Annales mathématiques Blaise Pascal

Ann Verdoodt

Continued fractions for finite sums
Annales mathématiques Blaise Pascal, tome 1, n ${ }^{\circ} 2$ (1994), p. 71-84
http://www.numdam.org/item?id=AMBP_1994__1_2_71_0
© Annales mathématiques Blaise Pascal, 1994, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Ann. Math. Blaise Pascal, Vol. 1, N° 2, 1994, pp. 71-84

CONTINUED FRACTIONS FOR FINITE SUMS

Ann Verdoodt

Abstract

Our aim in this paper is to construct continued fractions for sums of the type $\sum_{i=0}^{n} b_{i} z^{c(i)}$ or $\sum_{i=0}^{n} b_{i} / z^{c(i)}$, where $\left(b_{n}\right)$ is a sequence such that b_{n} is different from zero if n is different from zero, and $\mathrm{c}(\mathrm{n})$ is an element of \mathbb{N}.

Résumé

Le but est de construire des fractions continues pour des sommes du type $\sum_{i=0}^{n} b_{i} z^{c(i)}$ or $\sum_{i=0}^{n} b_{i} / z^{c(i)}$, où $\left(b_{n}\right)$ est une suite telle que b_{n} est différent de zéro pour n différent de zéro, et $\mathrm{c}(\mathrm{n})$ est un élément de \mathbb{N}.

1. Introduction

$\left[a_{0}, a_{1}, a_{2}, \ldots.\right]$ denotes the continued fraction $a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}$,
and $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ denotes $a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots a_{n-1}+\frac{1}{a_{n}}}}$.

The a_{i} 's are called the partial quotients (or simply the quotients), and [$\left.a_{0}, a_{1}, \ldots, a_{n}\right]$ is called a finite continued fraction.

Our aim in this paper is to construct continued fractions for sums of the type $\sum_{i=0}^{n} b_{i} z^{c(i)}$ or $\sum_{i=0}^{n} b_{i} / z^{c(i)}$, where $c(i)$ is an element of \mathbb{N}.

In section 2, we find continued fractions for finite sums of the type $\sum_{i=0}^{n} b_{i} z^{i} \quad(c(i)=i)$ or $\sum_{i=0}^{n} b_{i} z^{q^{i}}\left(c(i)=q^{i}\right)$, where $\left(b_{n}\right)$ is a sequence such that b_{n} is different from zero if n is different from zero, and where q is a natural number different from zero and one .
Therefore, we start by giving a continued fraction for the sum $\sum_{i=0}^{n} b_{i} T^{3^{i}}$, where b_{i} is different from zero for all i different from zero (b_{i} is a constant in T). This can be found in theorem 1 .

If we replace b_{i} by $b_{i} z^{i}$ in theorem 1 , and we put T equal to one, we find a continued fraction for $\sum_{i=0}^{n} b_{i} z^{i}$ (theorem 2), and if we replace b_{i} by $b_{i} z^{q^{i}}$ in theorem 1 , and we put T equal to one, we find a continued fraction for $\sum_{i=0}^{n} b_{i} z^{q^{i}}$ (theorem 3) (q is a natural number different from zero and one).

In section 3 we find continued fractions for finite sums of the type $\sum_{i=0}^{n} \frac{b_{i}}{z^{c(i)}}$, for some sequences $\left(b_{n}\right)$ and $(c(n))$, where $c(n)$ is a natural number.
In theorem 4 , we find a result for $c(i)$ equal to 2^{i} (for all i).
Finally, in theorem 5 , we give a continued fraction for $\sum_{i=0}^{v} \frac{b_{i}}{z^{c(i)}}$, where $c(0)$ equals zero, and $c(n+1)-2 c(n) \geq 0$.

The results in this paper are extensions of results that can be found in [2], [3] and [4].
Acknowledgement : I thank professor Van Hamme for the help and the advice he gave me during the preparation of this paper.
2. Continued fractions for sums of the type $\sum_{i=0}^{n} b_{i} z^{i}$

All the proofs in sections 2 and 3 can be given with the aid of the following simple lemma :

Lemma

Let i)

$$
\begin{aligned}
& p_{0}=a_{0}, \quad q_{0}=1, \quad p_{1}=a_{1} a_{0}+1, \quad q_{1}=a_{1}, \\
& p_{n}=a_{n} p_{n-1}+p_{n-2}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2} \quad(n \geq 2),
\end{aligned}
$$

then we have
ii) $\quad \frac{\mathrm{p}_{\mathrm{n}}}{\mathrm{q}_{\mathrm{n}}}=\left[\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right]$
iii) $p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1} \quad(n \geq 1)$
iv) $\frac{q_{n}}{q_{n-1}}=\left[a_{n}, a_{n-1}, \ldots, a_{1}\right](n \geq 1)$

These well-known results can e.g. be found in [1] .

First we give a continued fraction for the sum $\sum_{i=0}^{n} b_{i} T^{3 i}$, where b_{i} is different from zero for all i different from zero (b_{i} is a constant in T):

Theorem 1

Let $\left(b_{n}\right)$ be a sequence such that $b_{n} \neq 0$ for all $n>0$.
Define a sequence $\left(x_{n}\right)$ by putting $x_{0}=\left[b_{0} T\right], x_{1}=\left[b_{0} T, b_{1}^{-1} T^{-3}\right]$, and if $x_{n}=\left[a_{0}, a_{1}, \ldots, a_{2^{n-1}}\right]$ then setting $x_{n+1}=\left[a_{0}, a_{1}, \ldots, a_{2^{n-1}},-b_{n}^{2} / b_{n+1} T^{-3^{n}},-a_{2^{n-1}}, \ldots,-a_{1}\right]$.

Then $x_{n}=\sum_{i=0}^{n} b_{i} T^{3^{i}} \quad$ for all $n \in \mathbb{N}$.
Proof
For $\mathrm{n}=0$ the theorem clearly holds .
If n is at least one, we prove that $x_{n}=\sum_{i=0}^{n} b_{i} T^{3 i}$ and $q_{2^{n-1}}=b_{n}^{-1} T^{-3^{n}}$.
We prove this by induction. For $\mathrm{n}=1$ the assertion holds .

Suppose it holds for $1 \leq n \leq j$. We then prove the assertion for $n=j+1$.
$x_{j+1}=\left[a_{0}, a_{1}, \ldots, a_{2+1}{ }_{1-1}\right]$.
$=\left[a_{0}, a_{1}, \ldots, a_{2 j_{-1}}, a_{2 j},-\left[a_{2 j-1}, \ldots, a_{1}\right]\right] \quad$ (using the definition of a continued fraction)
$=\frac{-q_{2 j-1} p_{2 j}+q_{2 j-2} p_{2 j-1}}{-q_{2 j-1} q_{2 j}+q_{2 j-2} q_{2 j-1}}$
(by i), ii) and iv) of the lemma)
$=\frac{-q_{2 j-1}\left(a_{2 j} p_{2 j-1}+p_{2 j-2}\right)+q_{2 j-2} p_{2 j-1}}{-q_{2 j-1}\left(a_{2 j} q_{2 j-1}+q_{2 j-2}\right)+q_{2 j-2} q_{2 j-1}} \quad$ (by i) of the lemma)
now we have $\mathrm{p}_{2 j-1} \mathrm{q}_{2 j-2}-\mathrm{p}_{2 j-2} \mathrm{q}_{2 j_{-1}}=(-1)^{2 j-2}=1 \quad$ (by iii) of the lemma)
$=\frac{\mathrm{p}_{2 j-1}}{\mathrm{q}_{2 j-1}}-\frac{1}{\mathrm{a}_{2 j}\left(\mathrm{q}_{2 j-1}\right)^{2}}$

$$
\text { now } a_{2 j}\left(q_{j-1}\right)^{2}=-T^{-3 j} \frac{b_{j}^{2}}{b_{j+1}}\left(b_{j}^{-1} T^{-3 j}\right)^{2}=-T^{-j j+1} b_{j+1}^{-1}
$$

$=\left[a_{0}, a_{1}, \ldots, a_{2 j-1}\right]+T^{3+1} b_{j+1}=\sum_{i=0}^{j+1} b_{i} T^{3 i} \quad$ (by the induction hypothesis)
We still have to prove $q_{2 j+1-1}=b_{j+1}^{-1} T^{-3(j+1)}$. Let k be at least one
Then p_{k} and q_{k} are polynomials in $\mathrm{U}=\mathrm{T}^{-1} . \operatorname{deg} \mathrm{q}_{\mathrm{k}}>\operatorname{deg} \mathrm{q}_{\mathrm{k}-1}$, and the term with the highest degree in q_{k} is given by $a_{k} \cdot a_{k-1}, \ldots . a_{1}$. This follows from i).
If r is a polynomial in U that divides p_{k} and q_{k}, then r must be a constant in U. This immediately follows from iii). If r divides p_{k} and q_{k}, then r divides $(-1)^{k-1}$. So r must be a constant.
Since $\sum_{i=0}^{j+1} b_{i} T^{3^{i}}=\left[a_{0}, a_{1}, \ldots, a_{2 j+1-1}\right]=\frac{p_{2 j+1-1}}{q_{2 j+1-1}}$, we have
$\frac{p_{2 j+1-1}}{q_{2 j+1}}=\sum_{i=0}^{j+1} \frac{b_{i} T^{3^{i}} T^{-3^{j+1}}}{T^{-3^{j+1}}}=\sum_{i=0}^{j+1} \frac{b_{i} U^{3 j+1-3^{i}}}{U^{3+1}}=\frac{b_{j+1}+\sum_{i=0}^{j} b_{i} U^{j j^{j+1}-3^{i}}}{U^{3 j+1}}$
and we conclude that $q_{2 j+1-1}=C U^{3 j+1}=\mathrm{CT}^{-3 j+1}$ where C is a constant.
By the previous remark, we have that

$$
q_{2 j+1-1}=\text { CT }^{-3 j+1}=\text { C U }^{j i+1}=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{2 j+1-1}
$$

$$
=\quad(-1)^{2^{j-1}}\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{2 j_{1}}\right)^{2} \cdot a_{2 j}=-\left(q_{2 j-1}\right)^{2} \cdot a_{2 j}
$$

(by the induction hypothesis, since $q_{2 j-1}=b_{j}^{-1} T^{-3 j}=a_{1} . a_{2} . \ldots . a_{2 j-1}$)
$=\quad-\left(b_{j}^{-1} T^{-3 j}\right)^{2} \cdot\left(-T^{-3 j} \frac{b_{i}^{2}}{b_{j+1}}\right)=\frac{T^{-3 j+1}}{b_{j+1}} \quad$ which we wanted to prove.

We immediately have the following

Proposition

Let $x_{0}=\left[a_{0}\right], x_{1}=\left[a_{0}, a_{1}\right]$ and if $x_{n}=\left[a_{0}, a_{1}, \ldots, a_{2} n_{1}\right]$, then
$x_{n+1}=\left[a_{0}, a_{1}, \ldots, a_{2 n-1}, a_{2^{n}},-a_{22^{n}-1}, \ldots,-a_{1}\right]$.
If n is at least two, then the continued fraction of x_{n} consists only of the partial quotients $a_{2} \mathrm{n}-1, a_{2 n-2},-a_{2 n-2}, \ldots, a_{1},-a_{1}$ and a_{0}.

Then the distribution of the partial quotients for x_{n} is as follows ($n \geq 2$): partial quotient
$\begin{array}{lllllllllllllllll}a_{2 n-1} & a_{2 n-2} & -a_{2 n-2} & a_{2 n-3} & -a_{2 n-3} & \ldots & a_{2 i} & -a_{2 i} & \ldots & a_{1} & -a_{1} & a_{0}\end{array}$
number of occurrences
$\begin{array}{lllllllllll}1 & 1 & 1 & 2 & 2 & \ldots & 2^{\mathrm{ni-i}-2} & 2^{\mathrm{ni-i}-2} & \ldots & 2^{\mathrm{n}-2} & 2^{\mathrm{n}-2}\end{array}$
Proof
We give a proof by induction on n.
$x_{2}=\left[a_{0}, a_{1}, a_{2}, a_{3}\right]=\left[a_{0}, a_{1}, a_{2},-a_{1}\right]$, so the quotients $a_{0}, a_{1},-a_{1}, a_{2}$, occur once .
So for n equal to 2 the assertion holds. Suppose it holds for $2 \leq n \leq j$. Then we prove it holds for $n=j+1$. Since $x_{j+1}=\left[a_{0}, a_{1}, \ldots, a_{2 j+1-1}\right]=\left[a_{0}, a_{1}, \ldots, a_{2 j-1}, a_{2 j},-a_{2 j-1}, \ldots,-a_{1}\right]$, it is clear that the partial quotients $a_{2 j}$ and a_{0} occur only once.

In the partial quotients $a_{1}, \ldots, a_{2 j-1}$ we have
partial quotient

$$
\begin{array}{lllllllllll}
a_{2 j-1} & a_{2 j-2} & -a_{2 j-2} & a_{2 j-3} & -a_{2 j-3} & \ldots & a_{2 i} & -a_{2 i} & \ldots & a_{1} & -a_{1}
\end{array}
$$

number of occurrences

$$
\begin{array}{llllllllll}
1 & 1 & 1 & 2 & 2 & \ldots & 2^{\mathrm{j}-\mathrm{i}-2} & 2^{\mathrm{j}-\mathrm{i}-2} & \ldots & 2^{\mathrm{j}-2}
\end{array} 2^{\mathrm{j}-2}
$$

so in the partial quotients $-a_{1}, \ldots,-a_{2 j-1}$ we have partial quotient

$$
\begin{array}{llllllllll}
-a_{2 j-1} & a_{2 j-2} & -a_{2 j-2} & a_{2 j-3} & -a_{2 j}-3 & \ldots & a_{2 i} & -a_{2 i} & \ldots & a_{1}
\end{array}-a_{1}
$$

number of occurrences

$$
\begin{array}{lllllllllll}
1 & 1 & 1 & 2 & 2 & \ldots & 2^{j \mathrm{j}-2} & 2^{\mathrm{j}-\mathrm{i}-2} & \ldots & 2^{\mathrm{j}-2} & 2^{\mathrm{j}-2}
\end{array}
$$

This proves the proposition.

Using theorem 1, we immediately have the following :

Theorem 2

Let $\left(b_{n}\right)$ be a sequence such that b_{n} is different from zero for all n different from zero .
Define a sequence $\left(x_{n}\right)$ by putting $x_{0}=\left[b_{0}\right], x_{1}=\left[b_{0}, b_{1}^{-1} z^{-1}\right]$ and if $x_{n}=\left[a_{0}, a_{1}, \ldots, a_{2 n_{-1}}\right]$
then setting $x_{n+1}=\left[a_{0}, a_{1}, \ldots, a_{2 n-1},-b_{n}^{2} / b_{n+1} z^{n-1},-a_{2 n-1}, \ldots,-a_{1}\right]$,
then $x_{n}=\sum_{i=0}^{n} b_{i} z^{i}$ for all $n \in \mathbb{N}$.
Proof
Replace b_{i} by $b_{i} z^{i}$ in theorem 1 , and put T equal to one .

Some examples

1) Let $x_{n}=\sum_{i=0}^{n} x^{i}$ (i.e. $b_{i}=1$ for all i). Then $a_{0}=1, a_{1}=x^{-1}$ and $a_{2 n}=-x^{n-1}(n \geq 1)$
2) Let $x_{n}=\sum_{i=0}^{n} \frac{x^{i}}{i!}$ (i.e. $\lim _{n \rightarrow \infty} x_{n}=e^{x}$).

$$
\text { Then } a_{0}=1, a_{1}=x^{-1} \text { and } a_{2 n}=-\frac{n+1}{n!} x^{n-1}(n \geq 1)
$$

3) Let $x_{n}=\sum_{i=0}^{n} \frac{(-1)^{i} x^{2 i}}{(2 i)!}$ (i.e. $\lim _{n \rightarrow \infty} x_{n}=\cos x$).

Then $a_{0}=1 \quad, a_{1}=-2 x^{-2}$ and $a_{2 n}=(-1)^{n} \frac{(2 n+2)(2 n+1)}{(2 n)!} x^{2 n-2}(n \geq 1)$
4) Let $x_{n}=\sum_{i=0}^{n} \frac{(-1)^{i} x^{2 i+1}}{(2 i+1)!}$ (i.e. $\left.\lim _{n \rightarrow \infty} x_{n}=\sin x\right)$.

$$
\text { Then } a_{0}=x, a_{1}=-6 x^{-3} \text { and } a_{2 n}=(-1)^{n} \frac{(2 n+3)(2 n+2)}{(2 n+1)!} x^{2 n-1}(n \geq 1)
$$

In an analogous way as in the previous theorem, we have

Theorem 3

Let (b_{n}) be a sequence such that b_{n} is different from zero for all n different from zero, and let q be a natural number different from zero and one.
Define a sequence $\left(x_{n}\right)$ by putting $x_{0}=\left[b_{0} z\right], x_{1}=\left[b_{0} z, b_{1}^{-1} z^{-q}\right]$ and if $x_{n}=\left[a_{0}, a_{1}, \ldots, a_{2^{n-1}}\right]$ then setting $x_{n+1}=\left[a_{0}, a_{1}, \ldots, a_{2^{n-1}},-b_{n}^{2} / b_{n+1} z^{-q^{n}(q-2)},-a_{2^{n-1}}, \ldots,-a_{1}\right]$.
Then $x_{n}=\sum_{i=0}^{n} b_{i} z^{q^{i}}$ for all $n \in \mathbb{N}$.
Proof
Replace b_{i} by $b_{i} z^{q^{i}}$ in theorem 1 , and put T equal to one .

An Example

In [4] we find the following :
Let \mathbb{F}_{q} be the finite field of cardinality q. Let $A=\mathbb{F}_{q}[X], K=\mathbb{F}_{q}(X), K_{\infty}=F_{q}((1 / X))$ and let Ω be the completion of an algebraic closure of K_{∞}. Then $\mathrm{A}, \mathrm{K}, \mathrm{K}_{\infty}, \Omega$ are wellknown analogous of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ respectively.

Let $[\mathrm{i}]=\mathrm{X}^{\mathrm{q}^{\mathrm{i}}}-\mathrm{X}$ (the symbol [i] does not have the same meaning as in $\mathrm{X}_{0}=\left[\mathrm{a}_{0}\right]$). This is just the product of monic irreducible elements of A of degree dividing i.

Let $D_{0}=1, D_{i}=[i] D_{i-1}^{q}$ if $i>0$. This is the product of monic elements of A of degree i.
Let us introduce the following function : $\mathrm{e}(\mathrm{Y})=\sum_{i=0}^{\infty} \frac{\mathrm{Y}^{\mathrm{q}^{i}}}{\mathrm{D}_{\mathrm{i}}} \quad(\mathrm{Y} \in \Omega)$.
Then Thakur gives the following theorem:
Define a sequence x_{n} by setting $x_{1}=\left[0, Y^{-q} D_{1}\right]$ and if $x_{n}=\left[a_{0}, a_{1}, \ldots, a_{2^{n-1}}\right]$ then setting $x_{n+1}=\left[a_{0}, a_{1}, \ldots, a_{2 n-1},-Y^{-q^{n}(q-2)} D_{n+1} / D_{n}^{2},-a_{2 n-1}, \ldots,-a_{1}\right]$, then $x_{n}=\sum_{i=1}^{n} \frac{Y^{q^{i}}}{D_{i}}$ for all $n \in \mathbb{N}$.

In particular, $e(Y)=Y+\lim _{n \rightarrow \infty} X_{n}$.
If we put $b_{i}=D_{i}^{-1}$ if $i>0$, and $b_{0}=0$ in theorem 3 , then we find the result of Thakur .

3. Continued fractions for sums of the type $\sum_{i=0}^{n} \frac{b_{i}}{\mathbf{z}^{(i)}}$

In this section, b_{i} is a constant in z , and $\mathrm{c}(\mathrm{i})$ is a natural number. Our first theorem in this section gives the continued fraction for the sum $\sum_{i=0}^{n} \frac{b_{i}}{z^{2}}$ (i.e. $c(i)=2^{i}$ for all $\left.i\right)$:

Theorem 4

Let $\left(b_{n}\right)$ be a sequence such that b_{n} is different from zero for all n. A continued fraction for the sum $\sum_{i=0}^{n} \frac{b_{i}}{z^{2^{i}}}$ can be given as follows:
Put $x_{0}=\left[0, z / b_{0}\right], x_{1}=\left[0, \frac{z}{b_{0}}-\frac{b_{1}}{b_{0}^{2}}, \frac{b_{0}^{3} z}{b_{1}^{2}}+\frac{b_{0}^{2}}{b_{1}}\right]$ and if $x_{k}=\left[a_{0}, a_{1}, \ldots, a_{2} k\right]$ then setting $x_{k+1}=\left[a_{0}, a_{1}, \ldots, a_{2 k-1}, a_{2 k}+\gamma_{k+1}, \gamma_{k+1}^{-2} a_{2 k}-\gamma_{k+1}^{-1}, a_{2} k_{+2}, \ldots, a_{2} k+1\right]$ where $\gamma_{k+1}=b_{k+1} \frac{\left(b_{0}\right)^{2 k+1}}{\left(b_{1}\right)^{2 k+1}}$, $a_{2} k_{+i}=\gamma_{k+1}^{2} a_{2 k_{i}+1}$ if i is even, and $a_{2} k_{+i}=\gamma_{k+1}^{-2} a_{2 k_{-i+1}}$ if i is odd $\left(2 \leq i \leq 2^{k}\right)$, then $x_{k}=\sum_{i=0}^{k} \frac{b_{i}}{z^{2^{1}}} \quad$ for all $k \in \mathbb{N}$.

Proof
If we have $x_{n}=\left[a_{0}, a_{1}, \ldots, a_{2 n}\right]=\frac{p_{2^{n}}}{q_{2^{n}}}$, we show by induction that x_{n} equals $\sum_{i=0}^{n} \frac{b_{i}}{2^{2^{1}}}$, and that $q_{2^{n}}$ equals $z^{2^{n}} \frac{b_{0}^{2^{n}}}{b_{1}^{2^{n}}}$. For $n=0,1$ this follows by an easy calculation.

Suppose the assertion holds for $0 \leq n \leq k$. Then we show it holds for $n=k+1$.
The first part of the proof , i.e. showing that $x_{k+1}=\sum_{i=0}^{k+1} \frac{b_{i}}{z^{2^{2}}}$ is analogous to the first part of the proof of [2], theorem 1.

$$
\begin{aligned}
& x_{k+1}=\left[a_{0}, a_{1}, \ldots, a_{2 k-1}, a_{2 k}+\gamma_{k+1}, \gamma_{k+1}^{-2} a_{2 k}-\gamma_{k+1}^{-1}, a_{2 k+2}, \ldots, a_{2} k+1\right] \\
& =\left[a_{0}, a_{1}, \ldots, a_{2 k-1}, a_{2 k}+\gamma_{k+1}, \gamma_{k+1}^{-2} a_{2 k}-\gamma_{k+1}^{-1}, \gamma_{k+1}^{2}\left[a_{2 k_{-1}}, a_{2 k-2}, a_{2 k-3}, \ldots, a_{2}, a_{1}\right]\right]
\end{aligned}
$$

(using the definition of a continued fraction)

Now if $\left[a_{0}, a_{1}, \ldots, a_{2 k}\right]=\frac{p_{2 k}}{q_{2 k}}$, then $\left[a_{0}, a_{1}, \ldots, a_{2 k-1}\right]=\frac{p_{2 k-1}}{q_{2 k-1}}$ and so
$\left[a_{0}, a_{1}, \ldots, a_{2} k_{-1}, a_{2} k+\gamma_{k+1}\right]=\frac{\left(a_{2} k+\gamma_{k+1}\right) p_{2 k-1}+p_{2 k-2}}{\left(a_{2} k+\gamma_{k+1}\right) q_{2 k-1}+q_{2 k-2}}=\frac{p_{2} k+\gamma_{k+1} p_{2 k-1}}{q_{2} k+\gamma_{k+1} q_{2} k_{-1}}$
(by i) and ii) of the lemma)
Then $\left[a_{0}, a_{1}, \ldots, a_{2 k-1}, a_{2 k}+\gamma_{k+1}, \gamma_{k+1}^{-2} a_{2 k}-\gamma_{k+1}^{-1}\right]=\frac{\left(\gamma_{k+1}^{-2} a_{2 k}-\gamma_{k+1}^{-1}\right)\left(p_{2 k}+\gamma_{k+1} p_{2} k_{-1}\right)+p_{2 k-1}}{\left(\gamma_{k+1}^{-2} a_{2 k}-\gamma_{k+1}^{-1}\right)\left(q_{2} k+\gamma_{k+1} q_{2} k_{-1}\right)+q_{2 k-1}}$
(by i) and ii) of the lemma)
And so

$$
\left[a_{0}, a_{1}, \ldots, a_{2 k-1}, a_{2 k}+\gamma_{k+1}, \gamma_{k+1}^{-2} a_{2 k}-\gamma_{k+1}^{-1}, \gamma_{k+1}^{2}\left[a_{2 k_{-1}}, a_{2} k_{-2}, a_{2 k-3}, \ldots, a_{2}, a_{1}\right]\right]
$$

(by iv) of the lemma)
If we use the following equalities

$$
\begin{array}{ll}
\left(p_{n}-p_{n-2}\right) q_{n-1}=a_{n} p_{n-1} q_{n-1} & \left(q_{n}-q_{n-2}\right) p_{n}=a_{n} p_{n} q_{n-1} \\
\left(q_{n}-q_{n-2}\right) q_{n}=a_{n} q_{n} q_{n-1} & \left(q_{n}-q_{n-2}\right) q_{n-1}=a_{n} q_{n-1}^{2} \quad \text { (by i) of the lemma) }
\end{array}
$$

then we find that the numerator equals $q_{2 k} p_{2 k}+\gamma_{k+1}$ (by iii) of the lemma) and the denominator equals $\left(\mathrm{q}_{2} \mathrm{k}\right)^{2}$.

So we conclude
$x_{k+1}=\frac{p_{2} k}{q_{2} k}+\frac{\gamma_{k+1}}{\left(q_{2} k\right)^{2}}=\sum_{i=0}^{k} \frac{b_{i}}{z^{2}}+\frac{\left(b_{1}\right)^{2^{k+1}}}{z^{2^{k+1}}\left(b_{0}\right)^{2^{k+1}}} b_{k+1} \frac{\left(b_{0}\right)^{2^{k+1}}}{\left(b_{1}\right)^{2^{2+1}}}=\sum_{i=0}^{k+1} \frac{b_{i}}{z^{2^{i}}}$
We still have to show $\mathrm{q}_{2} k+1=\mathrm{z}^{2^{k+1}} \frac{\left(\mathrm{~b}_{0}\right)^{2^{k+1}}}{\left(\mathrm{~b}_{1}\right)^{2^{k+1}}}$.
In the same way as in the proof of theorem 1 , we find that $q_{2^{k}+1}=C z^{2^{k+1}}$ where C is a constant .
Let α_{i} be the coefficient of z in a_{i}.
Then for C, the coefficient of $z^{2^{k+1}}$ in $q_{2} k+1$, we have
$C=\alpha_{1} \alpha_{2} \ldots \alpha_{2 k-1} \alpha_{2 k}\left(\gamma_{k+1}^{-2} \alpha_{2 k}\right)\left(\gamma_{k+1}^{2} \alpha_{2 k_{-1}}\right)\left(\gamma_{k+1}^{-2} \alpha_{2 k-2}\right)\left(\gamma_{k+1}^{2} \alpha_{2 k-3}\right) \ldots\left(\gamma_{k+1}^{2} \alpha_{1}\right)$
$=\left(\alpha_{1} \alpha_{2} \ldots \alpha_{2 k-1} \alpha_{2} k\right)^{2}=\left(\text { coefficient of } z^{2^{k}} \text { in } q_{2 k}\right)^{2}=\left(\frac{\left(b_{0}\right)^{2 k}}{\left(b_{1}\right)^{2 k}}\right)^{2}=\frac{\left(b_{0}\right)^{2 k+1}}{\left(b_{1}\right)^{2 k+1}}$
and we conclude $q_{2^{k+1}}=z^{2 k+1} \frac{\left(b_{0}\right)^{2 k+1}}{\left(b_{1}\right)^{2^{k+1}}}$. This finishes the proof.

Some examples

1) If we put b_{i} equal to one for all i, and z is an integer at least 3 , then we find theorem 1 of [2]:
Let $B(u, v)=\sum_{i=0}^{v} \frac{1}{u^{2}}=\frac{1}{u}+\frac{1}{u^{2}}+\frac{1}{u^{4}}+\ldots+\frac{1}{u^{2}} \quad(u \geq 3, u$ an integer $)$
Then $B(u, 0)=[0, u], B(u, 1)=[0, u-1, u+1]$, and if $B(u, v)=\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}$
then $B(u, v+1)=\left[a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}+1, a_{n}-1, a_{n-1}, a_{n-2}, \ldots, a_{2}, a_{1}\right]$.
2) Put $b_{i}=\lambda^{i}$. Then we have $x_{0}=[0, u], x_{1}=\left[0, u-\lambda, \frac{u}{\lambda^{2}}+\frac{1}{\lambda}\right]$ and if $x_{k}=\left[a_{0}, a_{1}, \ldots, a_{2} k\right]$, then $x_{k+1}=\left[a_{0}, a_{1}, \ldots, a_{2 k+1}, a_{2 k}+\gamma_{k+1}, \gamma_{k+1}^{-2} a_{2 k}-\gamma_{k+1}^{-1}, a_{2} k_{+2}, \ldots, a_{2 k+1}\right]$, where $\gamma_{k+1}=\lambda^{k+1-2^{k+1}}$, $a_{2} k_{+i}=\gamma_{k+1}^{2} a_{2} k_{i+1}$ if i is even, and $a_{2 k_{k}}=\gamma_{k+1}^{-2} a_{2 k_{i}+1}$ if i is odd $\left(2 \leq i \leq 2^{k}\right)$,
then $x_{k}=\sum_{i=0}^{k} \frac{\lambda^{i}}{u^{2}}$ for all $k \in \mathbb{N}$.

For some some sequences $\left(b_{n}\right)$ and $(c(n))$, we can give a continued fraction for the sum
$\sum_{i=0}^{v} \frac{b_{i}}{z^{c(i)}}$ as follows:

Theorem 5

Let (b_{n}) be a sequence such that $b_{n} \neq 0$ for all n, and $b_{0} \neq 0,1,-1$, and $1 / 2$, and let ($c(n)$) be a sequence such that $c(0)=0$, and $c(n+1)-2 c(n) \geq 0$.
Put $\mathrm{x}_{0}=\left[-\mathrm{b}_{0}^{2}, \frac{1}{\mathrm{~b}_{0}}-1, \frac{1}{\mathrm{~b}_{0}}+1\right]=\left[\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}\right]=\frac{\mathrm{p}_{2}}{\mathrm{q}_{2}}=\frac{\mathrm{p}_{(0)}}{\mathrm{q}_{(0)}}$, and if $x_{v}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}=\frac{p_{(v)}}{q_{(v)}}$,
then setting $x_{v+1}=\left[a_{0}, a_{1}, \ldots, a_{n}, \alpha_{v} z^{d(v)}-1,1, a_{n}-1, a_{n-1}, \ldots, a_{2}, a_{1}\right]$,
where $d(v)=c(v+1)-2 c(v), \alpha_{v}=\frac{b_{v}^{2}}{b_{v+1}}$ if $v \geq 1$ and $\alpha_{0}=\frac{b_{0}^{4}}{b_{1}}$,
then $x_{v}=\sum_{i=0}^{v} \frac{b_{i}}{z^{c(i)}}$ for all v in \mathbb{N}, and $q_{(v)}=\frac{z^{c(v)}}{b_{v}}$ if $v \geq 1, q_{(0)}=\frac{1}{\left(b_{0}\right)^{2}}$

Remarks

1) The special form of $b_{0}, x_{0}=b_{0}=\left[-b_{0}^{2}, \frac{1}{b_{0}}-1, \frac{1}{b_{0}}+1\right]=\left[a_{0}, a_{1}, a_{2}\right]$ is needed since in the expression $\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}$ the integer n must be even.
2) The value of n is $n=2^{v+1}+2^{v}+2$ (this can be easily seen by induction)
3) The only partial quotients that appear are $-b_{0}^{2}, \frac{1}{b_{0}}-1, \frac{1}{b_{0}}+1, \frac{1}{b_{0}}, \frac{1}{b_{0}}-2, \alpha_{v} z^{\mathrm{d}(v)}-1$, and 1 , so b_{0} must be different from $0,1,-1$, and $1 / 2$.

Proof

For v equal to 0,1 or 2 we find this result by an easy computation .
We prove the theorem by induction on v.
Suppose we have $x_{v}=\sum_{i=0}^{v} \frac{b_{i}}{z^{c(i)}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}=\frac{p_{(v)}}{q_{(v)}}$ with $q_{(v)}=\frac{z^{c(v)}}{b_{v}}$
Then we show that $x_{v+1}=\left[a_{0}, a_{1}, \ldots, a_{n}, \alpha_{v} z^{d(v)}-1,1, a_{n}-1, a_{n-1}, \ldots, a_{2}, a_{1}\right]=\sum_{i=0}^{v+1} \frac{b_{i}}{z^{c(i)}}$ with $q_{(v+1)}=\frac{z^{c(v+1)}}{b_{v+1}}$.

The first part of the proof, i.e. showing that $x_{v+1}=\sum_{i=0}^{v+1} \frac{b_{i}}{z^{(i)}}$, is analogous to the first part of the proof of the theorem in [3].

Now, by repeated use of i) an ii) of the lemma, we have

$$
\begin{aligned}
& {\left[a_{0}, a_{1}, \ldots, a_{n}, \alpha_{v} z^{d(v)}-1\right]=\frac{\left(\alpha_{v} z^{d(v)}-1\right) p_{n}+p_{n-1}}{\left(\alpha_{v} z^{d(v)}-1\right) q_{n}+q_{n-1}} ;} \\
& {\left[a_{0}, a_{1}, \ldots, a_{n}, \alpha_{v} z^{d(v)}-1,1\right]=\frac{\alpha_{v} z^{d(v)} p_{n}+p_{n-1}}{\alpha_{v} z^{d(v)} q_{n}+q_{n-1}} ;} \\
& {\left[a_{0}, a_{1}, \ldots, a_{n}, \alpha_{v} z^{d(v)}-1,1, a_{n}-1\right]=\frac{a_{n} \alpha_{v} z^{d(v)} p_{n}+a_{n} p_{n-1}-p_{n}}{a_{n} \alpha_{v} z^{d(v)} q_{n}+a_{n} q_{n-1}-q_{n}}} \\
& x_{v+1}=\left[a_{0}, a_{1}, \ldots, a_{n}, \alpha_{v} z^{\left.d(v)-1,1, a_{n}-1, a_{n-1}, \ldots, a_{1}\right]}\right. \\
& =\left[a_{0}, a_{1}, \ldots, a_{n}, \alpha_{v} z^{d(v)}-1,1, a_{n}-1,\left[a_{n-1}, \ldots, a_{1}\right]\right]
\end{aligned}
$$

$$
=\frac{a_{n} q_{n-1} \alpha_{v} z^{d(v)} p_{n}+q_{n-2} \alpha_{v} z^{d(v)} p_{n}+a_{n} q_{n-1} p_{n-1}-q_{n-1} p_{n}+q_{n-2} p_{n-1}}{a_{n} q_{n-1} \alpha_{v} z^{d(v)} q_{n}+q_{n-2} \alpha_{v} z^{d(v)} q_{n}+a_{n}\left(q_{n-1}\right)^{2}-q_{n-1} q_{n}+q_{n-2} q_{n-1}}
$$

(by i), ii) and iv) of the lemma)
$=\frac{\mathrm{p}_{\mathrm{n}}}{\mathrm{q}_{\mathrm{n}}}+\frac{1}{\left(\mathrm{q}_{\mathrm{n}}\right)^{2} \alpha_{v} \mathrm{z}^{\mathrm{d}(\mathrm{v})}}$
(by i) and iii) of the lemma since n is even)

So $x_{v+1}=\frac{p_{n}}{q_{n}}+\frac{1}{\left(q_{n}\right)^{2} \alpha_{v} z^{d(v)}}=\sum_{i=0}^{v} \frac{b_{i}}{z^{c(i)}}+\frac{\left(b_{v}\right)^{2} b_{v+1}}{z^{2 c(v)}\left(b_{v}\right)^{2} z^{d(v)}} \quad$ since $q_{n}=q_{(v)}=\frac{z^{c(v)}}{b_{v}}, \alpha_{v}=\frac{\left(b_{v}\right)^{2}}{b_{v+1}}$

$$
=\sum_{i=0}^{v+1} \frac{b_{i}}{z^{c(i)}}
$$

We still have to prove $q_{(v+1)}=q_{2 n+2}=\frac{z^{c(v+1)}}{b_{v+1}}$, and since $\frac{z^{c(v+1)}}{b_{v+1}}=\left(q_{n}\right)^{2} \alpha_{v} \cdot z^{d(v)}$, it suffices to prove that $q_{2 n+2}=\left(q_{n}\right)^{2} \alpha_{v} z^{d(v)}$.

We can not use the same trick here as in the proofs of theorems 1 and 4 , since we do not necessarily have $\operatorname{deg} \mathrm{q}_{\mathrm{k}+1}>\operatorname{deg} \mathrm{q}_{\mathrm{k}}\left(\mathrm{q}_{\mathrm{k}}\right.$ as a polynomial in z)

We already know that $q_{n+1}=\left(\alpha_{v} z^{d(v)}-1\right) q_{n}+q_{n-1}, q_{n+2}=\alpha_{v} z^{d(v)} q_{n}+q_{n-1}$
Repeated use of i) of the lemma gives

$$
\begin{array}{r}
q_{n+3}=q_{(n+2)+1}=a_{n} \alpha_{v} z^{d(v)} q_{n}+a_{n} q_{n-1}-q_{n}=r_{1} \alpha_{v} z^{d(v)} q_{n}-q_{n-2} \quad \text { (where we put } a_{n}=r_{1} \text {) } \\
q_{n+4}=q_{(n+2)+2}=\left(a_{n-1} a_{n}+1\right) \alpha_{v} z^{d(v)} q_{n}-a_{n-1} q_{n-2}+q_{n-1}=r_{2} \alpha_{v} z^{d(v)} q_{n}+q_{n-3} \\
\text { (where we put } \left.a_{n-1} a_{n}+1=r_{2}\right)
\end{array}
$$

$$
\begin{aligned}
q_{n+5} & =q_{(n+2)+3}=\left(a_{n-2}\left(a_{n-1} a_{n}+1\right)+a_{n}\right) \alpha_{v} z^{d(v)} q_{n}+a_{n-2} q_{n-3}-q_{n-2} \\
& \left.=r_{3} \alpha_{v} z^{d v}(v) q_{n}-q_{n-4} \text { (where we put } a_{n-2}\left(a_{n-1} a_{n}+1\right)+a_{n}=r_{3}\right)
\end{aligned}
$$

etc...
Continuing this way, we find

$$
q_{(n+2)+k}=r_{k} \alpha_{v} z^{d(v)} q_{n}+(-1)^{k} q_{n-(k+1)}, \quad q_{(n+2)+k+1}=r_{k+1} \alpha_{v} z^{d(v)} q_{n}+(-1)^{k+1} q_{n-(k+2)}
$$

Then $q_{(n+2)+k+2}=\left(a_{n-(k+1)} r_{k+1}+r_{k}\right) \alpha_{v} z^{d(v)} q_{n}+(-1)^{k+1} a_{n-(k+1)} q_{n-k-2}+(-1)^{k} q_{n-k-1}$

$$
=r_{k+2} \alpha_{v} z^{d(v)} q_{n}+(-1)^{k+2} q_{n-(k+3)}
$$

and finally we have $q_{2 n}=q_{(n+2)+n-2}=r_{n-2} \alpha_{v} z^{d(v)} q_{n}+q_{n-(n-1)}$
$q_{2 n+1}=q_{(n+2)+n-1}=r_{n-1} \alpha_{v} z^{d(v)} q_{n}-q_{n-n}$ (we remark that n is even)
and so $q_{2 n+2}=q_{(n+2)+n}=r_{n} \alpha_{v} z^{d(v)} q_{n}-a_{1} q_{0}+q_{1}=r_{n} \alpha_{v} z^{d(v)} q_{n}$
So if we want to show that $q_{2 n+2}=\left(q_{n}\right)^{2} \alpha_{v} z^{d(v)}$, we must show that r_{n} equals q_{n}.
For the sequence (r_{n}) we have $r_{0}=1, r_{1}=a_{n}, r_{2}=a_{n-1} a_{n}+1=a_{n-1} r_{1}+r_{0}$, $r_{3}=a_{n-2}\left(a_{n-1} a_{n}+1\right)+a_{n}=a_{n-2} r_{2}+r_{1}$, and continuing this way we find $r_{k+2}=a_{n-(k+1)} r_{k+1}+r_{k}$.

From this it follows that $\left[1, a_{n}, \ldots, a_{1}\right]=\left[1, c_{1}, \ldots, c_{n}\right]=\frac{t_{n}}{r_{n}}$ (we put $a_{i}=c_{n+1-i}$)
with $\quad \mathrm{t}_{0}=\mathrm{c}_{0}, \quad \mathrm{r}_{0}=1, \quad \mathrm{t}_{1}=\mathrm{c}_{1} \mathrm{c}_{0}+1, \quad \mathrm{r}_{1}=\mathrm{c}_{1}$,

$$
t_{n}=c_{n} t_{n-1}+t_{n-2}, \quad r_{n}=c_{n} r_{n-1}+r_{n-2} \quad(n \geq 2),
$$

Now n can be written as $n=2 k+2$ (see remark 2 following theorem 5) and so
$\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\left[a_{0}, a_{1}, \ldots, a_{k}, \alpha_{v-1} z^{d(v-1)}-1,1, a_{k}-1, a_{k-1}, \ldots, a_{1}\right]=\frac{p_{n}}{q_{n}}$
and then $\left[1, a_{1}, \ldots, a_{k}, \alpha_{v-1} z^{d(v-1)}-1,1, a_{k}-1, a_{k-1}, \ldots, a_{1}\right]=\left[1, a_{1}, \ldots, a_{n}\right]=\frac{p_{1}^{\prime}}{q_{n}}$
where the $q_{i}(0 \leq i \leq n)$ stay the same since q_{i} does not depend on a_{0}.
So $\left[1, a_{1}, \ldots, a_{k-1}, a_{k}-1,1, \alpha_{v-1} z^{d(v-1)}-1, a_{k}, a_{k-1}, \ldots, a_{1}\right]=\left[1, a_{n}, \ldots, a_{1}\right]=\frac{t_{n}}{r_{n}}$
and we conclude $q_{i}=r_{i}$ for $0 \leq i \leq k-1$.
We have to show $q_{n}=r_{n}$. Now (by repeated use of i) of the lemma)

$$
\begin{aligned}
q_{k} & =a_{k} q_{k-1}+q_{k-2}, r_{k}=q_{k}-q_{k-1} ; \\
q_{k+1} & =\alpha_{v-1} z^{d(v-1)} q_{k}-q_{k}+q_{k-1}, r_{k+1}=q_{k} ; \\
q_{k+2} & =\alpha_{v-1} z^{d(v-1)} q_{k}+q_{k-1}, r_{k+2}=\alpha_{v-1} z^{d(v-1)} q_{k}-q_{k-1} ; \\
q_{k+3} & =q_{(k+2)+1}=\alpha_{v-1} z^{d(v-1)} a_{k} q_{k}+a_{k} q_{k-1}-q_{k}=a_{k} \alpha_{v-1} z^{d(v-1)} q_{k}-q_{k-2} \\
& =R_{1} \alpha_{v-1} z^{d(v-1)} q_{k}-q_{k-2}, \text { where we put } a_{k}=R_{1}, \\
r_{k+3} & =r_{(k+2)+1}=a_{k} \alpha_{v-1} z^{d(v-1)} q_{k}+q_{k-2}=R_{1} \alpha_{v-1} z^{d(v-1)} q_{k}+q_{k-2} ; \\
q_{k+4} & =q_{(k+2)+2}=\left(a_{k-1} a_{k}+1\right) \alpha_{v-1} z^{d(v-1)} q_{k}-a_{k-1} q_{k-2}+q_{k-1} \\
& =\left(a_{k-1} a_{k}+1\right) \alpha_{v-1} z^{d(v-1)} q_{k}+q_{k-3} \\
& =R_{2} \alpha_{v-1} z^{d(v-1)} q_{k}+q_{k-3} \text { where we put }\left(a_{k-1} a_{k}+1\right)=R_{2},
\end{aligned}
$$

$$
\begin{aligned}
r_{k+4} & =r_{(k+2)+2}=\left(a_{k-1} a_{k}+1\right) \alpha_{v-1} z^{d(v-1)} q_{k}+a_{k-1} q_{k-2}-q_{k-1} \\
& =\left(a_{k-1} a_{k}+1\right) \alpha_{v-1} z^{d(v-1)} q_{k}-q_{k-3}=R_{2} \alpha_{v-1} z^{d(v-1)} q_{k}-q_{k-3}
\end{aligned}
$$

If we continue this way, we find $q_{(k+2)+i}=R_{i} \alpha_{v-1} z^{d(v-1)} q_{k}+(-1)^{i} q_{k-(i+1)}$, and $r_{(k+2)+i}=R_{i} \alpha_{v-1} Z^{d(v-l)} q_{k}-(-1)^{i} q_{k-(i+1)}\left(0 \leq i \leq k, R_{0}=1\right)$, and so we have $q_{2 k}=q_{(k+2)+k-2}=R_{k-2} \alpha_{v-1} z^{d(v-1)} q_{k}+q_{k-(k-1)}, q_{2 k+1}=q_{(k+2)+k-1}=R_{k-1} \alpha_{v-1} d^{d(v-1)} q_{k}-q_{k-k} \quad$ we remark that k is even) and thus $q_{2 k+2}=q_{(k+2)+k}=R_{k} \alpha_{v-1} z^{d(v-1)} q_{k}-a_{1} q_{0}+q_{1}=R_{k} \alpha_{v-1} z^{d(v-1)} q_{k}$, and $r_{2 k}=r_{(k+2)+k-2}=R_{k-2} \alpha_{v-1} z^{d(v-1)} q_{k}-q_{k-(k-1)}, r_{2 k+1}=r_{(k+2)+k-1}=R_{k-1} \alpha_{v-1} z^{d(v-1)} q_{k}+q_{k-k}$ and thus $r_{2 k+2}=r_{(k+2)+k}=R_{k} \alpha_{v-1} z^{d(v-1)} q_{k}+a_{1} q_{0}-q_{1}=R_{k} \alpha_{v-1} z^{d(v-1)} q_{k}$,
So we conclude that $q_{2 k+2}=q_{n}$ equals $r_{2 k+2}=r_{n}$. This finishes the proof.
The case b_{i} equal to one, where z is an integer at least two, is studied by Shallit ([3]):
Let ($c(k)$) be a sequence of positive integers such that $c(v+1) \geq 2 c(v)$ for all $v \geq v^{\prime}$, where v^{\prime} is a non-negative integer . Let $d(v)=c(v+1)-2 c(v)$. Define $S(u, v)$ as follows :
$S(u, v)=\sum_{i=0}^{v} u^{-c(i)}$, where u is an integer, $u \geq 2$. Then Shallit proved the following theorem :
Suppose $v \geq v^{\prime}$. If $S(u, v)=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ and n is even, then
$S(u, v+1)=\left[a_{0}, a_{1}, \ldots, a_{n}, u^{d(v)}-1,1, a_{n}-1, a_{n-1}, a_{n-2}, \ldots, a_{2}, a_{1}\right]$.

References

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 1979.
[2] J. O. Shallit, Simple Continued Fractions for Some Irrational Numbers, Journal of Number Theory, vol. 11 (1979), p. 209-217.
[3] J. O. Shallit, Simple Continued Fractions for Some Irrational Numbers II, Journal of Number Theory, vol. 14 (1982), p. 228-231.
[4] D. S. Thakur, Continued Fraction for the Exponential for $\mathbf{F}_{\mathrm{q}}[t]$, Journal of Number Theory, vol. 41 (1992), p. 150-155.

