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Geodesic cover of Fuchsian groups

Zhipeng Lu

Abstract

We study unions of fundamental domains of a Fuchsian group, especially those with hyperbolic plane
metric realizing the metric of the corresponding hyperbolic surface. We call these unions the geodesic
covers of the Fuchsian group or the hyperbolic surface. The paper contributes to showing that finiteness
of geodesic covers is basically another characterization of geometrically finiteness. The resolution of
geometrically finite case is based on Shimizu’s lemma.

1. Introduction

In the work of Lu–Meng [6], a notion called geodesic cover of Fuchsian groups is
introduced to deal with the Erdős distinct distances problem in hyperbolic surfaces. There
we initiate the investigation of quantitative aspects of the notion for special Fuchsian
groups including the modular group and standard regular surface groups. In this paper, we
conduct an overall qualitative study and give a relatively complete description of geodesic
covers for general Fuchsian groups.

We recall the definition as follows. Let Γ ≤ PSL2 (R) be a Fuchsian group acting on
the upper half plane H2 by Möbius transformation, and 𝐹 ⊂ H2 be a fundamental domain
of Γ whose interior contains no two points in the same orbit of the Möbius transformation
by Γ. A subset Γ0 ⊂ Γ, which we always assume contains the identity, is called a geodesic
cover of Γ corresponding to 𝐹 if for any 𝑝, 𝑞 ∈ 𝐹, we have

min
𝛾1 ,𝛾2∈Γ

𝑑H2 (𝛾1 · 𝑝, 𝛾2 · 𝑞) = min
𝛾1 ,𝛾2∈Γ0

𝑑H2 (𝛾1 · 𝑝, 𝛾2 · 𝑞),

where 𝛾 · 𝑝 denotes the Möbius transformation and 𝑑H2 denotes the hyperbolic metric in
H2. A weaker requirement gives rise to another definition: Γ1 ⊂ Γ is a geodesic cover of
Γ if

min
𝛾∈Γ

𝑑H2 (𝑝, 𝛾 · 𝑞) = min
𝛾∈Γ0

𝑑H2 (𝑝, 𝛾 · 𝑞).

We may call the former definition the first geodesic cover and the latter the second geodesic
cover. Clearly if Γ0 is a first geodesic cover of Γ, then Γ−1

0 Γ0 := {𝛾−1
1 𝛾2 | 𝛾1, 𝛾2 ∈ Γ0} is

a second geodesic cover of Γ. We focus on the second geodesic cover since it appears
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more convenient for estimation. If Γ has finite geodesic covers, we call the smallest size
of (first or second) geodesic covers the (first or second) geodesic covering number of Γ.

The definitions arises equivalently in the corresponding hyperbolic surface 𝑆Γ := Γ\H2

endowed the hyperbolic metric from H2. For 𝑝, 𝑞 ∈ 𝑆Γ, we can pick two representatives
(still denoted by 𝑝, 𝑞) in 𝐹 to realize their distance by 𝑑𝑆Γ (𝑝, 𝑞) = min𝛾∈Γ𝑌 𝑑H2 (𝑝, 𝛾 · 𝑞).
Thus sometimes we may also refer the same notion to the corresponding hyperbolic
surface of a Fuchsian group. Note that although geodesic covers may depend on the choice
of fundamental domains, the geodesic covering number only depend on the Fuchsian
group. A problem may arise that, since in general two fundamental domains may not be
commensurable, we are not sure if any two minimal geodesic covers Γ1, Γ2 corresponding
to different fundamental domains are commensurable, i.e. there are constants 𝑐, 𝐶 > 0
(depending only on Γ) such that 𝑐 |Γ1 | ≤ |Γ2 | ≤ 𝐶 |Γ1 |.

In [6], the geodesic covering number of the modular group PSL2 (Z) is precisely
estimated to be 4 in the first definition and 10 in the second. Also, those of standard
regular hyperbolic surfaces of genus 𝑔 ≥ 2 are estimated to establish lower bounds of
Erdős distinct distances problem in such surfaces, see Theorem 1.2 and Proposition 3.1
of [6].

In this paper, we extend our scope of estimation and prove

Theorem 1.1. Geometrically finite Fuchsian groups have finite geodesic covers.

This is the combination of Theorem 3.11 and Theorem 3.13, which addresses Conjec-
ture 3 of [6]. Our proof is based on Shimizu’s lemma introduced by Shimizu [7].

Similar to the argument for Theorem 1.1 of [6], this in turn establishes Guth–Katz type
lower bound of Erdős distinct distances problem in hyperbolic surfaces corresponding to
geometrically finite Fuchsian groups. More specifically, to enumerate 𝑑 (𝑃) = |{𝑑𝑌 (𝑝, 𝑞) |
𝑝, 𝑞 ∈ 𝑃}| for any finite set 𝑃 ⊂ 𝑌 and 𝑌 a geometrically finite hyperbolic surface
corresponding to the Fuchsian group Γ, we estimate for 𝑄(𝑃) = |{(𝑝1, 𝑞1, 𝑝2, 𝑞2) ∈
𝑃4 | 𝑑𝑌 (𝑝1, 𝑞1) = 𝑑𝑌 (𝑝2, 𝑞2)}|, since by Cauchy–Schwarz inequality 𝑑 (𝑃) ≥ |𝑃 |4

𝑄 (𝑃) . By
alleviating 𝑃 onto 𝑃 ⊂ H2 by a finite geodesic cover Γ1 with |𝑃 | ≤ |Γ1 | |𝑃 |, we can
estimate 𝑄(𝑃) in H2. Due to the similar estimate as to Guth–Katz as in [6], we have
𝑄(𝑃) ≤ 𝑐 |𝑃 |3 log |𝑃 | ≤ 𝑐 |Γ1 |3 |𝑃 |3 log( |Γ1 | |𝑃 |). Hence Theorem 1.1 directly implies

Corollary 1.2. A set of𝑁 points in a hyperbolic surface𝑌 corresponding to a geometrically
finite Fuchsian group determines ≥ 𝑐 𝑁

𝐾3
𝑌

log(𝐾𝑌𝑁 ) distinct distances, where 𝐾𝑌 denotes
the geodesic covering number of 𝑌 and 𝑐 > 0 is some absolute constant.

To the complementary, in Section 2.2 we show that

Theorem 1.3. Infinitely generated Fuchsian groups (without elliptic elements) can not
have finite geodesic covers.
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In the case of being infinitely generated, we wonder what the lower bound of Erdős
distinct distances problem in the corresponding hyperbolic surface would look like.

It will be interesting to see more precise computational results on geodesic covering
numbers of geometrically finite groups and their applications to various geometric and
combinatorial problems. The conjectured relation between those numbers and signatures
of Fuchsian groups or Fenchel–Nielsen coordinates in the Techmüller space in [6] still
calls for more studies, to which the current paper may have implications. We also look
forward to generalizing the notion and the quantitative and qualitative results to Klein
groups and cases of higher rank discrete groups where potential substitutes of Shimizu’s
lemma may hold, see [4] for instances.

2. Generals on geodesic covers

In this section, we give a construction of geodesic covers for general Fuchsian groups
using Dirichlet domains, and establish some preliminary results.

2.1. Construction of geodesic cover

For a general Fuchsian group Γ ≤ PSL2 (R) and any 𝑧0 ∈ H2, we define the Dirichlet
domain for Γ centered at 𝑧0 to be

𝐷Γ (𝑧0) := {𝑧 ∈ H2 | 𝑑H2 (𝑧, 𝑧0) ≤ 𝑑H2 (𝑧, 𝛾 · 𝑧0),∀ 𝛾 ∈ Γ}.
Geometrically, 𝐷Γ (𝑧0) is the intersection of hyperbolic half-planes bounded by perpen-
dicular bisectors of the geodesic segments between 𝑧0 and 𝛾 · 𝑧0 for all 𝛾 ∈ Γ. If 𝑧0 is not
fixed by any non-identity element of Γ, then 𝐷Γ (𝑧0) becomes a connected fundamental
domain for Γ. Otherwise, 𝑧0 may only be fixed by an elliptic element of Γ, in which case
𝑧0 is an elliptic point of Γ. In the case, 𝐷Γ (𝑧0) is not a fundamental domain, but we have

Lemma 2.1. For any Fuchsian group Γ and an elliptic point 𝑧0 of Γ, 𝐷Γ (𝑧0) meets each
orbit Γ · 𝑧 at least |StabΓ (𝑧0) | times.

Proof. For any orbit Γ · 𝑧, there is a 𝛾1 ∈ Γ such that 𝑑H2 (𝑧0, 𝛾1 · 𝑧) = 𝑑H2 (𝑧0, Γ · 𝑧)
by the discrete action of Γ, hence 𝛾1 · 𝑧 ∈ 𝐷Γ (𝑧0). Clearly for any 𝑧 ∈ 𝐷Γ (𝑧0) and
1 ≠ 𝛾 ∈ StabΓ (𝑧0), 𝑑 (𝑧0, 𝑧) = 𝑑 (𝑧0, 𝛾 · 𝑧). Hence 𝛾 · 𝑧 ∈ 𝐷Γ (𝑧0) and 𝛾 · 𝑧 ≠ 𝑧, otherwise
𝛾 = 1. Thus StabΓ (𝑧0) ⊂ 𝐷Γ (𝑧0) ∩ Γ · 𝑧 which contains at least |StabΓ (𝑧0) | points. □

For regular 𝑧, StabΓ (𝑧) = {1} so that the lemma also applies.
For any 𝑧0 ∈ H2 not fixed by any non-identity elements of Γ, define 𝐵Γ (𝑧0) :=⋃
𝑧∈𝐷Γ (𝑧0 ) 𝐷Γ (𝑧), and

𝑈Γ (𝑧0) := {𝛾 ∈ Γ | 𝛾 · 𝐷Γ (𝑧0) ∩ 𝐵Γ (𝑧0) ≠ ∅}. (2.1)
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Then we simply have

Proposition 2.2. 𝑈Γ (𝑧0) is a geodesic cover of Γ corresponding to 𝐷Γ (𝑧0).

Proof. For any 𝑧1, 𝑧2 ∈ 𝐷Γ (𝑧0), by Lemma 2.1, there exists 𝑧′2 ∈ 𝐷Γ (𝑧1) such that
𝑧′2 = 𝛾′ · 𝑧2 for some 𝛾′ ∈ Γ, and 𝑑H2 (𝑧1, 𝑧′2) ≤ 𝑑H2 (𝑧1, 𝛾 · 𝑧2) for any 𝛾 ∈ Γ. Then
𝑧′2 ∈ 𝛾′ · 𝐷Γ (𝑧0) ∩ 𝐵Γ (𝑧0) ≠ ∅. Hence 𝛾′ ∈ 𝑈Γ (𝑧0). □

For Γ co-compact, i.e. some fundamental Dirichlet domain 𝐷Γ (𝑧0) is compact, 𝐵Γ (𝑧0)
is compact by local finiteness of Dirichlet tessellations (Theorem 3.5.1 of [5]). In turn,
further by local finiteness, 𝑈Γ (𝑧0) contains only finitely many elements of Γ, which
accounts for Proposition 2.1 of [6].

2.2. Geodesic covers and finite index subgroups

Now we establish two basic results, one relating geodesic covers and finite index subgroups
of Fuchsian groups, and one concerning groups without elliptic elements. Especially the
latter one shows that generally infinitely generated Fuchsian groups can not have finite
geodesic covers.

Proposition 2.3. Let 𝐻 ≤ Γ be any finite index subgroup of a Fuchsian group Γ. If 𝐻
has finite geodesic covers, then so does Γ and the geodesic covering number of Γ is no
more than [Γ : 𝐻] times that of 𝐻.

Proof. Let Γ = 𝐻𝑔1 ∪ · ∪ 𝐻𝑔𝑛 be the right coset decomposition. If 𝐹 is a fundamental
domain of Γ, then 𝑔1 · 𝐹 ∪ · · · ∪ 𝑔𝑛 · 𝐹 is a fundamental domain of 𝐻, see Theorem 3.12
of [5]. We may choose 𝐹 such that there is a corresponding finite geodesic cover 𝐻0 ⊂ 𝐻.
For any 𝑧1 ≠ 𝑧2 ∈ 𝐹, we have

min
𝛾∈Γ

𝑑H2 (𝑧1, 𝛾 · 𝑧2) = min
1≤𝑖≤𝑛

min
𝛾∈𝐻

𝑑H2 (𝑧1, 𝛾 · (𝑔𝑖 · 𝑧2))

= min
1≤𝑖≤𝑛

min
𝛾∈𝐻0

𝑑H2 (𝑧1, 𝛾𝑔𝑖 · 𝑧2) = min
𝛾∈𝐻0𝑔1∪···∪𝐻0𝑔𝑛

𝑑H2 (𝑧1, 𝛾 · 𝑧2).

Hence 𝐻0𝑔1 ∪ · · · ∪ 𝐻0𝑔𝑛 is a geodesic cover of Γ which implies the lemma. □

If we can show that some well-behaved finite index subgroup of a Fuchsian group has
finite geodesic cover, then so does the bigger group. We will use this fact to deal with
geometrically finite groups in the next section.

Next, we prove the following result based on geometric considerations.

Proposition 2.4. Let Γ be any Fuchsian group without elliptic elements, and Γ0 be its
geodesic cover corresponding to a fundamental domain 𝐹 of Γ. Then Γ0 ⊃ {𝛾 ∈ Γ |
𝛾 · 𝐹 ∩ 𝐹 ≠ ∅} := Γ(𝐹).
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Proof. Our proof is motivated by the proof of Theorem 9.3.3 of Beardon [1]. For any
1 ≠ 𝛾 ∈ Γ(𝐹), suppose 𝑤 ∈ 𝛾 · 𝐹 ∩ 𝐹. Then there is an open disc 𝑁 with center 𝑤 and
elements 𝛾0 (= 1), 𝛾1, . . . , 𝛾𝑡 ∈ Γ such that 𝛾 𝑗 = 𝛾 for some 𝑗 , and

𝑤 ∈
𝑡⋂
𝑖=0

𝛾𝑖 · 𝐹, 𝑁 ⊂
𝑡⋃
𝑖=0

𝛾𝑖 · 𝐹.

𝑁 can be chosen small enough so that no other vertices of any 𝛾𝑖 · 𝐹 falls inside 𝑁 . More
features are shown in Figure 9.3.1 of [1] on p. 220.

Now that Γ has no elliptic elements, for 𝑁 small enough, any two points in 𝑁 are not in
the same orbit of Γ by local finiteness. Choose any point 𝑧 ∈ 𝛾 · 𝐹 ∩ 𝑁 , and its conjugate
𝑧′ = 𝛾−1 · 𝑧 ∈ 𝐹. By definition, there is some 𝛾0 ∈ Γ0 such that

𝑑H2 (𝑤, 𝑧) = min
𝛾∈Γ

𝑑H2 (𝑤, 𝛾 · 𝑧′) = 𝑑H2 (𝑤, 𝛾0 · 𝑧′).

Then 𝑧 = 𝛾0 · 𝑧′ = 𝛾0𝛾
−1 · 𝑧, which implies 𝛾 = 𝛾0 since there are no elliptic elements in

Γ. This shows that any elements of Γ(𝐹) belongs to Γ0. □

Remark 2.5. Proposition 3.1 of [6] says the smaller set {𝛾 ∈ Γ | 𝛾 ·𝐷Γ (𝑧0) ∩𝐷Γ (𝑧0) ≠ ∅}
is a geodesic cover for Γ = PSL2 (Z). It is hard to tell if this set consists in a geodesic
cover in general from the above proof.

The proposition reveals the following basic fact:

Corollary 2.6. Any infinitely generated Fuchsian group without elliptic elements can not
have finite geodesic covers.

Proof. Note that in general, Γ(𝐹) generates Γ, see Theorem 9.2.7 of [1]. With the
notations in Proposition 2.4, if some Γ0 is finite, so is the corresponding Γ(𝐹), then
Γ = ⟨Γ(𝐹)⟩ becomes finitely generated. □

Note that in general any Fuchsian group, has a finite index subgroup without elliptic
elements, which in the case of geometrically finite groups is accounted as Nielsen–
Fenchel–Fox theorem, see Proposition 3.10 later. Thus the corollary exhibits groups with
only infinite geodesic covers for general infinitely generated Fuchsian groups. To conclude
the scenario, we will show that finitely generated Fuchsian groups have finite geodesic
covers in the next section.
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3. Geodesic covers of geometrically finite Fuchsian groups

3.1. Geometry of geometrically finite Fuchsian groups

This section contributes to introducing preliminary notions on geometrically finite
Fuchsian groups following Katok [5].

Call a Fuchsian group Γ ≤ PSL2 (R) geometrically finite if there exists one (hence every)
geodesically convex fundamental domain of Γ having finitely many sides. Equivalently, Γ
is finitely generated. Also co-finite Fuchsian groups, i.e. with fundamental domains of
finite hyperbolic area, are precisely geometrically finite of first kind.

We describe some basic facts on the geometry of boundary of a fundamental Dirichlet
domain 𝐷 := 𝐷Γ (𝑧0) for an arbitrary Fuchsian group Γ. By definition, the boundary of
𝐷 is a collection of geodesic segments or segments of the real axis (free sides), called
sides. An intersection point of two sides is called a vertex. Two points of 𝐷 are congruent,
i.e. in the same orbit of Γ, if and only if they belong to the boundary 𝜕𝐷. In this case,
they are of same distance to 𝑧0 (see Theorem 9.4.3 of [1]).

Let us consider the vertices in congruence, each class of which is called a cycle. By
local finiteness, a cycle contains only finitely many points. If a vertex 𝑣 ∈ H2 of 𝐷 is an
elliptic point fixed by 𝛾Γ, it must lie on 𝜕𝐷, and every elliptic point of Γ is congruent to
one on 𝜕𝐷. Also the elliptic cycle of 𝑣 is fixed by elliptic elements congruent to 𝛾 in Γ.
This reveals the following

Proposition 3.1 (Theorem 3.5.2 of [5]). With the above notations, the elliptic cycles
of 𝜕𝐷 1-1 correspond to the congruence classes of elliptic points or maximal elliptic
subgroups of Γ.

If 𝑣 is an elliptic vertex of 𝐷, fixed by 𝛾 ∈ Γ say with order 𝑘 , then 𝛾 maps edges to
edges and the inner angle at 𝑣 is at most 2𝜋/𝑘 . If 𝑘 = 2, then 𝛾 flips the edge containing 𝑣
around 𝑣. Moreover, we have

Proposition 3.2 (Theorem 3.5.3 of [5]). With the above notations, let 𝜃1, . . . , 𝜃𝑡 be the
internal angles at all vertices in an elliptic cycle and𝑚 be the order of the elliptic elements
fixing these vertices. Then 𝜃1 + · · · + 𝜃𝑡 = 2𝜋/𝑚.

If a cycle has no fixed points, we may set 𝑚 = 1 and then 𝜃1 + · · · + 𝜃𝑡 = 2𝜋. Regarded
as infinite order elliptic elements, each parabolic element of Γ has a unique fixed point on
R̂ := R ∪ {∞}, which are usually called cusps of Γ. For co-finite groups, we have

194



Geodesic cover of Fuchsian groups

Proposition 3.3 (Theorem 4.2.5 of [5]). Suppose Γ has a non-compact Dirichlet
fundamental domain 𝐷 of finite hyperbolic area. Then

(1) each vertex of 𝐷 on R̂ is a cusp;

(2) each cusp is congruent to a vertex of 𝐷 on R̂.

Similarly, congruence classes of cusps of Γ 1-1 correspond to maximal parabolic
subgroups of Γ.

Note that co-finite Fuchsian groups are geometrically finite of first kind. As to the
remaining geometrically finite groups Γ of second kind, according to their limit sets
Λ(Γ) := {𝑧 ∈ R̂ | 𝑧 ∈ Γ · 𝑎 for some 𝑎 ∈ H2}, we classify them as follows. If |Λ(Γ) | ≤ 2,
then Γ is elementary (Exercise 3.8 of [5]), i.e. has finite orbits in H2 ∪ R̂, which can be
described as follows.

Proposition 3.4 (Theorem 2.4.3 of [5]). Any elementary Fuchsian group is either cyclic
or is conjugate in PSL2 (R) to a group generated by 𝑔𝑘 =

(
𝑘 0
0 1/𝑘

)
(𝑘 > 1) and 𝑆 =

( 0 −1
1 0

)
.

If Γ is finite cyclic, then it is elliptic and Λ(Γ) = ∅; if Γ is infinite cyclic, then it
is parabolic and |Λ(Γ) | = 1, or it is hyperbolic congruent to ⟨𝑔𝑘⟩ for some 𝑘 > 0, in
which case |Λ(Γ) | = 2. For Γ conjugate to ⟨𝑔𝑘 , 𝑆⟩, similarly |Λ(Γ) | = 2. For example,
Λ (⟨𝑔𝑘 , 𝑆⟩) = {0,∞} for any 𝑘 > 1.

If |Λ(Γ) | > 2, then Γ is non-elementary and Λ(Γ) is a perfect nowhere dense subset of
R̂ (hence uncountably infinite) by Theorem 3.4.6 of [5]. In this case, the complement of
Λ(Γ) in R̂ is a union of countably many open intervals {𝐼 𝑗 }∞𝑗=1 that are mutually disjoint.
Let 𝐿 𝑗 be the geodesic striding over 𝐼 𝑗 and connecting its two end points in H2, and let
𝐻 𝑗 be the open half-plane bounded by 𝐿 𝑗 away from 𝐼 𝑗 . Now we introduce the notion of
Nielsen region following 8.4 of [1] as

𝑁Γ :=
∞⋂
𝑗=1
𝐻 𝑗 . (3.1)

Note that {𝐼 𝑗 } is Γ-invariant, so is {𝐻 𝑗 }. Therefore 𝑁Γ is a Γ-invariant geodesically
convex subset of H2. Actually, it is the smallest such non-empty set, see Theorem 8.5.2
of [1]. The following fact reveals its significance:

Proposition 3.5 (Theorem 10.1.2 of [1]). A non-elementary Fuchsian group Γ is finitely
generated if and only if for any convex fundamental domain 𝐷 of Γ, the hyperbolic area
of 𝐷 ∩ 𝑁Γ is finite.

One key observation is that the free sides (segments of R) are each contained in some
𝐼 𝑗 , then 𝐷 ∩ 𝑁Γ is an polygon in H2 which has finite area by Gauss–Bonnet formula, see
the proof on p. 254 of [1].
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3.2. Geodesic cover of co-finite groups

Now we try to establish the seemingly surprising fact that, the construction of (2.1) gives
a finite geodesic cover for geometrically finite Fuchsian groups of first kind, i.e. co-finite
groups, with a technicality assumption that they contain no elliptic elements.

To proceed we introduce two useful corollaries of Shimizu’s lemma which first appeared
in [7]. For a given Fuchsian group Γ, denote by H̃2 the union of H2 and the cusps of Γ.

Proposition 3.6 (Lemma 1.26 of Shimura [8]). For every cusp 𝑠 of a Fuchsian group Γ,
there exists a neighborhood𝑈 ⊂ H̃2 of 𝑠 such that StabΓ (𝑠) = {𝛾 ∈ Γ | 𝛾 ·𝑈 ∩𝑈 ≠ ∅}.

Proposition 3.7 (Theorem 9.2.8(ii) of [1]). Let 𝐷 be any locally finite fundamental
domain for a Fuchsian group Γ, 𝛾 ∈ Γ be a parabolic element, and 𝑈 be a horocyclic
region with 𝛾 ·𝑈 = 𝑈. Then 𝐷 meets some finitely many distinct translates 𝛾′ ·𝑈, 𝛾′ ∈ Γ.

Here a horocyclic region of a parabolic element 𝛾 is a neighborhood of the fixed point
of 𝛾 congruent to {𝑧 ∈ H2 | Im(𝑧) > 𝑡} for some 𝑡 > 0. Beardon’s proof uses Jørgensen’s
inequality, which may be seen as a generalized version of Shimizu’s lemma.

Now we modify the construction of (2.1) using a horocyclic surgery on Dirichlet
domains resorting to the above two results. Assume Γ is a co-finite Fuchsian group without
elliptic elements (with cusps otherwise co-compact), so that for any 𝑧 ∈ H2, 𝐷Γ (𝑧) is
a fundamental Dirichlet domain. Fix a point 𝑧0 ∈ H2 and let 𝐷 := 𝐷Γ (𝑧0). Suppose
𝑠1, . . . , 𝑠𝑡 are all the cusp vertices on 𝜕𝐷. According to Proposition 3.6 and 3.7, we may
choose horocyclic neighborhood𝑈𝑖 of each 𝑠𝑖 such that

StabΓ (𝑠𝑖) = {𝛾 ∈ Γ | 𝛾 ·𝑈𝑖 ∩𝑈𝑖 ≠ ∅}, ∀ 𝑖 = 1, . . . , 𝑡, (3.2)

and 𝐷 meets only finitely many translates of𝑈𝑖’s. Now define

𝐷 = 𝐷 ∖

(
𝑡⋃
𝑖=1
𝑈𝑖

)
(3.3)

to be the horocyclic truncation of 𝐷 which becomes compact.
For any 𝑧 ∈ H2, by Proposition 3.3, each cusp of 𝐷Γ (𝑧) is congruent to some 𝑠𝑖 in Γ. We

may list its cusps as 𝑠1 (𝑧) = 𝛾1,𝑧 · 𝑠𝑖1 , . . . , 𝑠𝑡𝑧 (𝑧) = 𝛾𝑡𝑧 ,𝑧 · 𝑠𝑖𝑡𝑧 for some 𝛾1,𝑧 , . . . , 𝛾𝑡𝑧 ,𝑧 ∈ Γ.
Note that for each 𝑗 , there are infinitely many 𝛾 𝑗 ,𝑧 such that 𝑠 𝑗 (𝑧) = 𝛾 𝑗 ,𝑧𝑠𝑖 𝑗 . But we can
restrict the translations to a bounded number by requiring that 𝛾 𝑗 ,𝑧 · (𝐷 ∩𝑈𝑖 𝑗 ) ⊂ 𝐷𝛾 (𝑧).
Similar to (3.2),

StabΓ (𝑠 𝑗 (𝑧)) = 𝛾 𝑗 ,𝑧 StabΓ (𝑠𝑖 𝑗 )𝛾−1
𝑗 ,𝑧 = {𝛾 ∈ Γ | 𝛾 · (𝛾 𝑗 ,𝑧 ·𝑈𝑖 𝑗 ) ∩ (𝛾 𝑗 ,𝑧 ·𝑈𝑖 𝑗 ) ≠ ∅},
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and similar to (3.3) we define the horocyclic truncation

𝐷Γ (𝑧) = 𝐷Γ (𝑧) ∖
©«
𝑡𝑧⋃
𝑗=1
𝛾 𝑗 ,𝑧 ·𝑈𝑖 𝑗

ª®¬ .
After the above surgery we modify our previous construction of (2.1) by

𝐵Γ (𝑧0) :=
⋃
𝑧∈�̃�

𝐷Γ (𝑧), 𝑈Γ (𝑧0) := {𝛾 ∈ Γ | 𝛾 · 𝐷 ∩ 𝐵Γ (𝑧0) ≠ ∅}. (3.4)

The following two facts account for the significance of our construction.

Lemma 3.8. With the above notations as (3.4), 𝐵Γ (𝑧0) is compact.

Proof. For each 𝑧 ∈ 𝐷 and each cusp 𝑠 𝑗 (𝑧) of 𝐷Γ (𝑧), we have the intersection of
two closed sets 𝛾 𝑗 ,𝑧 · 𝐷 ∩ 𝐷Γ (𝑧) contains some horocyclic region 𝛾 𝑗 ,𝑧 · 𝑈𝑖 𝑗 . Then
𝛾−1
𝑗 ,𝑧

· 𝐷 ∩ 𝐷 ≠ ∅. Since 𝐷 is compact, the set {𝛾 𝑗 ,𝑧 | 𝑧 ∈ 𝐷, 𝑗 ≤ 𝑡𝑧} is finite by local
finiteness. Thus 𝐷Γ (𝑧) is uniformly bounded for 𝑧 ∈ 𝐷 and their union, i.e. 𝐵Γ (𝑧0) is
compact. □

Lemma 3.9. With the notations of Lemma 3.8,𝑈Γ (𝑧0) ∖𝑈Γ (𝑧0) is a finite set.

Proof. Clearly𝑈Γ (𝑧0) ⊂ 𝑈Γ (𝑧0) by definition. Suppose 𝛾 ∈ 𝑈Γ (𝑧0). Then 𝛾 ·𝐷∩𝐷Γ (𝑧) ≠
∅ for some 𝑧 ∈ 𝐷. If 𝛾 ∉ 𝑈Γ (𝑧0), then 𝛾 · 𝐷 ∩ 𝛾 𝑗 ,𝑧𝑈𝑖 𝑗 ≠ ∅ for some horocyclic region
𝑈𝑖 𝑗 of 𝐷, or equivalently 𝐷 ∩ 𝛾−1𝛾 𝑗 ,𝑧𝑈𝑖 𝑗 ≠ ∅. By Proposition 3.7 and our restriction on
the 𝛾 𝑗 ,𝑧’s, there are finitely many elements, say 𝛾1, . . . , 𝛾𝑛 ∈ Γ, such that 𝛾−1𝛾 𝑗 ,𝑧 = 𝛾𝑘
for some 𝑘 . Then 𝛾 ∈ {𝛾 𝑗 ,𝑧𝛾−1

𝑘
| 𝑧 ∈ 𝐷, 𝑗 ≤ 𝑡𝑧 , 𝑘 ≤ 𝑛}, a finite set by the last proof. □

To eliminate the restriction of having no elliptic elements, we resort to

Proposition 3.10 (Nielsen–Fenchel–Fox). Any finitely generated Fuchsian group contains
a subgroup of finite index without elliptic elements.

This was the Fenchel’s conjecture proved by Fox [3], the proof of which contains an
error later fixed by Chau [2]. Note that further by Poincaré’s lemma in group theory, there
exists a normal subgroup of finite index without elliptic elements although we do not
need this latter fact.

Together with Proposition 2.3 we are ready to prove the following

Theorem 3.11. Any co-finite Fuchsian group has finite geodesic covers.

Proof. By Proposition 3.10, choose a finite index subgroup Γ′ ≤ Γ which contains no
elliptic elements. Fix any 𝑧0 ∈ H2, then 𝐵Γ′ (𝑧0) is compact by Lemma 3.8, which implies
that 𝑈Γ′ (𝑧0) is finite by local finiteness. Further by Lemma 3.9 and Proposition 2.2,
𝑈Γ′ (𝑧0) is finite geodesic cover of Γ′. Finally, by Proposition 2.3, Γ has a finite geodesic
of size ≤ [Γ : Γ′] |𝑈Γ′ (𝑧0) |. □

197



Z. Lu

3.3. Geodesic cover of geometrically finite groups of second kind

For the remaining case where Γ is a geometrically finite Fuchsian group of second kind,
we modify our construction through a bisection using Nielsen region 𝑁Γ introduced
as (3.1).

We assume Γ is non-elementary with no elliptic elements. Then for each 𝑧 ∈ H2, the
convex fundamental Dirichlet domain 𝐷Γ (𝑧) intersects 𝑁Γ at a polygon with finitely
many sides in H2. Moreover, each free side of 𝐷Γ (𝑧) is contained in an open interval
in R̂ ∖ Λ(Γ).Write 𝐷Γ (𝑧) := 𝐷Γ (𝑧) ∩ 𝑁Γ. Now for a point 𝑧0 ∈ H2, form the set
𝐵Γ (𝑧0) :=

⋃
𝑧∈𝐷 𝐷Γ (𝑧) and construct

𝑈Γ (𝑧0) := {𝛾 ∈ Γ | 𝛾 · 𝐷 ∩ 𝐵Γ (𝑧0) ≠ ∅}.

Since each 𝐷Γ (𝑧) is a finite-sided polygon possible with cusps of Γ, we may perform the
same horocyclic surgery as in the last subsection on 𝐷Γ (𝑧).

Similar to the proof of Lemma 3.8, 𝐵Γ (𝑧0) has finitely many cusps hence 𝐵Γ (𝑧0)
has finitely many free sides, say contained in the intervals 𝐼1, . . . , 𝐼𝑛 ⊂ 𝑅 ∖ Λ(Γ).
Also, similarly by Lemma 3.8 𝑈Γ (𝑧0) is finite. For any 𝛾 ∈ 𝑈Γ (𝑧0) ∖ 𝑈Γ (𝑧0), 𝛾 · 𝐷
intersects some of the interval 𝐼 𝑗 . Then it has a free side contained in 𝐼 𝑗 and must
intersect a hypercyclic region𝑈 𝑗 having same end points (fixed points of some hyperbolic
elements of Γ) with 𝐼 𝑗 . Here a hypercyclic region is congruent to a set of the form
{𝑧 ∈ H2 | |arg(𝑧) − 𝜋/2| < 𝜃}. However, such 𝛾 if restricted to having intersection with a
Dirichlet region contained in 𝐵Γ (𝑧0) with a free side in 𝐼 𝑗 , amount to be finite due to

Proposition 3.12 (Theorem 9.8.2(iii) of [1]). Let 𝐷 be any locally finite fundamental
domain for Γ and𝑈 be a hypercyclic region. Then 𝐷 meets some finitely many translates
𝛾 ·𝑈, 𝛾 ∈ Γ.

Now that there are finitely many 𝐼 𝑗 ’s, similar to Lemma 3.9 we see that

|𝑈Γ (𝑧0) ∖𝑈Γ (𝑧0) | < ∞.

Covering the general case of non-elementary geometrically finite Fuchsian groups of
second kind using Proposition 3.10 and 2.3, we have proved

Theorem 3.13. Any non-elementary geometrically finite Fuchsian group of second kind
has finite geodesic covers.

Wrapping up the elementary groups resorting to the classification by Proposition 3.4
which are easily shown to have finite geodesic covers by hand, we conclude the proof of
Theorem 1.1, i.e. all geometrically finite Fuchsian groups have finite geodesic covers.
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