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On the Calogero–Moser space associated with dihedral groups II.
The equal parameter case

Cédric Bonnafé

Abstract

We continue the study of Calogero–Moser spaces associated with dihedral groups by investigating in
more details the equal parameter case: we obtain explicit equations, some informations about the Poisson
bracket, the structure of the Lie algebra associated with the cuspidal point and the action of SL2 (C) .

Sur l’espace de Calogero–Moser associé aux groupes diédraux II.
Le cas des paramètres égaux

Résumé

Nous continuons ici l’étude des espaces de Calogero–Moser associés aux groupes diédraux en se
focalisant sur le cas des paramètres égaux : nous obtenons des équations explicites, des informations sur
le crochet de Poisson, la structure de l’algèbre de Lie associée au point cuspidal et l’action de SL2 (C) .

1. Introduction

In this paper, we continue the study of Calogero–Moser space Z𝑐 associated with the
dihedral group 𝑊 of order 2𝑑 started in [5], from which we keep the notation. We mainly
focus on the equal parameter case (i.e. the case where 𝑐 is constant or, i.e. if 𝑎 = 𝑏 with
the notation of [5, §3.4])1. In this case, the main results of this paper are the following:

• We describe explicit equations for Z𝑐.

• We obtain informations about the Poisson bracket that allow to determine the
structure of the Lie algebra associated with the cuspidal point.

• We describe the action of SL2 (C) on the generators of 𝑍𝑐 and explain how the
presentation of 𝑍0 can be interpreted in terms of Hermite’s reciprocity law2 (see
for instance [9, Cor. 2.2]).

The author is partly supported by the ANR: Projects No ANR-16-CE40-0010-01 (GeRepMod) and ANR-18-
CE40-0024-02 (CATORE).
Keywords: Calogero–Moser space, dihedral group.
2020 Mathematics Subject Classification: 20F55.

1Recall that, if 𝑑 is odd, then we have necessarily 𝑎 = 𝑏.
2We wish to thank warmly Pierre-Louis Montagard for his enlighting explanations.
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C. Bonnafé

• If 𝜏 denotes the diagram automorphism of 𝑊 , then 𝜏 acts on Z𝑐 because we are
in the equal parameter case, and we prove that the irreducible components of Z𝜏

𝑐

are also Calogero–Moser spaces associated with other reflection groups. This
confirms [7, Conj. FIX] (or [6, Conj. B]) in this small case.

These results are used by G. Bellamy, B. Fu, D. Juteau, P. Levy, E. Sommers and the author
in [3], where it is shown that, for 𝑑 ⩾ 5, the symplectic singularity of Z𝑐 at its cuspidal
point is a new family of isolated symplectic singularities whose local fundamental group
is trivial [3], answering an old question of Beauville [1].

These computations are based on a first paper of the author on Calogero–Moser
spaces associated with dihedral groups [5] and on the above mentioned algorithm
developed by Thiel and the author [8]. Explicit computer computations in small cases (i.e.
𝑑 ∈ {4, 5, 6, 7}) were necessary to find the general pattern. So, even though this does not
appear in this paper, it is fair to say that the above results owe their existence to Magma.

Recollection of notation from [5]

We will use the notation of the first part [5] and we recall here some of them, the most
important ones. We set 𝑉 = C2 and (𝑥, 𝑦) denotes its canonical basis while (𝑋,𝑌 ) is
the dual basis of 𝑉∗. We identify GLC (𝑉) with GL2 (C). We also fix a non-zero natural
number 𝑑, as well as a primitive 𝑑-th root of unity 𝜁 ∈ C× . If 𝑖 ∈ Z or Z/𝑑Z, we set

𝑠𝑖 =

(
0 𝜁 𝑖

𝜁−𝑖 0

)
,

𝑠 = 𝑠0, 𝑡 = 𝑠1 and 𝑊 = ⟨𝑠, 𝑡⟩: it is the dihedral group of order 2𝑑. In particular,

𝑠𝑖 (𝑥) = 𝜁−𝑖𝑦, 𝑠𝑖 (𝑦) = 𝜁 𝑖𝑥, 𝑠𝑖 (𝑋) = 𝜁 𝑖𝑌 and 𝑠𝑖 (𝑌 ) = 𝜁−𝑖𝑋.

The set Ref (𝑊) of reflections of 𝑊 (for its action on 𝑉) is {𝑠𝑖 | 𝑖 ∈ Z/𝑑Z}. Finally, let 𝑤0
denote the longest element of 𝑊 (we have 𝑤0 = 𝑡 (𝑠𝑡) (𝑑−1)/2 if 𝑑 is odd and 𝑤0 = (𝑠𝑡)𝑑/2
if 𝑑 is even): this notation was used in the first part [5, Rem. 6.4] but we had forgotten to
define it! It will be used here in Section 5.

We set 𝑞 = 𝑥𝑦, 𝑄 = 𝑋𝑌 , 𝑟 = 𝑥𝑑 + 𝑦𝑑 , 𝑅 = 𝑋𝑑 + 𝑌 𝑑 and, if 0 ⩽ 𝑖 ⩽ 𝑑,

a𝑖,0 = 𝑥𝑑−𝑖𝑌 𝑖 + 𝑦𝑑−𝑖𝑌 𝑖 .

In this second part, we will not use the notation 𝑟 or 𝑅 as 𝑟 = a0,0 and 𝑅 = a𝑑,0: we prefer
this second notation. If 𝑖 ⩾ 0, we set

eu(𝑖)
0 = (𝑥𝑋)𝑖 + (𝑦𝑌 )𝑖
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Calogero–Moser space and dihedral groups: the equal parameter case

and we set eu0 = eu(1)
0 = 𝑥𝑋 + 𝑦𝑌 . Recall from [5, Thm. 2.1] that

C[𝑉 ×𝑉∗]𝑊 = C[𝑞, 𝑄, eu0, a0,0, a1,0, . . . , a𝑑,0] .

We fix a map 𝑐 : Ref (𝑊) → C and we set 𝑎 = 𝑐𝑠 and 𝑏 = 𝑐𝑡 . We denote by H𝑐 the
rational Cherednik algebra at 𝑡 = 0, with parameter 𝑐, whose presentation is given in [5,
(3.2)]: it is defined as the quotient of T(𝑉 ⊕ 𝑉∗) ⋊𝑊 by the following relations (here,
T(𝑉 ⊕ 𝑉∗) is the tensor algebra of 𝑉 ⊕ 𝑉∗ over C): [𝑢, 𝑢

′] = [𝑈,𝑈′] = 0,
[𝑢,𝑈] = −2

∑
𝑖∈Z/𝑑Z 𝑐𝑠𝑖

⟨𝑢,𝛼𝑖 ⟩·⟨𝛼∨
𝑖
,𝑈⟩

⟨𝛼∨
𝑖
,𝛼𝑖 ⟩ 𝑠𝑖 ,

(∗)

for 𝑈, 𝑈′ ∈ 𝑉∗ and 𝑢, 𝑢′ ∈ 𝑉 . Note that we have followed the convention of [7].
Recall from [11] that H𝑐 contains naturally the algebras C[𝑉], C[𝑉∗] and C𝑊 as

subalgebras and that the multiplication map

C[𝑉] ⊗ C𝑊 ⊗ C[𝑉∗] −→ H𝑐

is an isomorphism of vector spaces. The center of H𝑐 is denoted by 𝑍𝑐 and we denote by
Z𝑐 the affine variety whose algebra of regular functions C[Z𝑐] is precisely 𝑍𝑐.

We denote by Trunc𝑐 the C-linear map

Trunc𝑐 : H𝑐 −→ C[𝑉 ×𝑉∗]

such that, if 𝑓 ∈ C[𝑉 ×𝑉∗] and 𝑤 ∈ 𝑊 , then

Trunc𝑐 ( 𝑓 𝑤) =
{
𝑓 if 𝑤 = 1,
0 otherwise.

It is the map induced by the map Trunc defined in [5, §3.4]. Its restriction Trunc𝑐 : 𝑍𝑐 →
C[𝑉 ×𝑉∗]𝑊 is an isomorphism of Z-graded vector spaces [5, Lem. 3.5]. Recall that it is
𝑃•-linear, where 𝑃• = C[𝑉]𝑊 ⊗ C[𝑉∗]𝑊 = C[𝑞, 𝑄, a0,0, a𝑑,0].

We add a further notation which will be useful in this second part, namely, we set

𝑒 =

(
0 1
0 0

)
, ℎ =

(
1 0
0 −1

)
and 𝑓 =

(
0 0
1 0

)
,

so that (𝑒, ℎ, 𝑓 ) is the standard basis of the Lie algebra 𝔰𝔩2 (C).

Hypothesis. All along this paper, together with the above notation, we make the additional
assumption that 𝑎 = 𝑏, which justifies the title of this paper. Recall that it is automatically
satisfied if 𝑑 is odd.

117



C. Bonnafé

2. Back to Z0 = (𝑽 × 𝑽∗)/𝑾

2.1. Some polynomial identities

If 𝑖 ⩾ 0, let eu[𝑖 ]
0 denote the element

eu[𝑖 ]
0 =

(𝑥𝑋)𝑖+1 − (𝑦𝑌 )𝑖+1

𝑥𝑋 − 𝑦𝑌
=

𝑖∑︁
𝑗=0

(𝑥𝑋)𝑖− 𝑗 (𝑦𝑌 ) 𝑗

of 𝑍0 = C[𝑉 ×𝑉∗]𝑊 . In other words, with the notation of [5, §2],

eu[𝑖 ]
0 =

∑︁
0⩽ 𝑗<𝑖/2

(𝑞𝑄) 𝑗eu(𝑖−2 𝑗 )
0 + 𝜹𝑖 is even,

where 𝜹𝑖 is even is equal to 1 (resp. 0) if 𝑖 is even (resp. odd). Hence, using the inversion
formula [5, (2.1)], one gets

eu[𝑖 ]
0 =

∑︁
0⩽ 𝑗<𝑖/2

(
(𝑞𝑄) 𝑗

∑︁
0⩽𝑘⩽1/2− 𝑗

𝑛𝑖−2 𝑗 ,𝑘 (𝑞𝑄)𝑘eu𝑖−2 𝑗−2𝑘
0

)
+ 𝜹𝑖 is even,

which can be rewritten

eu[𝑖 ]
0 =

∑︁
0⩽ 𝑗⩽𝑖/2

𝑚𝑖, 𝑗 (𝑞𝑄) 𝑗eu𝑖−2 𝑗
0 , (2.1)

for some uniquely defined elements 𝑚𝑖, 𝑗 ∈ Z (note that 𝑚𝑖,0 = 1). Let Ψ𝑖 (𝑇,𝑇 ′, 𝑇 ′′)
denote the polynomial in three indeterminates equal to

∑
0⩽ 𝑗⩽𝑖/2 𝑚𝑖, 𝑗 (𝑇 ′𝑇 ′′) 𝑗𝑇 𝑖−2 𝑗 . It is

homogeneous of degree 𝑖 for the natural graduation of C[𝑇,𝑇 ′, 𝑇 ′′] and, as a polynomial
in 𝑇 with coefficients in C[𝑇 ′, 𝑇 ′′], it is monic. If we denote by C[𝑇,𝑇 ′, 𝑇 ′′]𝑘 the
homogeneous component of C[𝑇,𝑇 ′, 𝑇 ′′] of degree 𝑘 , then the unitriangularity of the
formula (2.1) shows that

(𝑇 ′𝑘− 𝑗𝑇 ′′𝑖Ψ 𝑗−𝑖)0⩽𝑖⩽ 𝑗⩽𝑘 is a basis of C[𝑇,𝑇 ′, 𝑇 ′′]𝑘 . (2.2)

By construction, Ψ𝑖 is the unique polynomial satisfying the following identity:

Ψ𝑖 (eu0, 𝑞, 𝑄) = eu[𝑖 ]
0 =

(𝑥𝑋)𝑖+1 − (𝑦𝑌 )𝑖+1

𝑥𝑋 − 𝑦𝑌
. (2.3)

The unicity comes from the fact that eu0, 𝑞 and 𝑄 are algebraically independent. Note
that Ψ0 = 1 and Ψ1 = 𝑇 . Now the sequence (Ψ𝑖)𝑖⩾0 is easily determined by the following
recursive formula: if 𝑖 ⩾ 1, then

Ψ𝑖+1 = 𝑇Ψ𝑖 − 𝑇 ′𝑇 ′′Ψ𝑖−1. (2.4)
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Indeed, this follows from the fact that (𝑥𝑋)𝑖+2−(𝑦𝑌 )𝑖+2 = (𝑥𝑋+𝑦𝑌 ) ((𝑥𝑋)𝑖+1−(𝑦𝑌 )𝑖+1)−
𝑥𝑦𝑋𝑌 ((𝑥𝑋)𝑖 − (𝑦𝑌 )𝑖). Note also for future reference the following two relations: if 𝑖 ⩾ 1,
then 

2𝑇 ′ 𝜕Ψ𝑖

𝜕𝑇
+ 𝑇

𝜕Ψ𝑖

𝜕𝑇 ′′ = (𝑖 + 1)𝑇 ′Ψ𝑖−1,

2𝑇 ′′ 𝜕Ψ𝑖

𝜕𝑇
+ 𝑇

𝜕Ψ𝑖

𝜕𝑇 ′ = (𝑖 + 1)𝑇 ′′Ψ𝑖−1.

(2.5)

Proof of (2.5). We prove only the first identity, the second one being obtained by
exchanging the roles of (𝑥, 𝑦) and (𝑋,𝑌 ). Let us consider the two identities obtained by
applying 𝜕/𝜕𝑋 and 𝜕/𝜕𝑌 to (2.3):
𝑥
𝜕Ψ𝑖

𝜕𝑇
(eu0, 𝑞, 𝑄)+𝑌 𝜕Ψ𝑖

𝜕𝑇 ′′ (eu0, 𝑞, 𝑄) = (𝑖+1)𝑥𝑖+1𝑋 𝑖 (𝑥𝑋− 𝑦𝑌 ) −𝑥((𝑥𝑋)𝑖+1− (𝑦𝑌 )𝑖+1)
(𝑥𝑋 − 𝑦𝑌 )2 ,

𝑦
𝜕Ψ𝑖

𝜕𝑇
(eu0, 𝑞, 𝑄)+𝑋 𝜕Ψ𝑖

𝜕𝑇 ′′ (eu0, 𝑞, 𝑄) = −(𝑖+1)𝑦𝑖+1𝑌 𝑖 (𝑥𝑋−𝑦𝑌 )+𝑦((𝑥𝑋)𝑖+1−(𝑦𝑌 )𝑖+1)
(𝑥𝑋 − 𝑦𝑌 )2 .

Multiplying the first equality by 𝑦, the second by 𝑥, and adding the results yields exactly

2𝑞
𝜕Ψ𝑖

𝜕𝑇
(eu0, 𝑞, 𝑄) + eu0

𝜕Ψ𝑖

𝜕𝑇 ′′ (eu0, 𝑞, 𝑄) = (𝑖 + 1)𝑞Ψ𝑖−1 (eu0, 𝑞, 𝑄),

as expected. □

2.2. Presentation

We rewrite slightly differently the presentation of 𝑍0 = C[𝑉 × 𝑉∗]𝑊 obtained in [5,
Thm. 2.1] according to our needs. A straightforward computation shows that, if 1 ⩽ 𝑖 ⩽

𝑗 ⩽ 𝑑 − 1, then

a𝑖−1,0a 𝑗+1,0 − a𝑖,0a 𝑗 ,0 = (eu2
0 − 4𝑞𝑄)𝑞𝑑− 𝑗−1𝑄𝑖−1eu[ 𝑗−𝑖 ]

0 .

Using (2.1), this gives

a𝑖−1,0a 𝑗+1,0 − a𝑖,0a 𝑗 ,0 = (eu2
0 − 4𝑞𝑄)𝑞𝑑− 𝑗−1𝑄𝑖−1Ψ 𝑗−𝑖 (eu0, 𝑞, 𝑄) (ℨ0

𝑖, 𝑗
)

This equation can also be obtained by substracting the equation (Z0
𝑖, 𝑗
) to the equation

(Z0
𝑖−1, 𝑗+1) (with the notation of [5, §2]). Consequently, the presentation given in [5,

Thm. 2.1] can be rewritten as follows:
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Theorem 2.1. The algebra of invariants C[𝑉 ×𝑉∗]𝑊 admits the following presentation:

• Generators: 𝑞, 𝑄, eu0, a0,0, a1,0, a2,0, . . . , a𝑑,0.

• Relations:
eu0a𝑖,0 = 𝑞a𝑖+1,0 +𝑄a𝑖−1,0 for 1 ⩽ 𝑖 ⩽ 𝑑 − 1,
a𝑖−1,0a 𝑗+1,0 − a𝑖,0a 𝑗 ,0

= (eu2
0 − 4𝑞𝑄)𝑞𝑑− 𝑗−1𝑄𝑖−1Ψ 𝑗−𝑖 (eu0, 𝑞, 𝑄) for 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑 − 1.

2.3. Poisson bracket

The Poisson bracket on C[𝑉 × 𝑉∗]𝑊 is obtained by restriction of the natural one on
C[𝑉 ×𝑉∗], which is completely determined by the following rules:

{𝑥, 𝑋} = {𝑦,𝑌 } = 1 and {𝑥, 𝑦} = {𝑋,𝑌 } = {𝑥,𝑌 } = {𝑦, 𝑋} = 0.

Therefore, a straightforward computation shows that the Poisson bracket between the
generators of C[𝑉 ×𝑉∗]𝑊 is given by:

{𝑞, 𝑄} = eu0,

{eu0, 𝑞} = −2𝑞,
{eu0, 𝑄} = 2𝑄,

{eu0, a𝑖,0} = (2𝑖 − 𝑑)a𝑖,0,
{𝑞, a𝑖,0} = 𝑖a𝑖−1,0

{𝑄, a𝑖,0} = (𝑖 − 𝑑)a𝑖+1,0

{a𝑖,0, a 𝑗 ,0} = 𝑗 (𝑑 − 𝑖)𝑞𝑑− 𝑗𝑄𝑖eu( 𝑗−𝑖−1)
0 − 𝑖(𝑑 − 𝑗)𝑞𝑑− 𝑗−1𝑄𝑖−1eu( 𝑗−𝑖+1)

0 ,

(2.6)

where the last equality only holds if 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑑. In particular, (𝑄, eu0,−𝑞) is an
𝔰𝔩2-triple (for the Lie algebra structure on C[𝑉 ×𝑉∗]𝑊 induced by the Poisson bracket).
Note that

{𝑄, eu2
0 − 4𝑞𝑄} = {𝑞, eu2

0 − 4𝑞𝑄} = {eu0, eu2
0 − 4𝑞𝑄} = 0. (2.7)

2.4. Action of GL2(C)

Since 𝑊 is a Coxeter group, the C𝑊-modules 𝑉 and 𝑉∗ are isomorphic. In our situation,
the map

Φ : 𝑉 −→ 𝑉∗

𝛼𝑥 + 𝛽𝑦 ↦−→ 𝛽𝑋 + 𝛼𝑌
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is an isomorphism of C𝑊-modules. One then gets an action of GL2 (C) on 𝑉 × 𝑉∗ as
follows: (

𝛼 𝛽

𝛾 𝛿

)
· (𝑢,𝑈) = (𝛼𝑢 + 𝛽Φ−1 (𝑈), 𝛾Φ(𝑢) + 𝛿𝑈).

By construction, this action commutes with the action of 𝑊 , so induces an action of
GL2 (C) on the C-algebras C[𝑉 × 𝑉∗], C[𝑉 × 𝑉∗] ⋊𝑊 and C[𝑉 × 𝑉∗]𝑊 . This induces
an action of the Lie algebra 𝔤𝔩2 (C) by derivations on C[𝑉 × 𝑉∗] and C[𝑉 × 𝑉∗]𝑊 . For
conventional reasons, if 𝜑 ∈ C[𝑉 ×𝑉∗] and 𝜉 ∈ 𝔰𝔩2 (C), we denote by 𝜉 · 𝜑 the image of 𝜑
under the action of −𝑡𝜉. It is easily checked on the generators 𝑥, 𝑦, 𝑋 , 𝑌 of C[𝑉 ×𝑉∗] that

𝑒 · 𝜑 = {𝑄, 𝜑}, ℎ · 𝜑 = {eu0, 𝜑} and 𝑓 · 𝜑 = {−𝑞, 𝜑} (2.8)

for all 𝜑 ∈ C[𝑉 ×𝑉∗].

3. Calogero–Moser space at equal parameters

Notation. We denote by 𝑞, 𝑄, 𝒆𝒖, 𝒂0, 𝒂1, . . . , 𝒂𝑑 the respective preimages of 𝑞, 𝑄, eu0,
a0,0, a1,0, . . . , a𝑑,0 under the isomorphism of vector spaces Trunc𝑐 : 𝑍𝑐 → C[𝑉 ×𝑉∗]𝑊 .

By definition, 𝑞, 𝑄, 𝒆𝒖, 𝒂0, 𝒂1, . . . , 𝒂𝑑 are the respective images, by specializing at
the parameter 𝑐, of the elements that were denoted by 𝑞, 𝑄, eu, a0, a1, . . . , a𝑑 in [5, §3.4].

Note the following formulas:

[𝑥, 𝑋] = −𝑎
∑︁

𝑖∈Z/𝑑Z
𝑠𝑖 ,

[𝑥,𝑌 ] = 𝑎
∑︁

𝑖∈Z/𝑑Z
𝜁−𝑖𝑠𝑖 ,

[𝑦, 𝑋] = 𝑎
∑︁

𝑖∈Z/𝑑Z
𝜁 𝑖𝑠𝑖 ,

[𝑦,𝑌 ] = −𝑎
∑︁

𝑖∈Z/𝑑Z
𝑠𝑖 .

(3.1)

Note also the following formula, which follows from [12, §3.6]: if 𝑃 ∈ C[𝑋,𝑌 ], then

[𝑥, 𝑃] = −𝑎
∑︁

𝑖∈Z/𝑑Z

𝑃 − 𝑠𝑖𝑃

𝑋 − 𝜁 𝑖𝑌
𝑠𝑖 = −𝑎

∑︁
𝑖∈Z/𝑑Z

𝑠𝑖
𝑃 − 𝑠𝑖𝑃

𝑋 − 𝜁 𝑖𝑌
. (3.2)

3.1. Explicit form of the generators

Recall from [7, §3.3 and §4.1] that

𝒆𝒖 = 𝑥𝑋 + 𝑦𝑌 + 𝑎
∑︁

𝑖∈Z/𝑑Z
𝑠𝑖 . (3.3)
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An important feature of the equal parameter case is that the elements 𝒂 𝑗 have a reasonably
simple form:

Proposition 3.1. If 0 ⩽ 𝑗 ⩽ 𝑑, then

𝒂 𝑗 = 𝑥𝑑− 𝑗𝑌 𝑗 + 𝑦𝑑− 𝑗𝑋 𝑗 − 𝑎
∑︁

𝑖∈Z/𝑑Z
𝜁−𝑖 𝑗

𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦
· 𝑋

𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌
𝑠𝑖

= 𝑥𝑑− 𝑗𝑌 𝑗 + 𝑦𝑑− 𝑗𝑋 𝑗 − 𝑎
∑︁

𝑖∈Z/𝑑Z
𝜁−𝑖 𝑗

𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦
𝑠𝑖

𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

Notation. For future use of the above formula, we set

𝛾𝑖, 𝑗 =
𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦
and Γ𝑖, 𝑗 =

𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

for 𝑖 ∈ Z/𝑑Z and 0 ⩽ 𝑗 ⩽ 𝑑. Note that 𝛾𝑖,𝑑 = Γ𝑖,0 = 0 and that 𝛾𝑖,𝑑−1 = Γ𝑖,1 = 1.

Proof. Let 𝒃 𝑗 ∈ H𝑐 denote the right-hand side of the equation of the proposition. Since
Trunc𝑐 induces an isomorphism 𝑍𝑐

∼−→ C[𝑉 × 𝑉∗]𝑊 and Trunc𝑐 (𝒂 𝑗 ) = Trunc𝑐 (𝒃 𝑗 ), it
is sufficient to check that 𝒃 𝑗 ∈ 𝑍𝑐. First, an easy computation shows that 𝒃 𝑗 commutes
with 𝑠 = 𝑠0 and 𝑡 = 𝑠1. Now, by (3.2), we have

[𝑥, 𝒃 𝑗 ] = 𝑥𝑑− 𝑗

(
𝑎

∑︁
𝑖∈Z/𝑑Z

𝜁−𝑖 𝑗 𝑠𝑖
𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

)
+ 𝑦𝑑− 𝑗

(
−𝑎

∑︁
𝑖∈Z/𝑑Z

𝑠𝑖
𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

)
− 𝑎

∑︁
𝑖∈Z/𝑑Z

𝜁−𝑖 𝑗
𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦

[
𝑥, 𝑠𝑖

𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

]
= 𝑎

∑︁
𝑖∈Z/𝑑Z

(𝜁−𝑖 𝑗𝑥𝑑− 𝑗 − 𝑦𝑑− 𝑗 )𝑠𝑖
𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

− 𝑎
∑︁

𝑖∈Z/𝑑Z

𝜁−𝑖 𝑗𝑥𝑑− 𝑗 − 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦
[𝑥, 𝑠𝑖]

𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

− 𝑎
∑︁

𝑖∈Z/𝑑Z
𝜁−𝑖 𝑗

𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦
𝑠𝑖

[
𝑥,

𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

]
Now, the first two lines of this last equation compensate each other and it remains

[𝑥, 𝒃 𝑗 ] = −𝑎
∑︁

𝑖∈Z/𝑑Z
𝜁−𝑖 𝑗

𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦
𝑠𝑖

[
𝑥,

𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

]
= 𝑎2

∑︁
𝑖,𝑖′∈Z/𝑑Z

𝜁−𝑖 𝑗
𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦
𝑠𝑖𝑠𝑖′

(
𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌
− 𝜁 𝑖

′ 𝑗𝑋 𝑗 − 𝜁 (𝑖−𝑖
′ ) 𝑗𝑌 𝑗

𝜁 𝑖
′
𝑋 − 𝜁 𝑖−𝑖′𝑌

)
,
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again by using (3.2). But 𝑠𝑖𝑠𝑖′ = 𝑐𝑖−𝑖
′ , where 𝑐 = 𝑡𝑠 = diag(𝜁, 𝜁−1) so, if we set 𝑘 = 𝑖 − 𝑖′,

we can rewrite the above formula as follows:

[𝑥, 𝒃 𝑗 ] = 𝑎2
∑︁

𝑖,𝑘∈Z/𝑑Z
𝜁−𝑖 𝑗

𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦
𝑐𝑘

(
𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌
− 𝜁 (𝑖−𝑘 ) 𝑗𝑋 𝑗 − 𝜁 𝑘 𝑗𝑌 𝑗

𝜁 𝑖−𝑘𝑋 − 𝜁 𝑘𝑌

)
= 𝑎2

∑︁
𝑖,𝑘∈Z/𝑑Z

𝜁−𝑖 𝑗
𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦

(
𝜁−𝑘 𝑗𝑋 𝑗 − 𝜁 (𝑖+𝑘 ) 𝑗𝑌 𝑗

𝜁−𝑘𝑋 − 𝜁 𝑖+𝑘𝑌
− 𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

)
𝑐𝑘

= 𝑎2
∑︁

𝑘∈Z/𝑑Z
Θ 𝑗 ,𝑘𝑐

𝑘 ,

where

Θ 𝑗 ,𝑘 =
∑︁

𝑖∈Z/𝑑Z
𝜁−𝑖 𝑗

𝑥𝑑− 𝑗 − 𝜁 𝑖 𝑗 𝑦𝑑− 𝑗

𝑥 − 𝜁−𝑖𝑦

(
𝜁−𝑘 𝑗𝑋 𝑗 − 𝜁 (𝑖+𝑘 ) 𝑗𝑌 𝑗

𝜁−𝑘𝑋 − 𝜁 𝑖+𝑘𝑌
− 𝑋 𝑗 − 𝜁 𝑖 𝑗𝑌 𝑗

𝑋 − 𝜁 𝑖𝑌

)
∈ C[𝑥, 𝑦] ⊗ C[𝑋,𝑌 ] .

This formula implies that Θ 𝑗 ,𝑘 is a linear combination of (non-commutative) monomials
of the form 𝑥𝑙𝑦𝑑−1−𝑙𝑋𝑚𝑌 𝑗−1−𝑚, where 0 ⩽ 𝑙 ⩽ 𝑑 − 𝑗 − 1 and 0 ⩽ 𝑚 ⩽ 𝑗 − 1, and the
coefficient 𝜃 𝑗 ,𝑘,𝑙,𝑚 of this monomial in Θ 𝑗 ,𝑘 is equal to

𝜃 𝑗 ,𝑘,𝑙,𝑚 =
∑︁

𝑖∈Z/𝑑Z
𝜁−𝑖 𝑗 𝜁−𝑖 (𝑑− 𝑗−1−𝑙) (𝜁−𝑘𝑚𝜁 (𝑖+𝑘 ) ( 𝑗−1−𝑚) − 𝜁 𝑖 ( 𝑗−1−𝑚) )

=
∑︁

𝑖∈Z/𝑑Z
𝜁 𝑖 (𝑙+ 𝑗−𝑚) (𝜁 𝑘 ( 𝑗−1−2𝑚) − 1).

But 𝑗 ⩽ 𝑙 + 𝑗 ⩽ 𝑑 − 1 and 0 ⩽ 𝑚 ⩽ 𝑗 − 1, so 𝑙 + 𝑗 . 𝑚 mod 𝑑. This implies in particular
that

∑
𝑖∈Z/𝑑Z 𝜁

𝑖 (𝑙+ 𝑗−𝑚) = 0, and so 𝜃 𝑗 ,𝑘,𝑙,𝑚 = 0. This shows that [𝑥, 𝒃 𝑗 ] = 0.
A similar computation shows that [𝑋, 𝒃 𝑗 ] = 0 and so 𝒃 𝑗 commutes with 𝑠, 𝑡, 𝑥,

𝑋 , 𝑠𝑥𝑠−1 = 𝑦 and 𝑠𝑋𝑠−1 = 𝑌 , so it is central in H𝑐. This completes the proof of the
proposition. □

This has the following consequence, that will be used for obtaining a presentation of
the algebra 𝑍𝑐.

Corollary 3.2. If 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑 − 1, then

Trunc𝑐 (𝒂𝑖−1𝒂 𝑗+1 − 𝒂𝑖𝒂 𝑗 )

= 𝑞𝑑− 𝑗−1𝑄𝑖−1 (𝑥 𝑗−𝑖+2𝑋 𝑗−𝑖+2 + 𝑦 𝑗−𝑖+2𝑌 𝑗−𝑖+2) − 𝑞𝑑− 𝑗𝑄𝑖 (𝑥 𝑗−𝑖𝑋 𝑗−𝑖 + 𝑦 𝑗−𝑖𝑌 𝑗−𝑖)

+ 𝑑 (1 + 𝑗 − 𝑖 − 𝑑)𝑎2
𝑗−1∑︁

𝑀=𝑖−1
𝑥𝑀+𝑑−𝑖− 𝑗 𝑦𝑑−2−𝑀𝑋𝑀𝑌 𝑖+ 𝑗−2−𝑀 .
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Proof. Assume first that 0 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑. Since 𝒂 𝑗 is central, we get

𝒂𝑖𝒂 𝑗 = 𝑥𝑑−𝑖𝒂 𝑗𝑌
𝑖 + 𝑦𝑑−𝑖𝒂 𝑗𝑋

𝑖 − 𝑎
∑︁

𝑘∈Z/𝑑Z
𝜁−𝑘𝑖𝛾𝑘,𝑖𝒂 𝑗 𝑠𝑘Γ𝑘,𝑖

= 𝑥𝑑−𝑖𝑥𝑑− 𝑗𝑌 𝑗𝑌 𝑖 + 𝑥𝑑−𝑖𝑦𝑑− 𝑗𝑋 𝑗𝑌 𝑖 + 𝑦𝑑−𝑖𝑥𝑑− 𝑗𝑌 𝑗𝑋 𝑖 + 𝑦𝑑−𝑖𝑦𝑑− 𝑗𝑋 𝑗𝑋 𝑖

− 𝑎
∑︁

𝑘∈Z/𝑑Z
𝑥𝑑−𝑖𝛾𝑘, 𝑗 𝑠𝑘Γ𝑘, 𝑗𝑌

𝑖 − 𝑎
∑︁

𝑘∈Z/𝑑Z
𝑦𝑑−𝑖𝛾𝑘, 𝑗 𝑠𝑘Γ𝑘, 𝑗𝑋

𝑖

− 𝑎
∑︁

𝑘∈Z/𝑑Z
𝜁−𝑘𝑖𝛾𝑘,𝑖 (𝑥𝑑− 𝑗𝑌 𝑗 + 𝑦𝑑− 𝑗𝑋 𝑗 )Γ𝑘,𝑖𝑠𝑘

+ 𝑎2
∑︁

𝑘,𝑙∈Z/𝑑Z
𝜁−𝑘𝑖𝜁−𝑘 𝑗𝛾𝑘,𝑖𝛾𝑙, 𝑗Γ𝑙, 𝑗 𝑠𝑙𝑠𝑘Γ𝑘,𝑖 .

Therefore,

Trunc𝑐 (𝒂𝑖𝒂 𝑗 ) = 𝑥2𝑑−𝑖− 𝑗𝑌 𝑖+ 𝑗 + 𝑦2𝑑−𝑖− 𝑗𝑋 𝑖+ 𝑗 + 𝑞𝑑− 𝑗𝑄𝑖 (𝑥 𝑗−𝑖𝑋 𝑗−𝑖 + 𝑦 𝑗−𝑖𝑌 𝑗−𝑖)

+ 𝑎2
∑︁

𝑘∈Z/𝑑Z
𝜁−𝑘 (𝑖+ 𝑗 )𝛾𝑘,𝑖𝛾𝑘, 𝑗Γ𝑘, 𝑗Γ𝑘,𝑖 .

Expanding the product 𝛾𝑘,𝑖𝛾𝑘, 𝑗Γ𝑘, 𝑗Γ𝑘,𝑖 gives

Trunc𝑐 (𝒂𝑖𝒂 𝑗 ) = 𝑥2𝑑−𝑖− 𝑗𝑌 𝑖+ 𝑗 + 𝑦2𝑑−𝑖− 𝑗𝑋 𝑖+ 𝑗 + 𝑞𝑑− 𝑗𝑄𝑖 (𝑥 𝑗−𝑖𝑋 𝑗−𝑖 + 𝑦 𝑗−𝑖𝑌 𝑗−𝑖)

+ 𝑎2
∑︁

𝑘∈Z/𝑑Z

𝑑−𝑖−1∑︁
𝑙=0

𝑑− 𝑗−1∑︁
𝑙′=0

𝑖−1∑︁
𝑚=0

𝑗−1∑︁
𝑚′=0

𝜁−𝑘 (𝑖+ 𝑗+𝑙+𝑙
′−𝑚−𝑚′ )𝑥𝑙+𝑙

′
𝑦2𝑑−𝑖− 𝑗−2−𝑙−𝑙′𝑋𝑚+𝑚′

𝑌 𝑖+ 𝑗−2−𝑚−𝑚′
.

If 0 ⩽ 𝐿 ⩽ 2𝑑 − 𝑖 − 𝑗 − 2 (resp. 0 ⩽ 𝑀 ⩽ 𝑖 + 𝑗 − 2), let L𝑖, 𝑗 (𝐿) (resp. M𝑖, 𝑗 (𝑀))
denote the set of pairs (𝑙, 𝑙′) (resp. (𝑚, 𝑚′)) such that 𝑙 + 𝑙′ = 𝐿 (resp. 𝑚 + 𝑚′ = 𝑀) and
0 ⩽ 𝑙 ⩽ 𝑑 − 𝑖 − 1 and 0 ⩽ 𝑙′ ⩽ 𝑑 − 𝑗 − 1 (resp. 0 ⩽ 𝑚 ⩽ 𝑖 − 1 and 0 ⩽ 𝑚′ ⩽ 𝑗 − 1). Then
the above equality might rewritten

Trunc𝑐 (𝒂𝑖𝒂 𝑗 ) = 𝑥2𝑑−𝑖− 𝑗𝑌 𝑖+ 𝑗 + 𝑦2𝑑−𝑖− 𝑗𝑋 𝑖+ 𝑗 + 𝑞𝑑− 𝑗𝑄𝑖 (𝑥 𝑗−𝑖𝑋 𝑗−𝑖 + 𝑦 𝑗−𝑖𝑌 𝑗−𝑖)

+ 𝑎2
∑︁

𝑘∈Z/𝑑Z

2𝑑−𝑖− 𝑗−2∑︁
𝐿=0

𝑖+ 𝑗−2∑︁
𝑀=0

|L𝑖, 𝑗 (𝐿) | · |M𝑖, 𝑗 (𝑀) |

· 𝜁−𝑘 (𝑖+ 𝑗+𝐿−𝑀 )𝑥𝐿𝑦2𝑑−𝑖− 𝑗−2−𝐿𝑋𝑀𝑌 𝑖+ 𝑗−2−𝑀 .
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Now, if 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑 − 1, applying the above formula by replacing 𝑖 by 𝑖 − 1 and 𝑗 by
𝑗 + 1 yields

Trunc𝑐 (𝒂𝑖−1𝒂 𝑗+1 − 𝒂𝑖𝒂 𝑗 )

= 𝑞𝑑− 𝑗−1𝑄𝑖−1 (𝑥 𝑗−𝑖+2𝑋 𝑗−𝑖+2 + 𝑦 𝑗−𝑖+2𝑌 𝑗−𝑖+2) − 𝑞𝑑− 𝑗𝑄𝑖 (𝑥 𝑗−𝑖𝑋 𝑗−𝑖 + 𝑦 𝑗−𝑖𝑌 𝑗−𝑖)

+ 𝑎2
2𝑑−𝑖− 𝑗−2∑︁

𝐿=0

𝑖+ 𝑗−2∑︁
𝑀=0

( ∑︁
𝑘∈Z/𝑑Z

𝜁−𝑘 (𝑖+ 𝑗+𝐿−𝑀 )
)

(
|L𝑖−1, 𝑗+1 (𝐿) | · |M𝑖−1, 𝑗+1 (𝑀) | − |L𝑖, 𝑗 (𝐿) | · |M𝑖, 𝑗 (𝑀) |

)
𝑥𝐿𝑦2𝑑−𝑖− 𝑗−2−𝐿𝑋𝑀𝑌 𝑖+ 𝑗−2−𝑀 .

So, the coefficient of 𝑥𝐿𝑦2𝑑−𝑖− 𝑗−2−𝐿𝑋𝑀𝑌 𝑖+ 𝑗−2−𝑀 is non-zero if and only if 𝑖 + 𝑗 + 𝐿 ≡
𝑀 mod 𝑑 and |L𝑖−1, 𝑗+1 (𝐿) | · |M𝑖−1, 𝑗+1 (𝑀) | ≠ |L𝑖, 𝑗 (𝐿) | · |M𝑖, 𝑗 (𝑀) |. Since 𝑖 ⩽ 𝑗 , we
have

|L𝑖, 𝑗 (𝐿) | =


1 + 𝐿 if 0 ⩽ 𝐿 ⩽ 𝑑 − 𝑗 − 1,
𝑑 − 𝑗 if 𝑑 − 𝑗 − 1 ⩽ 𝐿 ⩽ 𝑑 − 𝑖 − 1,
2𝑑 − 𝑖 − 𝑗 − 1 − 𝐿 if 𝑑 − 𝑖 − 1 ⩽ 𝐿 ⩽ 2𝑑 − 𝑖 − 𝑗 − 2,

and |M𝑖, 𝑗 (𝑀) | =


1 + 𝑀 if 0 ⩽ 𝑀 ⩽ 𝑖 − 1,
𝑖 if 𝑖 − 1 ⩽ 𝑀 ⩽ 𝑗 − 1,
𝑖 + 𝑗 − 1 − 𝑀 if 𝑗 − 1 ⩽ 𝑀 ⩽ 𝑖 + 𝑗 − 2.

So |L𝑖−1, 𝑗+1 (𝐿) | · |M𝑖−1, 𝑗+1 (𝑀) | ≠ |L𝑖, 𝑗 (𝐿) | · |M𝑖, 𝑗 (𝑀) | if and only if 𝑑 − 𝑗 − 1 ⩽ 𝐿 ⩽

𝑑 − 𝑖−1 or 𝑖−1 ⩽ 𝑀 ⩽ 𝑗 −1. Combined with the fact that 𝑖 + 𝑗 + 𝐿 ≡ 𝑀 mod 𝑑 to obtain
a non-zero coefficient for 𝑥𝐿𝑦2𝑑−𝑖− 𝑗−2−𝐿𝑋𝑀𝑌 𝑖+ 𝑗−2−𝑀 , this forces 𝑖 + 𝑗 + 𝐿 = 𝑀 + 𝑑

and so

Trunc𝑐 (𝒂𝑖−1𝒂 𝑗+1 − 𝒂𝑖𝒂 𝑗 )

= 𝑞𝑑− 𝑗−1𝑄𝑖−1 (𝑥 𝑗−𝑖+2𝑋 𝑗−𝑖+2 + 𝑦 𝑗−𝑖+2𝑌 𝑗−𝑖+2) − 𝑞𝑑− 𝑗𝑄𝑖 (𝑥 𝑗−𝑖𝑋 𝑗−𝑖 + 𝑦 𝑗−𝑖𝑌 𝑗−𝑖)

+ 𝑑𝑎2
𝑗−1∑︁

𝑀=𝑖−1
((𝑑 − 𝑗 − 1) (𝑖 − 1) − (𝑑 − 𝑗)𝑖)︸                                   ︷︷                                   ︸

=1+ 𝑗−𝑖−𝑑

𝑥𝑀+𝑑−𝑖− 𝑗 𝑦𝑑−2−𝑀𝑋𝑀𝑌 𝑖+ 𝑗−2−𝑀 ,

as expected. □

3.2. Poisson bracket

We determine here part of the Poisson bracket between the generators:
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Proposition 3.3. We have

{𝑞, 𝑄} = 𝒆𝒖, {𝒆𝒖, 𝑞} = −2𝑞 and {𝒆𝒖, 𝑄} = 2𝑄.

Moreover, if 0 ⩽ 𝑗 ⩽ 𝑑, then

{𝑞, 𝒂 𝑗 } = 𝑗𝒂 𝑗−1, {𝒆𝒖, 𝒂 𝑗 } = (2 𝑗 − 𝑑)𝒂 𝑗 and {𝑄, 𝒂 𝑗 } = ( 𝑗 − 𝑑)𝒂 𝑗+1,

with the convention that 𝒂−1 = 𝒂𝑑+1 = 0.

Proof. First, note that the Poisson bracket on 𝑍𝑐 is in fact the restriction of a Poisson
bracket { · , · } : H𝑐 × 𝑍𝑐 → H𝑐. This Poisson bracket satisfies the following property: if
𝑧 =

∑
𝑤∈𝑊 𝑓𝑤𝑤𝐹𝑤 ∈ 𝑍𝑐, with 𝑓𝑤 ∈ C[𝑥, 𝑦] and 𝐹𝑤 ∈ C[𝑋,𝑌 ], then

{𝑥, 𝑧} =
∑︁
𝑤∈𝑊

𝑓𝑤𝑤
𝜕𝐹𝑤

𝜕𝑋
and {𝑦, 𝑧} =

∑︁
𝑤∈𝑊

𝑓𝑤𝑤
𝜕𝐹𝑤

𝜕𝑌
. (3.4)

The first three equalities of the proposition are standard and hold for any Coxeter group
(see [10, §4] or [4, §3]) and can easily be checked in this case by a little computation.
Similarly, the fact that {𝒆𝒖, 𝒂 𝑗 } = (2 𝑗 − 𝑑)𝒂 𝑗 follows from the general fact that, if ℎ ∈ H𝑐

is homogeneous of degree 𝑘 , then {𝒆𝒖, ℎ} = 𝑘ℎ (see for instance [7, Prop. 3.3.3]). We now
prove that {𝑞, 𝒂 𝑗 } = 𝑗𝒂 𝑗−1, the last equality being proved similarly. From the formula
given for 𝒂 𝑗 in Proposition 3.1, we get

{𝑞, 𝒂 𝑗 } = {𝑦𝑥, 𝒂 𝑗 } = 𝑗𝑥𝑑− 𝑗𝑌 𝑗−1𝑥 + 𝑗 𝑦𝑑− 𝑗+1𝑋 𝑗−1

− 𝑎
∑︁

𝑖∈Z/𝑑Z
𝜁−𝑖 𝑗𝛾𝑖, 𝑗 𝑠𝑖

𝜕Γ𝑖, 𝑗

𝜕𝑌
𝑥 − 𝑎

∑︁
𝑖∈Z/𝑑Z

𝜁−𝑖 𝑗 𝑦𝛾𝑖, 𝑗 𝑠𝑖
𝜕Γ𝑖, 𝑗

𝜕𝑋
.

In order to prove the proposition, it is sufficient to check that Trunc𝑐 ({𝑞, 𝒂 𝑗 }) = 𝑗a 𝑗−1.
But, from the above formula and from (3.2), one gets

Trunc𝑐 ({𝑞, 𝒂 𝑗 }) = 𝑗a 𝑗−1 − 𝑎 Trunc𝑐
( ∑︁
𝑖∈Z/𝑑Z

𝜁−𝑖 𝑗𝛾𝑖, 𝑗 𝑠𝑖
𝜕Γ𝑖, 𝑗

𝜕𝑌
𝑥

)
.

Since ∑︁
𝑖∈Z/𝑑Z

𝜁−𝑖 𝑗𝛾𝑖, 𝑗 𝑠𝑖
𝜕Γ𝑖, 𝑗

𝜕𝑌
𝑥 =

∑︁
𝑖∈Z/𝑑Z

𝜁−𝑖 𝑗𝛾𝑖, 𝑗 𝑠𝑖

(
𝑥
𝜕Γ𝑖, 𝑗

𝜕𝑌
−

[
𝑥,

𝜕Γ𝑖, 𝑗

𝜕𝑌

] )
,

it follows from (3.2) that

Trunc𝑐 ({𝑞, 𝒂 𝑗 }) = 𝑗a 𝑗−1 + 𝑎2
∑︁

𝑖∈Z/𝑑Z
𝜁−𝑖 𝑗𝛾𝑖, 𝑗

𝜕Γ𝑖, 𝑗

𝜕𝑌
−

𝑠𝑖
(
𝜕Γ𝑖, 𝑗

𝜕𝑌

)
𝑋 − 𝜁 𝑖𝑌

.
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So it remains to prove that

∑︁
𝑖∈Z/𝑑Z

𝜁−𝑖 𝑗𝛾𝑖, 𝑗

𝜕Γ𝑖, 𝑗

𝜕𝑌
−

𝑠𝑖
(
𝜕Γ𝑖, 𝑗

𝜕𝑌

)
𝑋 − 𝜁 𝑖𝑌

= 0. (♯)

Let us compute the big fraction in the above formula. First,

Γ𝑖, 𝑗 =

𝑗−1∑︁
𝑘=0

𝜁 𝑖𝑘𝑋 𝑗−1−𝑘𝑌 𝑘 ,

so

𝜕Γ𝑖, 𝑗

𝜕𝑌
=

𝑗−1∑︁
𝑘=0

𝑘𝜁 𝑖𝑘𝑋 𝑗−1−𝑘𝑌 𝑘−1 =

𝑗−2∑︁
𝑘=0

(𝑘 + 1)𝜁 𝑖 (𝑘+1)𝑋 𝑗−2−𝑘𝑌 𝑘 .

Therefore,

𝑠𝑖
(
𝜕Γ𝑖, 𝑗

𝜕𝑌

)
=

𝑗−2∑︁
𝑘=0

(𝑘 + 1)𝜁 𝑖 (𝑘+1) (𝜁 𝑖𝑌 ) 𝑗−2−𝑘 (𝜁−𝑖𝑋)𝑘 .

Simplifying and using the change of variable 𝑘 ↦→ 𝑗 − 2 − 𝑘 , one gets

𝑠𝑖
(
𝜕Γ𝑖, 𝑗

𝜕𝑌

)
=

𝑗−2∑︁
𝑘=0

( 𝑗 − 1 − 𝑘)𝜁 𝑖 (𝑘+1)𝑋 𝑗−2−𝑘𝑌 𝑘 .

We deduce that

𝜕Γ𝑖, 𝑗

𝜕𝑌
−

𝑠𝑖
(
𝜕Γ𝑖, 𝑗

𝜕𝑌

)
=

𝑗−2∑︁
𝑘=0

(2𝑘 + 2 − 𝑗)𝜁 𝑖 (𝑘+1)𝑋 𝑗−2−𝑘𝑌 𝑘 .

But
∑ 𝑗−2

𝑘=0 (2𝑘 + 2 − 𝑗) = 0, so

𝜕Γ𝑖, 𝑗

𝜕𝑌
−

𝑠𝑖
(
𝜕Γ𝑖, 𝑗

𝜕𝑌

)
=

𝑗−2∑︁
𝑘=0

(2𝑘 + 2 − 𝑗)𝜁 𝑖 (𝑘+1) (𝑋 𝑗−2−𝑘 − 𝜁 𝑖 ( 𝑗−2−𝑘 )𝑌 𝑗−2−𝑘)𝑌 𝑘 .
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Since the term corresponding to 𝑘 = 𝑗 − 2 vanishes, this implies that
𝜕Γ𝑖, 𝑗

𝜕𝑌
−

𝑠𝑖
(
𝜕Γ𝑖, 𝑗

𝜕𝑌

)
𝑋 − 𝜁 𝑖𝑌

=

𝑗−3∑︁
𝑘=0

𝑗−3−𝑘∑︁
𝑘′=0

(2𝑘 + 2 − 𝑗)𝜁 𝑖 (𝑘+1)𝑋 𝑗−3−𝑘−𝑘′ (𝜁 𝑖𝑌 )𝑘′𝑌 𝑘

=

𝑗−3∑︁
𝑘=0

𝑗−3−𝑘∑︁
𝑘′=0

(2𝑘 + 2 − 𝑗)𝜁 𝑖 (𝑘+𝑘′+1)𝑋 𝑗−3−𝑘−𝑘′𝑌 𝑘+𝑘′

=

𝑗−3∑︁
𝑘=0

𝑗−3∑︁
𝑘′=𝑘

(2𝑘 + 2 − 𝑗)𝜁 𝑖 (𝑘′+1)𝑋 𝑗−3−𝑘′𝑌 𝑘′

=

𝑗−3∑︁
𝑘′=0

(
𝑘′∑︁
𝑘=0

(2𝑘 + 2 − 𝑗)
)
𝜁 𝑖 (𝑘

′+1)𝑋 𝑗−3−𝑘′𝑌 𝑘′

=

𝑗−3∑︁
𝑘′=0

(𝑘 ′ + 2 − 𝑗) (𝑘 ′ + 1)𝜁 𝑖 (𝑘′+1)𝑋 𝑗−3−𝑘′𝑌 𝑘′ .

Therefore, the left-hand side of the formula (♯) is a linear combination of monomials of
the form 𝑥𝑑− 𝑗−1−𝑙𝑦𝑙𝑋 𝑗−3−𝑚𝑌𝑚, where 0 ⩽ 𝑙 ⩽ 𝑑 − 𝑗 − 1 and 0 ⩽ 𝑚 ⩽ 𝑗 − 3, and the
coefficient of this monomial is∑︁

𝑖∈Z/𝑑Z
(𝑚 + 2 − 𝑗) (𝑚 + 1)𝜁−𝑖 𝑗 𝜁−𝑖𝑙𝜁 𝑖 (𝑚+1) = (𝑚 + 2 − 𝑗) (𝑚 + 1)

∑︁
𝑖∈Z/𝑑Z

𝜁 𝑖 (𝑚+1− 𝑗−𝑙) .

But 𝑗 ⩽ 𝑙 + 𝑗 ⩽ 𝑑 − 1 and 1 ⩽ 𝑚 + 1 ⩽ 𝑗 − 2, so this coefficient is 0 and the equality (♯)
is proved. □

Corollary 3.4. We have

{𝑞, 𝒆𝒖2 − 4𝑞𝑄} = {𝒆𝒖, 𝒆𝒖2 − 4𝑞𝑄} = {𝑄, 𝒆𝒖2 − 4𝑞𝑄} = 0.

3.3. Presentation

The main result of this paper is the following:

Theorem 3.5. If 𝑎 = 𝑏, then the algebra 𝑍𝑐 admits the following presentation:

• Generators: 𝑞, 𝑄, 𝒆𝒖, 𝒂0, 𝒂1, . . . , 𝒂𝑑 .

• Relations:
𝒆𝒖 𝒂𝑖 = 𝑞𝒂𝑖+1 +𝑄𝒂𝑖−1 for 1 ⩽ 𝑖 ⩽ 𝑑 − 1,
𝒂𝑖−1𝒂 𝑗+1 − 𝒂𝑖𝒂 𝑗

= (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2)𝑞𝑑− 𝑗−1𝑄𝑖−1Ψ 𝑗−𝑖 (𝒆𝒖, 𝑞, 𝑄) for 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑 − 1.
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Proof. By [8], a presentation of 𝑍𝑐 is obtained by deforming the generators of 𝑍0 =

C[𝑉 × 𝑉∗]𝑊 and deforming the relations. Therefore, in order to prove the theorem,
it is sufficient to check that the relations given in the statement are satisfied. So let
1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑 − 1.

Let us first prove that
𝒆𝒖 𝒂𝑖 = 𝑞𝒂𝑖+1 +𝑄𝒂𝑖−1. (ℨ𝑖)

For this, it is sufficient to prove that Trunc𝑐 (𝒆𝒖 𝒂𝑖) = Trunc𝑐 (𝑞𝒂𝑖+1 + 𝑄𝒂𝑖−1). But the
map Trunc𝑐 is 𝑃•-linear so it is sufficient to prove that

Trunc𝑐 (𝒆𝒖 𝒂𝑖) = eu0 a𝑖,0. (♮)

Since 𝒂𝑖 is central, it follows from (3.3) and Proposition 3.1 that

𝒆𝒖 𝒂𝑖 = 𝑥𝒂𝑖𝑋 + 𝑦𝒂𝑖𝑌 + 𝑎
∑︁

𝑘∈Z/𝑑Z
𝒂𝑖𝑠𝑘

= 𝑥(𝑥𝑑−𝑖𝑌 𝑖 + 𝑦𝑑−𝑖𝑋 𝑖)𝑋 + 𝑦(𝑥𝑑−𝑖𝑌 𝑖 + 𝑦𝑑−𝑖𝑋 𝑖)𝑌

− 𝑎
∑︁

𝑘′∈Z/𝑑Z
𝜁−𝑖𝑘

′
𝑥𝛾𝑘′ ,𝑖𝑠𝑘′Γ𝑘′ ,𝑖𝑋 − 𝑎

∑︁
𝑘′∈Z/𝑑Z

𝜁−𝑖𝑘
′
𝑦𝛾𝑘′ ,𝑖𝑠𝑘′Γ𝑘′ ,𝑖𝑌

+ 𝑎
∑︁

𝑘∈Z/𝑑Z
(𝑥𝑑−𝑖𝑌 𝑖 + 𝑦𝑑−𝑖𝑋 𝑖)𝑠𝑘 − 𝑎2

∑︁
𝑘,𝑘′∈Z/𝑑Z

𝜁−𝑖𝑘
′
𝛾𝑘′ ,𝑖Γ𝑘′ ,𝑖𝑠𝑘′ 𝑠𝑘 .

But 𝑠𝑘′ 𝑠𝑘 = 1 if and only if 𝑘 ′ = 𝑘 , so

Trunc𝑐 (𝒆𝒖 𝒂𝑖) = eu0a𝑖,0 − 𝑎2
∑︁

𝑘∈Z/𝑑Z
𝜁−𝑖𝑘𝛾𝑘,𝑖Γ𝑘,𝑖 .

The element
∑

𝑘∈Z/𝑑Z 𝜁
−𝑖𝑘𝛾𝑘,𝑖Γ𝑘,𝑖 of C[𝑉 ×𝑉∗]𝑊 is a linear combination of monomials

of the form 𝑥𝑑−𝑖−1−𝑙𝑦𝑙𝑋 𝑖−1−𝑚𝑌𝑚 where 0 ⩽ 𝑙 ⩽ 𝑑 − 𝑖 − 1 and 0 ⩽ 𝑚 ⩽ 𝑖 − 1, and the
coefficient of this monomial is equal to∑︁

𝑘∈Z/𝑑Z
𝜁−𝑘𝑖𝜁−𝑘𝑙𝜁 𝑘𝑚 =

∑︁
𝑘∈Z/𝑑Z

𝜁−𝑘 (𝑖+𝑙−𝑚) .

But 𝑖 ⩽ 𝑖 + 𝑙 ⩽ 𝑑 − 1 and 0 ⩽ 𝑚 ⩽ 𝑖 − 1, so 𝑖 + 𝑙 − 𝑚 . 0 mod 𝑑. This shows that the
above sum is zero, and this completes the proof of (♮).

Let us now prove that

𝒂𝑖−1𝒂 𝑗+1 − 𝒂𝑖𝒂 𝑗 = (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2)𝑞𝑑− 𝑗−1𝑄𝑖−1Ψ 𝑗−𝑖 (𝒆𝒖, 𝑞, 𝑄). (ℨ𝑖, 𝑗 )

This will be proved by induction on 𝑗 − 𝑖. So let us first consider the case where 𝑗 − 𝑖 = 0,
i.e. where 𝑗 = 𝑖. Again, it is sufficient to prove the equality after applying the map Trunc𝑐.
We deduce from Corollary 3.2 that

Trunc𝑐 (𝒂𝑖−1𝒂𝑖+1 − 𝒂2
𝑖 ) = 𝑞𝑑−𝑖−1𝑄𝑖−1 (𝑥2𝑋2 + 𝑦2𝑌2 − 2𝑞𝑄 − 𝑑 (𝑑 − 1)𝑎2).
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Since Trunc𝑐 is 𝑃•-linear and Ψ0 = 1, proving (ℨ𝑖, 𝑗 ) is equivalent to proving that

Trunc𝑐 (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2) = 𝑥2𝑋2 + 𝑦2𝑌2 − 2𝑞𝑄 − 𝑑 (𝑑 − 1)𝑎2,

or, equivalently, that

Trunc𝑐 (𝒆𝒖2) = 𝑥2𝑋2 + 𝑦2𝑌2 + 2𝑞𝑄 + 𝑑𝑎2. (E)

But

𝒆𝒖2 = 𝑥𝒆𝒖𝑋 + 𝑦𝒆𝒖𝑌 + 𝑎
∑︁

𝑘∈Z/𝑑Z
𝒆𝒖𝑠𝑘

= 𝑥2𝑋2 + 𝑥𝑦𝑌𝑋 + 𝑎
∑︁

𝑘∈Z/𝑑Z
𝑥𝑠𝑘𝑋 + 𝑦𝑥𝑋𝑌 + 𝑦2𝑌2 + 𝑎

∑︁
𝑘∈Z/𝑑Z

𝑦𝑠𝑘𝑌

+ 𝑎
∑︁

𝑘∈Z/𝑑Z
(𝑥𝑋 + 𝑦𝑌 )𝑠𝑘 + 𝑎2

∑︁
𝑘,𝑙∈Z/𝑑Z

𝑠𝑙𝑠𝑘 .

It follows directly that

Trunc𝑐 (𝒆𝒖2) = 𝑥2𝑋2 + 𝑦2𝑌2 + 2𝑞𝑄 + 𝑎2
∑︁

𝑘∈Z/𝑑Z
1,

as desired.
Assume now that 𝑗 − 𝑖 ⩾ 1 and that (ℨ𝑖′ , 𝑗′ ) holds if 𝑗 ′ − 𝑖′ < 𝑗 − 𝑖. Then, by the

induction hypothesis, we have

𝒂𝑖𝒂 𝑗+1 − 𝒂𝑖+1𝒂 𝑗 = (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2)𝑞𝑑− 𝑗−2𝑄𝑖Ψ 𝑗−𝑖−1 (𝒆𝒖, 𝑞, 𝑄).

Applying {𝑞,−} to this equality, and using Proposition 3.3 and Corollary 3.4, one gets:

𝑖(𝒂𝑖−1𝒂 𝑗+1 − 𝒂𝑖𝒂 𝑗 ) + 𝑗 (𝒂𝑖𝒂 𝑗 − 𝒂𝑖+1𝒂 𝑗−1) = (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2)𝑞𝑑− 𝑗−1

×
(
𝑖𝑄𝑖−1𝒆𝒖Ψ 𝑗−𝑖−1 (𝒆𝒖, 𝑞, 𝑄) + 2𝑞𝑄𝑖

𝜕Ψ 𝑗−𝑖−1

𝜕𝑇
(𝒆𝒖, 𝑞, 𝑄) +𝑄𝑖𝒆𝒖

𝜕Ψ 𝑗−𝑖−1

𝜕𝑇 ′′ (𝒆𝒖, 𝑞, 𝑄)
)
.

But, by (2.5),

2𝑞
𝜕Ψ 𝑗−𝑖−1

𝜕𝑇
(𝒆𝒖, 𝑞, 𝑄) + 𝒆𝒖

𝜕Ψ 𝑗−𝑖−1

𝜕𝑇 ′′ (𝒆𝒖, 𝑞, 𝑄) = ( 𝑗 − 𝑖)𝑞Ψ 𝑗−𝑖−2 (𝒆𝒖, 𝑞, 𝑄)

and, by (2.4),

𝒆𝒖Ψ 𝑗−𝑖−1 (𝒆𝒖, 𝑞, 𝑄) − 𝑞𝑄Ψ 𝑗−𝑖−2 (𝒆𝒖, 𝑞, 𝑄) = Ψ 𝑗−𝑖 (𝒆𝒖, 𝑞, 𝑄).

Therefore,

𝑖(𝒂𝑖−1𝒂 𝑗+1 − 𝒂𝑖𝒂 𝑗 ) + 𝑗 (𝒂𝑖𝒂 𝑗 − 𝒂𝑖+1𝒂 𝑗−1)

= (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2)𝑞𝑑− 𝑗−1𝑄 𝑗−1 (𝑖Ψ 𝑗−𝑖 (𝒆𝒖, 𝑞, 𝑄) + 𝑗𝑞𝑄Ψ 𝑗−𝑖−2 (𝒆𝒖, 𝑞, 𝑄)).
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Since the induction hypothesis implies that

(𝒂𝑖𝒂 𝑗 − 𝒂𝑖+1𝒂 𝑗−1) = (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2)𝑞𝑑− 𝑗𝑄𝑖Ψ 𝑗−𝑖−2 (𝒆𝒖, 𝑞, 𝑄),

the result follows. □

3.4. Back to the Poisson bracket

In Proposition 3.3, we did not determine the Poisson brackets {𝒂𝑖 , 𝒂 𝑗 }. This was only
determined for 𝑎 = 0 in (2.6): it is proven that there exists a polynomialΠ𝑖, 𝑗 ∈ C[𝑇,𝑇 ′, 𝑇 ′′],
which is homogeneous of degree 𝑑 − 1, such that

{a𝑖,0, a 𝑗 ,0} = Π𝑖, 𝑗 (eu0, 𝑞, 𝑄).

This will be deformed to the 𝑎 ≠ 0 case as follows:

Proposition 3.6. If 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑑, there exists a polynomial Φ𝑖, 𝑗 ∈ C[𝑇,𝑇 ′, 𝑇 ′′],
homogeneous of degree 𝑑 − 3, such that

{𝒂𝑖 , 𝒂 𝑗 } = Π𝑖, 𝑗 (𝒆𝒖, 𝑞, 𝑄) + 𝑎2Φ𝑖, 𝑗 (𝒆𝒖, 𝑞, 𝑄).

Proof. We will prove that there exist polynomialsΦ◦
𝑖, 𝑗

,Φ𝑖, 𝑗 ∈ C[𝑇,𝑇 ′, 𝑇 ′′], homogeneous
of degree 𝑑 − 1 and 𝑑 − 3 respectively, such that

{𝒂𝑖 , 𝒂 𝑗 } = Φ◦
𝑖, 𝑗 (𝒆𝒖, 𝑞, 𝑄) + 𝑎2Φ𝑖, 𝑗 (𝒆𝒖, 𝑞, 𝑄). (℘𝑖, 𝑗 )

This is sufficient because, by specializing 𝑎 to 0, one gets that Φ◦
𝑖, 𝑗

= Π𝑖, 𝑗 .
Let us first assume that 𝑖 = 0. To make an induction argument on 𝑗 work, we will prove

a slightly stronger result, namely that

{𝒂0, 𝒂 𝑗 } = 𝑞𝑑− 𝑗 (𝜑 𝑗 (𝒆𝒖, 𝑞, 𝑄) + 𝑎2𝜃 𝑗 (𝒆𝒖, 𝑞, 𝑄)). (℘+
0, 𝑗 )

where 𝜑 𝑗 , 𝜃 𝑗 ∈ C[𝑇,𝑇 ′, 𝑇 ′′] are homogeneous of degree 𝑗 − 1 and 𝑗 − 3 respectively. For
this, let us apply {𝒂0,−} to the following two relations given by Theorem 3.5

𝑄𝒂0 − 𝒆𝒖𝒂1 + 𝑞𝒂2 = 0, (ℨ1)

𝒂0𝒂2 − 𝒂2
1 = 𝑞𝑑−2 (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2). (ℨ1,1)

Using Proposition 3.3, this gives{
−𝒆𝒖{𝒂0, 𝒂1} + 𝑞{𝒂0, 𝒂2} = 0,
𝑞𝒂0{𝒂0, 𝒂2} − 2𝑞𝒂1{𝒂0, 𝒂1} = 𝑞𝑑−1{𝒂0, 𝒆𝒖

2 − 4𝑞𝑄} = 𝑞𝑑−1 (2𝑑𝒂0𝒆𝒖 − 4𝑑𝑞𝒂1).

Thanks to the first equality, we can replace the term 𝑞{𝒂0, 𝒂2} in the second equation by
𝒆𝒖{𝒂0, 𝒂1}, and this yields

(𝒂0𝒆𝒖 − 2𝑞𝒂1){𝒂0, 𝒂1} = 2𝑑𝑞𝑑−1 (𝒂0𝒆𝒖 − 2𝑞𝒂1).
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Since 𝒂0𝒆𝒖 − 2𝑞𝒂1 ≠ 0 (by computing its image by Trunc𝑐) and since 𝑍𝑐 is an integral
domain, we get

{𝒂0, 𝒂1} = 2𝑑𝑞𝑑−1,

which proves (℘+
0,1). We also deduce that

{𝒂0, 𝒂2} = 2𝑑𝑞𝑑−2𝒆𝒖,

which proves (℘+
0,2).

Now, assume that 𝑗 ⩾ 3 and that (℘+
0, 𝑗′ ) holds for 𝑗 ′ < 𝑗 . Applying {𝒂0,−} to

𝑄𝒂 𝑗−2 − 𝒆𝒖𝒂 𝑗−1 + 𝑞𝒂 𝑗 = 0 (ℨ 𝑗−1)

yields, thanks to Proposition 3.3,

𝑑𝒂1𝒂 𝑗−2 +𝑄{𝒂0, 𝒂 𝑗−2} − 𝑑𝒂0𝒂 𝑗−1 − 𝒆𝒖{𝒂0, 𝒂 𝑗−1} + 𝑞{𝒂0, 𝒂 𝑗 } = 0.

But

𝒂0𝒂 𝑗−1 − 𝒂1𝒂 𝑗−2 = (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2)𝑞𝑑− 𝑗+1Ψ 𝑗−3 (𝒆𝒖, 𝑞, 𝑄) (ℨ1, 𝑗−2)

by Theorem 3.5 and

{𝒂0, 𝒂 𝑗−2} = 𝑞𝑑− 𝑗+2 (𝜑 𝑗−2 (𝒆𝒖, 𝑞, 𝑄) + 𝑎2𝜃 𝑗−2 (𝒆𝒖, 𝑞, 𝑄)
)
,

{𝒂0, 𝒂 𝑗−1} = 𝑞𝑑− 𝑗+1 (𝜑 𝑗−1 (𝒆𝒖, 𝑞, 𝑄) + 𝑎2𝜃 𝑗−1 (𝒆𝒖, 𝑞, 𝑄)
)

by the induction hypothesis. This gives

{𝒂0, 𝒂 𝑗 } = 𝑑 (𝒆𝒖2 − 4𝑞𝑄 − 𝑑2𝑎2)𝑞𝑑− 𝑗Ψ 𝑗−3 (𝒆𝒖, 𝑞, 𝑄)

− 𝑞𝑑− 𝑗+1𝑄
(
𝜑 𝑗−2 (𝒆𝒖, 𝑞, 𝑄) + 𝑎2𝜃 𝑗−2 (𝒆𝒖, 𝑞, 𝑄)

)
+ 𝑞𝑑− 𝑗 𝒆𝒖

(
𝜑 𝑗−1 (𝒆𝒖, 𝑞, 𝑄) + 𝑎2𝜃 𝑗−1 (𝒆𝒖, 𝑞, 𝑄)

)
,

which proves that (℘+
0, 𝑗 ) holds.

We will now prove that (℘𝑖, 𝑗 ) holds by induction on 𝑖. The case 𝑖 = 0 has just been treated,
so assume that 𝑖 ⩾ 1 and that (℘𝑖−1, 𝑗′ ) holds for all 𝑗 ′. Then (𝑖 − 1 − 𝑑)𝒂𝑖 = {𝑄, 𝒂𝑖−1}
and 𝑖 − 1 − 𝑑 ≠ 0. By the Jacobi identity, we get

(𝑖 − 1 − 𝑑){𝒂𝑖 , 𝒂 𝑗 } = {{𝑄, 𝒂𝑖−1}, 𝒂 𝑗 }
= {𝑄, {𝒂𝑖−1, 𝒂 𝑗 }} − {𝒂𝑖−1, {𝑄, 𝒂 𝑗 }}
= {𝑄, {𝒂𝑖−1, 𝒂 𝑗 }} − ( 𝑗 − 𝑑){𝒂𝑖−1, 𝒂 𝑗+1}.

So the result follows from the induction hypothesis because, if Θ ∈ C[𝑇,𝑇 ′, 𝑇 ′′] is an
homogeneous polynomial of degree 𝑘 , then

{𝑄,Θ(𝒆𝒖, 𝑞, 𝑄)} = −2𝑄
𝜕Θ

𝜕𝑇
(𝒆𝒖, 𝑞, 𝑄) − 𝒆𝒖

𝜕Θ

𝜕𝑇 ′ (𝒆𝒖, 𝑞, 𝑄)

132



Calogero–Moser space and dihedral groups: the equal parameter case

is of the form Θ# (𝒆𝒖, 𝑞, 𝑄) where Θ# is homogeneous of degree 𝑘 . The proof of the
proposition is complete. □

3.5. Lie algebra structure at the cuspidal point

By Theorem 3.5, the affine variety Z𝑐 might be described as

Z𝑐 =


(𝔮,𝔔, 𝔢, 𝑎0, 𝑎1, . . . , 𝑎𝑑)

∈ C𝑑+4

����������
∀ 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑 − 1,
𝔢𝑎𝑖 = 𝔮𝑎𝑖+1 +𝔔𝑎𝑖−1,

𝑎𝑖−1𝑎 𝑗+1 − 𝑎𝑖𝑎 𝑗

= (𝔢2 − 4𝔮𝔔 − 𝑑2𝑎2)𝔮𝑑− 𝑗−1𝔔𝑖−1Ψ 𝑗−𝑖 (𝔢, 𝔮,𝔔)


.

If 𝑑 = 3 and 𝑎 ≠ 0, then Z𝑐 is smooth. So assume from now on that 𝑑 ⩾ 4 and 𝑎 ≠ 0.
Then the homogeneous component of minimal degree of all the above equations is equal
to 2, so the point 0 = (0, . . . , 0) ∈ Z𝑐 is singular and the tangent space of Z𝑐 at 0
has dimension 𝑑 + 4. It is the only singular point and it is a cuspidal point in the sense
of [2] (see [5, §5.2]). This means that the corresponding maximal ideal 𝔪0 of 𝑍𝑐 is a
Poisson ideal (since 𝔪0 = ⟨𝑞, 𝑄, 𝒆𝒖, 𝒂0, 𝒂1, . . . , 𝒂𝑑⟩, this can also be checked thanks
to Proposition 3.6). This implies that the cotangent space 𝔪0/𝔪2

0 of Z𝑐 at 0 inherits a
Lie algebra structure from the Poisson bracket: we denote by 𝔏𝔦𝔢0 (Z𝑐) the vector space
𝔪0/𝔪2

0 endowed with its Lie algebra structure. It has been proved in [5, Prop. 8.4] that

If 𝑑 = 4, then 𝔏𝔦𝔢0 (Z𝑐) ≃ 𝔰𝔩3 (C). (3.5)

We now determine 𝔏𝔦𝔢0 (Z𝑐) in the remaining cases:

Proposition 3.7. If 𝑑 ⩾ 5, then

𝔏𝔦𝔢0 (Z𝑐) = 𝔰𝔩2 (C) ⊕ 𝑆𝑑 ,

where 𝑆𝑑 is a commutative ideal of 𝔏𝔦𝔢0 (Z𝑐) of dimension 𝑑 + 1 on which 𝔰𝔩2 (C) acts
irreducibly (i.e. 𝑆𝑑 ≃ Sym𝑑 (C2) as an 𝔰𝔩2 (C)-module).

Proof. If𝑚 ∈ 𝔪0, we denote by ¤𝑚 its image in𝔏𝔦𝔢0 (Z𝑐). Then ( ¤𝑞, ¤𝑄, ¤𝒆𝒖, ¤𝒂0, ¤𝒂1, . . . , ¤𝒂𝑑)
is a basis of 𝔏𝔦𝔢0 (Z𝑐). We set

𝔤 = C ¤𝑄 ⊕ C ¤𝒆𝒖 ⊕ C ¤𝑞 and 𝑆𝑑 =

𝑑⊕
𝑗=0
C ¤𝒂 𝑗 .

It follows from Proposition 3.3 that 𝔤 is a Lie subalgebra of𝔏𝔦𝔢0 (Z𝑐) isomorphic to 𝔰𝔩2 (C),
and that 𝑆𝑑 is normalized by 𝔤 and is isomorphic to Sym𝑑 (C2) as an 𝔰𝔩2 (C)-module.

Since 𝑑 ⩾ 5 (and so 𝑑 − 3 ⩾ 2), we get from Proposition 3.6 that {𝒂𝑖 , 𝒂 𝑗 } ∈ 𝔪2
0 and

so [ ¤𝒂𝑖 , ¤𝒂 𝑗 ] = 0. This completes the proof of the proposition. □
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4. Action of SL2(C)

The action of GL2 (C) on C[𝑉 × 𝑉∗] ⋊ 𝑊 does not deform to an action on H𝑐 by
automorphisms of algebras, but the action of the subgroup SL2 (C) does, as explained for
instance in [7, §3.6]. This action commutes with 𝑊 and is given on elements of 𝑉 and 𝑉∗

by the same formula as in Section 2.4.
We investigate here several of its properties (Poisson structure, existence of an

equivariant morphism Z𝑐 → 𝔰𝔩2 (C), interpretation of the presentation of Z𝑐 in terms
of Hermite’s reciprocity law). The equivariant morphism to 𝔰𝔩2 (C) is for instance used
in [3] to prove that the local fundamental group of Z𝑐 at its singular point is trivial.

4.1. Action and Poisson structure

This SL2 (C)-action induces an action of the Lie algebra 𝔰𝔩2 (C) on H𝑐 by derivations: as
in Section 2.4, if 𝜉 ∈ 𝔰𝔩2 (C) and 𝜑 ∈ H𝑐, we denote by 𝜉 · ℎ the action of −𝑡𝜉 on ℎ. It is
related to the Poisson bracket through the same formulas as in Section 2.4:

𝑒 · 𝜑 = {𝑄, 𝜑}, ℎ · 𝜑 = {eu0, 𝜑} and 𝑓 · 𝜑 = {−𝑞, 𝜑}. (4.1)

4.2. Map to 𝖘𝖑2(C)

If (𝔮,𝔔, 𝔢) ∈ C3, we denote by 𝑀 (𝔮,𝔔, 𝔢) the matrix

𝑀 (𝔮,𝔔, 𝔢) =
(
𝔢 𝔔

−𝔮 −𝔢

)
∈ 𝔰𝔩2 (C).

We identify 𝔰𝔩2 (C) with the subspace of 𝑍𝑐 equal to C𝑞 ⊕ C𝑄 ⊕ C𝒆𝒖 by sending
(𝑒, ℎ, 𝑓 ) to (𝑄, 𝒆𝒖,−𝑞): by Proposition 3.3, this identification carries the Lie bracket
on 𝔰𝔩2 (C) to the Poisson bracket on C𝑞 ⊕ C𝑄 ⊕ C𝒆𝒖. This gives an identification
C[𝑞, 𝑄, 𝒆𝒖] ≃ Sym(𝔰𝔩2 (C)) and the inclusion C[𝑞, 𝑄, 𝒆𝒖] ⊂ 𝑍𝑐 gives an SL2 (C)-
equivariant Poisson map

𝜇∗ : Z𝑐 −→ 𝔰𝔩2 (C)∗

(the equivariance follows from (4.1)). Identifying 𝔰𝔩2 (C) with its dual thanks to the trace
map endows 𝔰𝔩2 (C) with a Poisson structure and gives an SL2 (C)-equivariant Poisson
map

𝜇 : Z𝑐 −→ 𝔰𝔩2 (C).

The map 𝜇 can be explicitly described by the following formula

𝜇(𝔮,𝔔, 𝔢, 𝑎0, 𝑎1, . . . , 𝑎𝑑) = 𝑀 (𝔮,𝔔, 𝔢).
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4.3. Hermite’s reciprocity law

Let 𝐸 = 𝐸♯ ⊕ 𝐸𝑑 denote the vector space

𝐸 = C𝑄 ⊕ C𝒆𝒖 ⊕ C𝑞︸               ︷︷               ︸
𝐸♯

⊕C𝒂0 ⊕ C𝒂1 ⊕ · · · ⊕ 𝒂𝑑︸                       ︷︷                       ︸
𝐸𝑑

.

Theorem 3.5 shows that the natural morphism of algebras 𝜎 : Sym(𝐸) → 𝑍𝑐 is surjective
and it describes its kernel. For avoiding the confusion between multiplication in 𝑍𝑐 and
multiplication in Sym(𝐸), we will denote by★ the multiplication in Sym(𝐸). For instance,
𝒂0★𝒂2−𝒂★2

1 is an element of Sym(𝐸) whereas 𝒂0𝒂2−𝒂2
1 is an element of 𝑍𝑐, which is equal

to 𝜎(𝒂0 ★ 𝒂2 − 𝒂★2
1 ). Similarly, if 𝑒1, . . . , 𝑒𝑛 are elements of 𝐸 and if Ψ ∈ C[𝑇1, . . . , 𝑇𝑛]

is a polynomial in 𝑛 indeterminates, we denote by Ψ★(𝑒1, . . . , 𝑒𝑛) the evaluation of Ψ at
(𝑒1, . . . , 𝑒𝑛) inside the algebra Sym(𝐸) whereas Ψ(𝑒1, . . . , 𝑒𝑛) denotes the evaluation of
Ψ inside the algebra 𝑍𝑐: they satisfy the equality 𝜎(Ψ★(𝑒1, . . . , 𝑒𝑛)) = Ψ(𝑒1, . . . , 𝑒𝑛).

Proposition 3.3 and (4.1) imply that 𝐸 is an SL2 (C)-stable subspace of 𝑍𝑐, so that
𝜎 is SL2 (C)-equivariant. Let us denote by 𝑉2 ≃ C2 another copy of C2 viewed as the
standard representation of SL2 (C) (or 𝔰𝔩2 (C)), and we denote by (𝑢1, 𝑢2) its canonical
basis. We then have two isomorphisms of vector spaces

𝜎♯ : Sym2 (𝑉2) −→ 𝐸♯ and 𝜎𝑑 : Sym𝑑 (𝑉2) −→ 𝐸𝑑

which are defined by

𝜎♯ (𝑢2
1) = 2𝑞, 𝜎♯ (𝑢1𝑢2) = 𝒆𝒖, 𝜎♯ (𝑢2

2) = 2𝑄, and 𝜎𝑑 (𝑢𝑑−𝑖1 𝑢𝑖2) = 𝒂𝑖 for 0 ⩽ 𝑖 ⩽ 𝑑.

Proposition 3.3 and (4.1) imply that 𝜎♯ and 𝜎𝑑 are SL2 (C)-equivariant and we will
identify 𝐸♯ and 𝐸𝑑 with Sym2 (𝑉2) and Sym𝑑 (𝑉2) through these isomorphisms.

Let us first interprete the equations (ℨ𝑖)1⩽𝑖⩽𝑑−1. Note that

Sym2 (𝐸) = Sym2 (Sym2 (𝑉2)) ⊕ Sym2 (𝑉2) ⊗ Sym𝑑 (𝑉2) ⊕ Sym2 (Sym𝑑 (𝑉2))

and that we have a natural morphism

𝜇2,𝑑 : Sym2 (𝑉2) ⊗ Sym𝑑 (𝑉2) −→ Sym𝑑+2 (𝑉2)

given by multiplication. We denote by Der(Sym(𝑉2)) the Sym(𝑉2)-module of derivations
Sym(𝑉2) → Sym(𝑉2). If 𝐷 ∈ Der(Sym(𝑉2)), we denote by 𝐷 (2) the map Sym2 (𝑉2) ⊗
Sym𝑑 (𝑉2) → Sym(𝑉2), 𝜑 ⊗ 𝜓 ↦−→ 𝐷 (𝜑)𝜓. Then it is easily checked that

Ker(𝜇2,𝑑)∩
⋂

𝐷∈Der(Sym(𝑉2 ) )
Ker(𝐷 (2) ) =

𝑑−1⊕
𝑖=1
C(𝑄★𝒂𝑖−1−𝒆𝒖★𝒂𝑖+𝑞★𝒂𝑖+1) ⊂ Sym2 (𝐸).
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So the family of equations (ℨ𝑖)1⩽𝑖⩽𝑑−1 can be summarized by

Ker(𝜇2,𝑑) ∩
⋂

𝐷∈Der(Sym(𝑉2 ) )
Ker(𝐷 (2) ) is contained in Ker(𝜎). (4.2)

Note that Ker(𝜇2,𝑑) ∩
⋂

𝐷∈Der(Sym(𝑉2 ) ) Ker(𝐷 (2) ) is SL2 (C)-stable, as the construction
is canonical.

The interpretation of the equations (ℨ𝑖, 𝑗 )1⩽𝑖⩽ 𝑗⩽𝑑−1 is somewhat more subtle and is
related with Hermite’s reciprocity law (see the upcoming Remark 4.4). First, evaluation
induces a surjective morphism of SL2 (C)-modules

𝜀𝑚,𝑛 : Sym𝑚 (Sym𝑛 (𝑉2)) −→ Sym𝑚𝑛 (𝑉2)
𝑣1 ★ · · ·★ 𝑣𝑚 ↦−→ 𝑣1 · · · 𝑣𝑚.

In the special case where 𝑚 = 2 and 𝑛 = 𝑑, then:

Lemma 4.1. The family (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 )1⩽𝑖⩽ 𝑗⩽𝑑−1 of elements of Sym(𝐸) is a
basis of Ker(𝜀2,𝑑) ⊂ Sym2 (Sym𝑑 (𝑉2)) ≃ Sym2 (𝐸𝑑).

In fact, the family (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 )1⩽𝑖⩽ 𝑗⩽𝑑−1 generates the ideal equal to the
kernel of the natural morphism 𝜀•,𝑑 : Sym(Sym𝑑 (𝑉2)) → Sym(𝑉2). On the other hand,
it follows from (2.2) that:

Lemma 4.2. The family (𝑞★𝑑− 𝑗−1 ★𝑄★𝑖−1 ★Ψ★
𝑗−𝑖 (𝒆𝒖, 𝑞, 𝑄))1⩽𝑖⩽ 𝑗⩽𝑑−1 of elements of

Sym(𝐸) is a basis of Sym𝑑−2 (Sym2 (𝑉2)) ≃ Sym𝑑−2 (𝐸♯).
Lemmas 4.1 and 4.2 allow to define a linear map

𝜌𝑑 : Ker(𝜀2,𝑑) −→ Sym𝑑−2 (𝐸♯)
by the formula

𝜌𝑑 (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 ) = 𝑞★𝑑− 𝑗−1 ★𝑄★𝑖−1 ★Ψ★
𝑗−𝑖 (𝒆𝒖, 𝑞, 𝑄)

for 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑. It is an isomorphism of vector spaces but an important fact is the
following:

Lemma 4.3. The map 𝜌𝑑 : Ker(𝜀2,𝑑) → Sym𝑑−2 (𝐸♯) is an isomorphism of SL2 (C)-
modules.

Proof. This is more or less the computation done in the end of the proof of Theorem 3.6. It
is sufficient to prove that it is an isomorphism of 𝔰𝔩2 (C)-modules. By (4.1), Proposition 3.3,
we have

𝑓 · (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 )
= (𝑖 − 1)𝒂𝑖−2 ★ 𝒂 𝑗+1 + ( 𝑗 + 1)𝒂𝑖−1 ★ 𝒂 𝑗 − 𝑖𝒂𝑖−1 ★ 𝒂 𝑗 − 𝑗𝒂𝑖 ★ 𝒂 𝑗−1

= (𝑖 − 1) (𝒂𝑖−2 ★ 𝒂 𝑗+1 − 𝒂𝑖−1 ★ 𝒂 𝑗 ) + 𝑗 (𝒂𝑖−1 ★ 𝒂 𝑗 − 𝒂𝑖 ★ 𝒂 𝑗−1).
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Therefore,

𝜌𝑑 ( 𝑓 · (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 )

= (𝑖 − 1)𝑞★𝑑− 𝑗−1 ★𝑄★𝑖−2 ★Ψ★
𝑗−𝑖+1 (𝒆𝒖, 𝑞, 𝑄) + 𝑗𝑞★𝑑− 𝑗 ★𝑄★𝑖−1 ★Ψ★

𝑗−𝑖−1 (𝒆𝒖, 𝑞, 𝑄),

and so one gets

𝜌𝑑 ( 𝑓 · (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 ))

= 𝑞★𝑑− 𝑗−1 ★𝑄★𝑖−2 ★ ((𝑖−1)Ψ★
𝑗−𝑖+1 (𝒆𝒖, 𝑞, 𝑄) + 𝑗𝑞 ★𝑄 ★Ψ★

𝑗−𝑖−1 (𝒆𝒖, 𝑞, 𝑄))

= 𝑞★𝑑− 𝑗−1 ★𝑄★𝑖−2 ★ ((𝑖−1)𝒆𝒖★Ψ★
𝑗−𝑖 (𝒆𝒖, 𝑞, 𝑄) + ( 𝑗 − 𝑖+1)𝑞★𝑄★Ψ★

𝑗−𝑖−1 (𝒆𝒖, 𝑞, 𝑄)),

where the last equality follows from (2.4). Applying now (2.5) yields

(𝑖 − 1)𝒆𝒖 ★Ψ★
𝑗−𝑖 (𝒆𝒖, 𝑞, 𝑄) + ( 𝑗 − 𝑖 + 1)𝑞 ★𝑄 ★Ψ★

𝑗−𝑖−1 (𝒆𝒖, 𝑞, 𝑄)

= (𝑖 −1)𝒆𝒖★Ψ★
𝑗−𝑖 (𝒆𝒖, 𝑞, 𝑄) + 2𝑞★𝑄★

(
𝜕Ψ 𝑗−𝑖
𝜕𝑇

)★
(𝒆𝒖, 𝑞, 𝑄) + 𝑞★ 𝒆𝒖

(
𝜕Ψ 𝑗−𝑖
𝜕𝑇 ′

)★
(𝒆𝒖, 𝑞, 𝑄).

Putting things together and using again (4.1) and Proposition 3.3 yields

𝜌𝑑 ( 𝑓 · (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 )) = 𝑓 · 𝜌𝑑 (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 ),

as desired. The fact that

𝜌𝑑 (𝑒 · (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 )) = 𝑒 · 𝜌𝑑 (𝒂𝑖−1 ★ 𝒂 𝑗+1 − 𝒂𝑖 ★ 𝒂 𝑗 ),

follows from a similar computation and this completes the proof of the Lemma. □

Using the isomorphism of SL2 (C)-modules 𝜌𝑑 , the family of equations (ℨ𝑖, 𝑗 ) can be
rewritten as follows:

∀ 𝜑 ∈ Ker(𝜀2,𝑑), 𝜑 − 𝜌𝑑 (𝜑) ★ (𝒆𝒖★2 − 4𝑞 ★𝑄 − 𝑑2𝑎2) ∈ Ker(𝜎). (4.3)

Remark 4.4. The existence of such an isomorphism of SL2 (C)-modules Ker(𝜀2,𝑑)
∼−→

Sym𝑑−2 (𝐸♯) is a consequence of Hermite’s reciprocity law, as it has been explained to
us by Pierre-Louis Montagard. Indeed, Hermite’s reciprocity law (see for instance [9,
Cor. 2.2]) says that we have an isomorphism of SL2 (C)-modules

ℎ𝑚,𝑛 : Sym𝑚 (Sym𝑛 (𝑉2))
∼−→ Sym𝑛 (Sym𝑚 (𝑉2))

making the diagram

Sym𝑚 (Sym𝑛 (𝑉2))
ℎ𝑚,𝑛 //

𝜀𝑚,𝑛 ((

Sym𝑛 (Sym𝑚 (𝑉2))

𝜀𝑛,𝑚vv
Sym𝑚𝑛 (𝑉2)
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commutative. In particular, ℎ𝑚,𝑛 induces an isomorphism, still denoted by ℎ𝑚,𝑛, between
Ker(𝜀𝑚,𝑛) and Ker(𝜀𝑛,𝑚).

In the particular case where 𝑚 = 2 and 𝑛 = 𝑑, the kernel of the evaluation map
𝜀•,2 : Sym(Sym2 (𝑉2)) = Sym(𝐸♯) → Sym(𝑉2) is the principal ideal generated by
𝒆𝒖★2 − 4𝑞 ★𝑄 so that the map

Sym𝑑−2 (𝑉2) −→ Ker(𝜀𝑑,2)
𝜑 ↦−→ (𝒆𝒖★2 − 4𝑞 ★𝑄) ★ 𝜑

is an isomorphism of SL2 (C)-modules. Composing the inverse of this isomorphism with
ℎ2,𝑑 gives an isomorphism Ker(𝜀2,𝑑)

∼−→ Sym𝑑−2 (𝐸♯).

Remark 4.5. Since 𝒆𝒖★2 − 4𝑞 ★ 𝑄 ∈ Sym(𝐸♯)SL2 (C) (in fact, it even generates this
invariant algebra) we can define, for any polynomial 𝑃 in one variable, a variety Z𝑃 by
the following equations:

Z𝑃 =


(𝔮,𝔔, 𝔢, 𝑎0, 𝑎1, . . . , 𝑎𝑑)

∈ C𝑑+4

����������
∀ 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑 − 1,
𝔢𝑎𝑖 = 𝔮𝑎𝑖+1 +𝔔𝑎𝑖−1,

𝑎𝑖−1𝑎 𝑗+1 − 𝑎𝑖𝑎 𝑗

= 𝑃(𝔢2 − 4𝔮𝔔)𝔮𝑑− 𝑗−1𝔔𝑖−1Ψ 𝑗−𝑖 (𝔢, 𝔮,𝔔)


.

By (4.2) and (4.3), the variety Z𝑃 can we rewritten as follows:

Z𝑃 =


(𝔮,𝔔, 𝔢, 𝑎0, 𝑎1, . . . , 𝑎𝑑)

∈ C𝑑+4

���������

∀ 𝜑 ∈ Ker(𝜇2,𝑑) ∩

⋂
𝐷∈Der(Sym(𝑉2 ) ) Ker(𝐷 (2) ),

𝜑(𝔮,𝔔, 𝔢, 𝑎0, 𝑎1, . . . , 𝑎𝑑) = 0,
∀ 𝜑 ∈ Ker(𝜀2,𝑑),
𝜑(𝑎0, 𝑎1, . . . , 𝑎𝑑) = 𝑃(𝔢2−4𝔮𝔔)𝜌𝑑 (𝜑) (𝔢, 𝔮,𝔔)


.

This shows that Z𝑃 is an SL2 (C)-stable subvariety of C𝑑+4 ≃ 𝐸∗.

5. Fixed points under diagram automorphism

Let
√
𝜁 be a primitive 2𝑑-th root of unity such that (

√
𝜁)2 = 𝜁 and let 𝜏 =

(
0

√
𝜁

√
𝜁

−1 0

)
.

Then 𝜏𝑠𝜏−1 = 𝑡 and 𝜏𝑡𝜏−1 = 𝑠. So 𝜏 normalizes 𝑊 and, since 𝑐𝑠 = 𝑐𝑡 , 𝜏 acts on 𝑍𝑐 and so
on Z𝑐 by [7]. The action on the generators of 𝑍𝑐 given in Theorem 3.5 is easily computed:

𝜏𝑞 = 𝑞, 𝜏𝑄 = 𝑄, 𝜏𝒆𝒖 = 𝒆𝒖 and 𝜏𝒂𝑖 = −𝒂𝑖 (5.1)

for 0 ⩽ 𝑖 ⩽ 𝑑.
Using the description of Z𝑐 as a closed subvariety of C𝑑+4 as in Section 3.5 thanks to

Theorem 3.5, one gets:

Z𝜏
𝑐 = {(𝔮,𝔔, 𝑒, 𝑎0, 𝑎1, . . . , 𝑎𝑑) ∈ Z𝑐 | 𝑎0 = 𝑎1 = · · · = 𝑎𝑑 = 0}.
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Therefore,

Z𝜏
𝑐 ≃

{
(𝔮,𝔔, 𝔢) ∈ C3

����� ∀ 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑑 − 1,

(𝔢2 − 𝔮𝔔 − 𝑑2𝑎2)𝔮𝑑− 𝑗−1𝔔𝑖−1Ψ 𝑗−𝑖 (𝑒, 𝔮,𝔔) = 0

}
.

Let (𝔢, 𝔮,𝔔) ∈ Z𝜏
𝑐 . If 𝔮 ≠ 0, then the above equation with 𝑖 = 𝑗 = 1 gives 𝔢2−𝔮𝔔−𝑑2𝑎2 =

0. Similarly, if 𝔔 ≠ 0, the above equation with 𝑖 = 𝑗 = 𝑑 − 1 gives 𝔢2 − 𝔮𝔔 − 𝑑2𝑎2 = 0.
So assume now that 𝔮 = 𝔔 = 0. Then the above equation with 𝑖 = 1 and 𝑗 = 𝑑 − 1 gives
(𝔢2 − 𝑑2𝑎2)Ψ𝑑−2 (𝑒, 0, 0) = 0. But an easy induction on 𝑘 shows that Ψ𝑘 (𝑇, 0, 0) = 𝑇 𝑘

for all 𝑘 , so this gives (𝔢2 − 𝑑2𝑎2)𝔢𝑑−2 = 0. This discussion shows that

Z𝜏
𝑐 ≃ {(0, 0, 0)} ∪ {(𝔮,𝔔, 𝔢) ∈ C3 | (𝔢 − 𝑑𝑎) (𝔢 + 𝑑𝑎) = 𝔮𝔔}. (5.2)

So the 0-dimensional irreducible component is of course isomorphic to the Calogero–
Moser space associated with the trivial group(!), and the 2-dimensional irreducible
component is isomorphic to the Calogero–Moser spaces associated with the pair (𝑉 𝜏 ,𝑊 𝜏)
and parameter 𝑑𝑎/2: indeed, dim𝑉 𝜏 = 1, 𝑊 𝜏 = ⟨𝑤0⟩ ≃ 𝝁2 and equations for Calogero–
Moser spaces associated with cyclic groups are given for instance in [7, Thm. 18.2.4].
Moreover, Proposition 3.3 shows that this isomorphism respect the Poisson bracket. So
we have proved the following result, which confirms [7, Conj. FIX] (or [6, Conj. B]):

Proposition 5.1. The unique 2-dimensional irreducible component of Z𝜏
𝑐 is isomorphic,

as a Poisson variety endowed with a C×-action, to the Calogero–Moser space associated
with the pair (𝑉 𝜏 ,𝑊 𝜏) ≃ (C, 𝝁2) and the parameter map Ref (𝝁2) = {−1} → C,
−1 ↦→ 𝑑𝑎.
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