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1. Introduction

Let (M.J.g) be a Zn.dimensional almost Hermitian manifold. Me denote

by 7 the natural metric connection on M, and R(X,Y..,)Z is the curvature

operator associated with V. The fundamental 2-form of M is F(X ,Y) =

= g(X,Y) for all vector fields X and Y where X=JX.

An almost Hermittan manifold (M~g) is said to be a G2-manifold ,
if and only if, for aTt vector fields X ,Y and Z on M holds,

where by (~ denote the cyclic sum ~?l . .

. 

In the present paper, we shall obtain some properties of a G2-mani-
fold. In the second paragraph we give some fundamental properties of

a G2-manifold. The curvature fdentities of a G2-manifold are given in
the third paragraph. The G2-manifolds with constant holomorphic sec-
tional curvature are studied in the fourth paragraph, from this sec-

tion and in what follows we consider only G2-manifolds which are RK-

manifolds. . In the fifth section, we deal with so called "the Schur’s

theorem". Finally) the Chern classes of a G2-manifold are given in

the last paragraph.
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2. Preliminaries

On an almost Hermitian manifold (M,J,g) we denote by

It is well known that the following conditions hold :

Proposition 2.1. . Let M be a G2-manifold. Then for all vector fields

X,Y,Z and W on M, we have : :
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Proof. The above conditions are proved using the definition-relation

(U) ) of a G2-manifold.

Proposition 2.2. On a G2-manifold M, for al l vector fields X,Y,Z and

M we have :
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Proof . On a G2-manifold it holds(1.1) and the rel ation : :

Me take the covariant derivative of the above relations and making

use of the condition :

we obtain (2.4). If we substitute JX for X in (2.4) we obtain (2.5).

3. Curvature Identities

On a G2-manifold

is a linear combination of terms of the form :

where A,8,C and D are some combinations of vector fields X,Y,Z and W

on ~~.
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parameters. 
’

Applying (2.1), (2.2), (2.3), (?~.43, (2.5) and the first Bianchi

identity the number of the parameters is reduced to eight.

be an orthonormal local frame field on M.

We denote by r and r* the Ricci tensor and the Ricci *tensor respecti-

vely. The Ricci *tensor r* is defined by

for x,y,z6 Tp M , , where Tp M is the tangent space at pEM.

Using (3.2) we obtain an equation which gives r*(X,Y)- r(X,Y). In

this relation we substitute X,Y for Y,X and subtracting last two equa-

tions we have a relation giving r*(X,Y)- r*(X,Y).

From the last equation substituting JX,JY for X,Y respectively and

adding these two equations we can determine other three parameters.

By virtue of the above calculations we can state the following

assertion.

Theorem 3:1. . If M is a G2-manifold and R its curvature operator, then
for arbitrary vector fields XsY,i and W on M we have :
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4. Curvature tensors on G2-manifolds with constant

holomorphic sectional curvature

We consider in what follows only G2-manifolds which are RK-manifolds
(i.e. R(X,Y,Z,W)= R(X,Y,Z,W) without mentioning it always explicitly.
Because of (3.2) and (3.3) we have : :~ .

We put
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and

for

Proposition 4.1. . Let M be an almost Hermitian manifold and 

Then :

We assume that the holomorphic sectional curvature H(x) is constant

c(p) for ali xET M at each point p of M. Since 0(x)= c(p) ,

we have f rom the propos i ti on 4.1:

By linearizing the above equation and using (4.1) we ootain the

following:

Proposition 4.2. Let M be a G2-manifold of pointwise constant holo-
morphic sectional curvature c(p). If X,Y,Z and Ware arbitrary vector

fields, then the curvature tensor is given by :
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5. On Schur’s theorem 
_~

In this paragraph, we shall consider the following problem :"Let M

be an almost Hermi tian manifold of pointwise constant holomorphic sec-
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tional curvature c(p). When is c a constant function?".

Gray and Vanhecke have proved an interesting theorem ( ~1~ ,thm.4.7).
We shall make a slightly different approach to this problem.

Lemma 5.1. Let M be an RK-manifold. Then :

for a vector field X on M.

Proof. By definition we have

and

By the standard calculation,

and using the second Bianchi identity,

From (5.2) and (5.3) we obtain (~,1~
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Lenxna 5.2. Let M be an almost Hermitian manifold. Then : :

for a vector field X on M.

Proof . Direct computations give : :

The equation (5.4) can easily come from (5.5) and (5.6).

By the definition of Ricci tensor and Ricci *tensor we obtain : 

Proposition 5.3. If M is a 2m-dimensional almost Hermitian manifold

of pointwise constant holomorphic sectional curvature c(p), then : :

If M is an RK-manifold, then :

for 

Now, we shall prove the Schur’s theorem for almost Hermitian mani-

folds under some conditions.

Theorem 5.4. Let M be a connected RK-manifold of pointwise holomorphíc

sectional curvature c(p), , with dim M~4. If
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for arbitrary vector fields X,Y,Z and W, then c is a constant functi-

on. ..

Proof. Differentiating (5.7) with respect to arbitrary E., we have

Making use of (5.1), (5.4), (5.8) and (5.9) we obtain :

By (5.10) and (5.11)

from which it follows that c is a constant function.

In particular we have :

Propos i ti on 5.5. If M is a connected G2-manifold of pointwise hol o-
morphic sectional curvature c(p), with dim M > 4, then c is a constant

function if M is an F-space (in the sence of ~4~ ~.

6. The Chern classes of a G2-manifold.
On an almost Hermitian manifold M always there is a connection D

adapted to g and J ( ‘3~ ~. Denote by S the curvature tensor of D, i.e.
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The importance of S is that because 0 where D X Y= ~ ~ ~~ x Y-
- It is possible to express the Chern classes in terms of S.

Let M be a compact G2-manifold be a

local frame f i el d. Then

is a globaly defined closed form which represents the total Chern class

of M via de Rham’s theorem, where
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We can state the following assertion.

Proposition 6.1. If M is a compact G2-manifold, then the total Chern

class is given by (6.1).

Corollary 6.2. Let M be a compact G2-manifold. The first Chern

class Yi of M is given by
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for arbitrary vector fields X and Y, where {E~...,E~E~...~} is a

local frame field on M. 
’ .....
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