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THE P-ADIC Z-TRANSFORM

Lucien van Hamme

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.131-146

Abstract. Let a+pnZp be a ball in Zp and assume that a is the smallest natural number
contained in the ball. We define a measure z on Zp by putting z(a + pnZp) = za 1-zpn
where z E Cp, Iz 1. Let f be a continuous function defined on Zp. The mapping

f -; is similar to the classical Z-transform. We use this transform to give

new proofs of several known results : the Mahler expansion with remainder for a continuous
function, the Van der Put expansion, the expansion of a function in a series of Sheffer
polynomials. We also prove some new results.

1991 Mathematics subject classification : 46S10

1. Introduction 
’

Let Zp be the ring of p-adic integers, where p is a prime.
Qp and Cp denote, as usual, the field of the p-adic numbers and the completion of the
algebraic closure of Qp. ~.~ denotes the normalized p-adic valuation on Cp.
We start by defining a measure on Zp .
Let a + p"Zp be a ball in Zp. We may assume that a is the smallest natural number
contained in the ball. Our measure will depend on a parameter z E Cp. .

It is well-known that this defines a distribution on Zp.
Let D denote the set {z E Cp | |z - 1| > 1}.
An easy calculation shows that if z E D then  1.

Throughout this paper we will assume that z E D. Hence z is a measure.
Now let f : Zp -; Cp be a continuous function.
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If we associate with f the integral F(z) we get a transformation that we

call the p-adic Z-transform since it is similar to the classical Z-transform used by engineers.
The aim of this paper is to show how this transform can be used to obtain a number of
results in p-adic analysis. In section 2 we start by studying the integral F(z). In sections
3 and 4 we use the p-adic Z-transform to give new proofs of several known results : the
Mahler expansion with remainder for a continuous function, the Van der Put expansion,
the expansion of a function in a series of Sheffer polynomials. In section 5 we use the
results of section 2 to find approximations to the p-adic logarithm of 2. We prove e.g. that
the following congruence is valid in Zp

2 1-- 1 g 2- (-1)k+1k ~ 4(-1)n,p-1 3 (-1)k 2k + 1 (mod p2nZp)
2. The integral Z, f(x) z(x)

This integral has already been studied and used by Y. Amice and others in [1] and [4].
A fundamental property of this integral is
Proposition : F( z ) is an analytic element in D (in the sense of Krasner).
This means that F(z) is the uniform limit of a sequence of rational functions with poles
outside D. But, by definition

F(z) = Zp f (x) z(x) = lim 03A3pn-1k=0 f(k)zk 1 - zpn (1)

It is not diflicult to show that the sequence in (1) is uniformly convergent. Since the zeroes
of 1 - zpn are outside D, F(z ) is an analytic element in D.
Corollary : F satisfies the "principle of analytic continuation" i.e. if F(z) is zero on a
ball in D it is zero in the whole of D.

The fact that .F(z) is an analytic element in D is very useful in proving properties of the
integral (1). As an example we prove that

= f(0) + z + in D (2)

Proof : For |z|  1 formula (1) reduces to

/ f(x) z(x) = (3)
k~0
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The trivial identity

m m

E = /(o) + z 03A3 f(k + 1)zk (|z|  i)
k=0 k=0

can be written as

Zp 
I (x) z(x) - f (0) + Zp f (x + 1) z(x)

This is a priori valid for |z|  1. By analytic continuation it is valid in D.

We now list some properties of the integral f We only give a few indications

about the proofs.

P1 Zp f (x) z(x) =  f (k)zk + zn Zp f (x + n) z(x) in D (4)

Proof : This follows by iterating (2)

P2 Zp f(x) z(x) = -f(-k) zk ) 
+ 1 zn Zp f(x - n) z(x) in D

=-f(-k) zk if |z| > 1

Proof : Replace f(x) by /(.r - 1) in (2) to get

Zp f(x) z(x) = -f(-1) z + 1 z Zp f(x - 1) z(x)

Iteration of this formula yields (5).

P3 Zp f(x) z(x) = (0394kf)(0)zk (1-z)k+1 + 
zn (1 - z)n Zp (0394nf)(x) z(x)

=(0394kf)(0)zk (1-z)k+1 in D

k=0 ~ 

Here A is the difference operator defined by (0 f )(x) = f(x + 1) - f(x).
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Proof : Write (2) in the form

= 1 (O) + 1 z z Zp (0394f)(x) z(x)
then iterate.

Let E be the translation operator defined by (E f )(x) = f(x +1) and put Q = 0394E-1 then

P4 JZP _ ~ + ~Zp~~°f)~~)f~Z~x) (7)

Proof : This follows from the obvious

~Zp .f~~)f~z~~) = i~_ z~ ~" 
P5 .f~~)I~z~~)’~ f ap f~-x)W /_~~) = f~~) in D (8)

Proof : Suppose first that )?) > 1 and use (5) for the first integral and (3) for the second
integral. The formula then reduces to the obvious identity.

- f(-k) zk + f(-k) zk = f(0)
The formula is valid in D by analytic continuation.

P6 If f is an even function then / = f ~0) (9)
JZy ~

Proof : Put z = -1 in (8).

P7 If F(z) = Zp f(x) z(x), G(z) = Zp g(x) z(x) 

( 10)
then F(z)G(z) * in D

where f * g the convolution of f and g.
n

f* g is by definition the continuous function with value equal to ( f * g)(n) = ~. f( k )g(n - k)
k=0

if n is a natural number.
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Proof : For 1 the equality F(z)G(z) = / Z, ( f * is simply

(f(k)zk)( g(k)zk) =(f * g)(k)zk

which is obvious. The formula is valid in D by analytic continuation.

P8  I I.f II (11)

where denotes the sup-norm.

Remark : It follows from (5) that lim zF(z)G(z) = -( f * g)(-1).
z~~

But lim zF(z)G(z) = - f (-1) lim G(z) = 0.
z-oo z~~

Hence we deduce the (known) fact that ( f * g)(-1) = 0, i.e. the convolution of the two

continuous functions is 0 at the point -1.

3. The p-adic Z-transform

Let C(Zp) denote the Banach space of the all continuous functions from Zp to Cp, equipped
with the sup-norm.
Let (an) be a sequence. in Cp. A series of the form

00 k

ak  1 
z 

with lim ak = 0 (12)

is convergent in D.
Let B be the set of all functions F : D -~ Cp that are the sum of a series of the form (12)
with lim ak = O.

k-oo

If we define ~F~ = supz~D|F(z)| then B is a Banach space.

Formula (6) shows that F(z) belongs to B if f E C(Zp).
Hence it makes sense to consider the mapping

T : C(Zp) ~ B : f ~ F(z) = Zp f(x) z(x)

We will call F(z) the p-adic z-transform of f for the following reason. If Izl  1 then
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00

F(z) = In applied mathematics it is customary to call the "generating func-
k=0

tion" F(z) the z-transform of f.

We now examine the properties of the z-transform.
It is easily verified that T is linear and continuous.
00 

..

If F(z) is identical 0 then ~ f(k)zk = 0 for ~z~  1. Hence f(x) = 0.
k=0

This proves that T is injective.
..... 

00 k 
.

T is also surjective. To see this we start from a given F(z) = with

lim ak = 0. It follows from (6) that the z-transform of the function f(x) = f a k { x k }

is equal to the given F(z) since (0394kf)(0) = ak.

Although we do not need it in the sequel we will also prove that T is an isometry. For this
we need a lemma.

Le mma 1
If a = (ak) is a sequence in Cp, with lim ak = 0, then

k~~

sup |ak| = sup{|a0|, lao + |a1 + a2|, ..., |ak + ...}.

Proof : " Put ~a~ = sup a = sup{|a0|, ..., |ak + ak+1| ,...}. °
Since lak + max{|ak|, |ak+1|}  ~a~ we see that a  ~a~.
Put bo = ao, bI = ao + al, ..., bk = ak-1 + ak,....
Then ak = bk - bk-1 + bk-2 - ... ± b0.
Hence   a
thus and the lemma is proved.

Proposition : T is an isometry.

Proof : Let F(z) z-transform of f(x) = (0394kf)(0) (x k).

k=O (1 z) + k=o ~ ~

~f~ = sup |(0394kf)(0)| since the polynomials form an orthogonal base for C(Zp)

= sup |ak|
= sup{|a0|, |a0 + a1|, ..., |ak + ak+i j, ...} by lemma 1

Writing u = we observe that z E D if and only if )tt + 1)  1.

Now
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~f~ = sup{|a0|, )ao + all, ..., |ak + ak+1|,...}
= sup {ao + (a0 + a1)u + ’.. + (ak-1 + ak)uk + ...}

|u|~1

= sup {ao+(ao+ai)M+...+(a~-i+~)~~+...}
|u+1|~1

= sup|F(z)|=~F~

We now show how the z-transform can be used in p-adic analysis.

Application 1 Mahler’s expansion with remainder
We start from formula (6)

F(.) = (0394kf)(0)zk (1 - z)k+1 + 2014201420142014 /_ (6)
~=0 ~ ~ ~ ~ ’~-P

If /(a:) == ( x n - 1) all terms on the R.H.S. vanish except the term zn-1 (1-z)n. This means

that the z-transform of (x n - 1 _ {) is zn-1 (1-z)n.
Hence every term of (3) is the transform of a function in C(Zp). Taking the inverse
transform we get something of the form

f(x)=(0394kf)(0)(x k)+rn(x)
where is the inverse transform of

(13)

Using (10) we see that == { ( ~ 1 ) * ~"~} ~ " ~)’
The presence of the first factor 2’ in the product (13) makes it necessary to evaluate the

convolution of (  j and 0394nf at the point a- 2014 1 instead of x.
This gives Mahler’s expansion with an expression for the remainder

/(~)=~(A~)(0)~)+~~~).A~(~-1)
This was obtained in [5] by a different method.
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Remark : Until now we have assumed that the functions of C(Zp) take their values in Cp.
If we replace Cp by a field that is complete for a non archimedean valuation containing
Qp, the method still works. The only restriction is that we can no longer use any property
whose proof uses analytic continuation.

Application 2 Van der Put’s expansion
Notation : If n = ao + a1p + ... + asps with as ~ 0 then we put m(n) = sand
n- = ao + a1p + ... + as-1ps-1.
Take f C(Zp) and let fr denote the locally constant function defined by

fr(k) = f(k) for ~= 0,1,...,~-1

By induction on r we can verify that

(f(n) - f(n-))
zn 1-zm(n)

=
03A3pr-1n=0f(n)zn 1-zpr 

(14)
0~np*’

Using the definition (1) we see that the R.H.S. of (14) is the z-transform of /r. In the same
way we can verify that ~~ is the z-transform of the function

n

en(x) =0 if |x - n| ~ 1
n

The inverse transform of (8) gives the identity

~ 
0~npr

If r ~ oo we recover the Van der Put expansion of f(x).

Application 3

If we put /(.r) = (~ ~ in (7) we see that z-transform of (~ ~ ~ is . The

inverse of (7) yields 
,

f(x)=(Qkf)(-1)(x+k k)+{(x+n n)*Qn+1f}(x) Q = 0394E-1



139

4. The expansion of a continuous function in a series of Sheffer polynomials

In this section we will use the p-adic z-transform to generalize the main theorem of [6].
We first recall a few elements of the p-adic umbral calculus developed in [6].

Let R be a linear continuous operator on C(Zp, K), where K is a field containing ~F that
is complete for a non archimedean valution. If R commutes with E it can be written in

00

the form R == ~~ where is a bounded sequence in.K. The result that we want to
==o

generalize is the following.

Proposition [6]
00

If Q = L 6, A’ is a linear continous operator on G(lp, h’) such that bo = 0, = l, |bi|  1

==o

for i > 2 then

a) there exists a unique sequence of polynomials pn(x) such that

Qpn = pn-1, deg pn = n, pn(0) = 0 for n > 1 and po = 1

b) every continuous function f : Zp -~ K has a uniformly convergent expansion of the form

oo

f (~) - (15)
n=0

00

With an operator R = L we can associate a measure on Zp by means of the functional
i=O

sending a f E C(Zp,K) to (R f )(o).

Example : Take R = 1 1 - Ez with z ~ D. Then

 
00 k

R = 
1-- z + L1z _ k=o 

0 
(1- z)k+1

Formula (6) shows that the measure obtained in this way is the measure introduced in
section 1.

00 00

Now let Q = y~ and S = ~ be two operators commuting with E where S is
i=O t==0

invertible.
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If bo = 0, any operator R, commuting with E, can be written in the form

00

R = 03A3 rnQn, rn ~ K
n=0

We can see this as an equality between operators or as an identity between formal power
series in A. If we take R = the coefficients rn will depend on z. Let us write it in
the form 

i S 1 - Ez = 
o ( 1 Tn(z) (1 - z)n+1 Qn (16)

Writing out everything as a powerseries in A and comparing the coefficient of 0394n we see
that Tn(z ) is a polynomial of degree n in z. If, moreover, |b1| === 1 the sequence is

bounded.

Multiplying (16) with 5~ and applying the operators on both sides to a function f 6
C(Zp,R’) we get the series

(17)F(z) = (S-1Qnf)(0) Tn(z) (1- z)n+1 (17)

This series is uniformly convergent since lim = 0.
n~~

The idea is now to take the inverse z-transform of (17).
Now the z-transform of (x n) is zn (1-z)n+1. Hence the z-transform of a polynomial of degree
n is of the form where is also a polynomial of degree n.

Taking the inverse transform of (17) we get

/M = (18)
n=0

where is a polynomial of degree n.
This is the expansion we wanted to obtain.
To see that (18) is a generalization of (15) take S equal to the identity operator and take
/ equal to the polynomial pn in (15). (18) then reduces to pn(.r) = tn(x).
In the general case the polynomials are called "Sheffer polynomials" in umbral cal-
culus.
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Remark

It is possible to work in an even more general situation. Let Q1, Q2, ... , Q n, ... be a
sequence operators satisfying the same conditions as the operator Q above. There exists
a sequence of polynomials Tn(z),degTn = n, such that

S ~ ~ ~ ~n
I - Ez = ( l - 

°

5. A formula for lg 2

The formula

2( 1 - j ) lg 2 = Ji£ (- 1)k+1 k, P # 2

(k,p)=1

is proved in [2] p. 180 and [3] p. 38. Here lg 2 is the p-adic logarithm.

In this section we show that it is possible to refine this result using the properties of the

integral studied in section 2.

Let f(z) = 0 for ]z]  1

= ~ for [z] = 1
z

In [I] (lemma 6.4, chapter 12) it is proved that, for z ~ D,

Zpf(x) z(x) = 1 p lg 1 - zp (1 - z)p (19)

If Up = Zp N pZp denotes the group of units of Zp the integral can be written as

Up z(x) x = 1 - zp (1 - z)p
Putting z = - 1 we get

Up -1(x) x = -(1-1 p)lg 2 (20)
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The idea is to construct approximations for the integral on the LHS of (20). This will yield
the following theorem.

Theorem : If p ~ 2 then

a) 2(1 - 1 p)lg 2 ~ (-1)k+1 k (mod p2n)

b) 2(1-1 p) lg 2 ~ 4~n  - (mod p2n)
(2k+1,p)=1

where ên = (-1)nW" i

c -21- 1 1 g 2‘ 
P (-1)k+1 k - 8~n 2 ( (-1)k+1 2k+1 (mod p4n)

(k,p)=1

For the proof we need the value of a few integrals. We collect these results in the following
lemma. i denotes a squareroot of -1.

Le mma 2

1 r = r = 0

(2) Up i(x) x2 + Up -i(x) x2 = 0

/ + Up -i(x) x4 = 0

( ) 3 = _ -(1 1 _ lg 2 for p ~ 2

(4) Up i(x) x2 = Up -i(x) x3 = 1 8 /’ -1(x) x3

Proof of the lemma

(1) These are special cases of formula (9).
(2) These are special cases of (8) with z = i.
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(3) Suppose first that p ~ 1 (mod 4). Then ~ == ~, hence

j~=~~-~-"
Since (1 2014 i)2 = -2i and Ig z == 0 we see that lg(1 - z) = 1 2 Ig 2 and the assertion is proved.
If p = 3 (mod 4) we have ip == 2014z and we get

Up i(x) x = 1 p lg 1+i (1-i)p

Since ~~ = ~ and Ig x = 0 we conclude that

~(,~-(’-~’-’)=-~-~
The integral / 2014~20142014 is calculated in the same way.
(4) Let k be a natural number and let 03B6(s) be the Riemann zeta function. It is well-known

that the numbers ((2014~) are rational and that the sequence ~ 2014~ (1 2014 p~)((2014~) can be
Interpolated p-adically. This can be deduced from the following formula (see [1] p. 295).

(i - p’x(-~) = ~L~. ~ ~ ,~,~) (21)

The sum is extended over all primitive q-th roots of unity 8 with ~ ~ 1. g is an integer
prime to p.
In [1] the author supposes that g is a prime but this restriction is not necessary.
Clearly the LHS of (21) Is independant of g. Taking respectively q = 2 and q = 4 we get

~L~ ~ .r~~(~) = ~,~ ~~ + ~ ~~.(.F) + ~ ~~..(T)~
or

2k+1 Up xk -1(x) = / xk i(x) + / xk -i(x) (22)
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If k remains in a fixed residue class mod (p - 1) the LHS of (21) is a continuous function
of k. Hence (21) and (22) remain valid for negative integers (except possibly for k = -1).
Taking k = -3 we get

4 Up -1(x) x3 = Up i(x) x3 + Up -i(x) x3

Since (8) implies that / = / -i(x) x3 the last assertion of lemma 2 is provedSince (8) implies that Up i(x) x3 = 

-i(x) x3 
the last assertlon of lemma 2 is proved.

Proof of the theorem

Starting from (1) we have

Up z(x) x = zk k + zpn Up z(x) x + pn

(k,p)=1

Now 1 x+pn=1 x-pn x2+p2n x3-p3n x4+ p4n x4(x+p)
Integrating this over Up and observing that (11) implies

/ z(x) x4(x+pn)|~1

we see that the (p-adic) value of

(1-zpn)Up z(x) x- k+zpn p n Up z(x) x2-p2nUp z(x) x3 +p3nUp z(x) x4] (23)
(k,p)=1

is C ..l..4.
For z = -1 the first assertion of lemma 2 implies that two of these integrals are zero. Since
the other integrals clearly lie in Zp we obtain the following congruence in Zp

2Up -1(x) x~(-1)k k-p2nUp -1(x) x3 (mod p ) (24)
(k,P)=1
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If we compare this with (20) we see that point (a) of the theorem is proved.
In order to prove (b) note that aP = (-1)~ and hence ipn = ~ni.

Now put z = i in (23). This gives

(1 .)1 p Zk 
+ 

n _1 i(x) x2 - 2n .1 + 
p3n~ni _1 z(x) x4|

(k,p)=1

- p4
Replace i by -i and subtract. When the integrals are replaced by their values given in
lemma 2 we obtain the congruence

~ni(1 - .!.) Ig 2 == 2i (-1)k 2k+1 + ~nip2n 4 ( (mod p4n) (25)
(2k+1,p)=1

Neglecting the last term we see that (b) is proved.
To obtain {c) it is sufficient to take a linear combination of (24) and (25) such that the

integral ( ~-1{x) disappears.g U p x3 PP

We can deduce the following purely arithmetical result from the theorem.

Corollary

For p ~ 2

2.2(p-1)-1 p2 ~ 1-1 2 + 1 1 1 
(mod p2)

~4-1 ~ I-1+1-...~ 1 
mod== ( ) 2 ( 3 5 

- 
... p-2 ) ) (mod p )

Proof: Since 2(p-1)p =1 (mod p2) we have

p(p -1) lg 2 = lg(2(p-1)p _ ~ + 1) ~ -1 (mod p4)

and hence
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_ 

1 2(p_i)~ _ 1
(1-)lg 2 ~  

p2 (mod p4)

Combining this with the congruences (a) and (b) of the theorem (for n =1) we see that
the required congruences are established.
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