ|+m1(ρ) ≤ (|σ|+m1(σ)) + (|τ |+m1(τ)) .

Hence deg1 defines an algebra filtration of Γ.

Remark that the corresponding result in the algebra of shifted-sym-
metric functions is obtained in [12], based on the theory of the partial
permutation algebra. Can we find a spin-analog of the partial permutation
algebra?

We showed that, if f is a supersymmetric function, En[f ] is a polynomial
in n of degree at most 1

2 deg1(f). To consider various degree filtrations is
of help for estimations of the degree of En[f ], see [3, 13].

7.2. Polynomiality for non-supersymmetric functions
Assume that F is a symmetric function but not supersymmetric. It is
natural to ask whether En[F ] is a polynomial in n. As a trial, let us consider
the second power-sum symmetric function p2(x1, x2, . . . ) =

∑
i≥1 x

2
i . Some

values are directly computed as follows:

E1[p2] = 1 , E2[p2] = 4 , E3[p2] = 23
3 ,

E4[p2] = 12 , E5[p2] = 17 , E6[p2] = 1016
45 .

Recall En[p3] = 3n2 − 2n and a trivial identity En[p1] = n. If En[p2] is a
polynomial in n, one may expect that it is of degree at most 2. However,
there is no polynomial Φp2(x) of degree 2 such that En[p2] = Φp2(n) for
all 1 ≤ n ≤ 6.
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7.3. Hook evaluations
Recall the ordinary Plancherel measure PPlan

n on partitions. As we mention
in Subsection 1.5, Stanley [25] (see also [7]) proves that the summation∑

λ∈Pn
PPlan
n (λ)F

(
h2
� : � ∈ Y (λ)

)
is a polynomial in n for any symmetric function F , where h� denotes
the hook length of the square � in the Young diagram Y (λ). What is the
analog of this result for the shifted Plancherel measure on strict partitions?
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