Annales mathématiques Blaise Pascal

Lucien van Hamme

The p-adic Z-transform

Annales mathématiques Blaise Pascal, tome 2, n ${ }^{\circ} 1$ (1995), p. 131-146

http://www.numdam.org/item?id=AMBP_1995__2_1_131_0
© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.
L’accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE P-ADIC Z-TRANSFORM

Lucien van Hamme

Abstract

Let $a+p^{n} \mathbf{Z}_{p}$ be a ball in \mathbf{Z}_{p} and assume that a is the smallest natural number contained in the ball. We define a measure μ_{z} on \mathbf{Z}_{p} by putting $\mu_{z}\left(a+p^{n} \mathbf{Z}_{p}\right)=\frac{z^{a}}{1-z^{p^{n}}}$ where $z \in \mathbb{C}_{p},|z-1|_{p} \geq 1$. Let f be a continuous function defined on \mathbf{Z}_{p}. The mapping $f \rightarrow \int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)$ is similar to the classical Z-transform. We use this transform to give new proofs of several known results : the Mahler expansion with remainder for a continuous function, the Van der Put expansion, the expansion of a function in a series of Sheffer polynomials. We also prove some new results.

1991 Mathematics subject classification : 46 S10

1. Introduction

Let \mathbf{Z}_{p} be the ring of p -adic integers, where p is a prime.
\mathbb{Q}_{p} and \mathbb{C}_{p} denote, as usual, the field of the p-adic numbers and the completion of the algebraic closure of \mathbb{Q}_{p}. |.| denotes the normalized p -adic valuation on \mathbb{C}_{p}.
We start by defining a measure on \mathbf{Z}_{p}.
Let $a+p^{n} \mathbf{Z}_{p}$ be a ball in \mathbf{Z}_{p}. We may assume that a is the smallest natural number contained in the ball. Our measure will depend on a parameter $z \in \mathbb{C}_{p}$.
Put $\mu_{z}\left(a+p^{n} \mathbf{Z}_{p}\right)=\frac{z^{a}}{1-z^{p^{n}}}$.
It is well-known that this defines a distribution on \mathbf{Z}_{p}.
Let D denote the set $\left\{z \in \mathbb{C}_{p}| | z-1 \mid \geq 1\right\}$.
An easy calculation shows that if $z \in D$ then $\left|\frac{z^{a}}{1-z p^{n}}\right| \leq 1$.
Throughout this paper we will assume that $z \in D$. Hence μ_{z} is a measure.
Now let $f: \mathbf{Z}_{p} \rightarrow \mathbb{C}_{p}$ be a continuous function.

If we associate with f the integral $F(z)=\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)$ we get a transformation that we call the p-adic Z-transform since it is similar to the classical Z-transform used by engineers. The aim of this paper is to show how this transform can be used to obtain a number of results in p-adic analysis. In section 2 we start by studying the integral $F(z)$. In sections 3 and 4 we use the p-adic Z-transform to give new proofs of several known results : the Mahler expansion with remainder for a continuous function, the Van der Put expansion, the expansion of a function in a series of Sheffer polynomials. In section 5 we use the results of section 2 to find approximations to the p -adic logarithm of 2 . We prove e.g. that the following congruence is valid in \mathbf{Z}_{p}

$$
2\left(1-\frac{1}{p}\right) \lg 2 \equiv \sum_{\substack{k=1 \\(k, p)=1}}^{p^{n}} \frac{(-1)^{k+1}}{k} \equiv 4(-1)^{n \cdot \frac{p-1}{2}} \sum_{\substack{k=0 \\(2 k+1, p)=1}}^{\frac{p}{}_{n}^{2}-3} \frac{(-1)^{k}}{2 k+1} \quad\left(\bmod p^{2 n} Z_{p}\right)
$$

2. The integral $\int_{\mathbf{Z}_{\boldsymbol{p}}} f(x) \mu_{z}(x)$

This integral has already been studied and used by Y. Amice and others in [1] and [4]. A fundamental property of this integral is
Proposition : $F(z)$ is an analytic element in D (in the sense of Krasner).
This means that $F(z)$ is the uniform limit of a sequence of rational functions with poles outside D. But, by definition

$$
\begin{equation*}
F(z)=\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{p^{n}-1} f(k) z^{k}}{1-z^{p^{n}}} \tag{1}
\end{equation*}
$$

It is not difficult to show that the sequence in (1) is uniformly convergent. Since the zeroes of $1-z^{p^{n}}$ are outside $D, F(z)$ is an analytic element in D.
Corollary : F satisfies the "principle of analytic continuation" i.e. if $F(z)$ is zero on a ball in D it is zero in the whole of D.

The fact that $F(z)$ is an analytic element in D is very useful in proving properties of the integral (1). As an example we prove that

$$
\begin{equation*}
\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=f(0)+z \int_{\mathbf{Z}_{p}} f(x+1) \mu_{z}(x) \quad \text { in } D \tag{2}
\end{equation*}
$$

Proof: For $|z|<1$ formula (1) reduces to

$$
\begin{equation*}
\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=\sum_{k=0}^{\infty} f(k) z^{k} \tag{3}
\end{equation*}
$$

The trivial identity

$$
\sum_{k=0}^{\infty} f(k) z^{k}=f(0)+z \sum_{k=0}^{\infty} f(k+1) z^{k} \quad(|z|<1)
$$

can be written as

$$
\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=f(0)+z \int_{\mathbf{Z}_{p}} f(x+1) \mu_{z}(x)
$$

This is a priori valid for $|z|<1$. By analytic continuation it is valid in D.
We now list some properties of the integral $\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)$. We only give a few indications about the proofs.

P1 $\quad \int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=\sum_{k=0}^{n-1} f(k) z^{k}+z^{n} \int_{\mathbf{Z}_{p}} f(x+n) \mu_{z}(x) \quad$ in D
Proof: This follows by iterating (2)
P2 $\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=-\sum_{k=1}^{n} \frac{f(-k)}{z^{k}}+\frac{1}{z^{n}} \int_{\mathbf{Z}_{p}} f(x-n) \mu_{z}(x) \quad$ in D

$$
\begin{equation*}
=-\sum_{k=1}^{\infty} \frac{f(-k)}{z^{k}} \quad \text { if }|z|>1 \tag{5}
\end{equation*}
$$

Proof: Replace $f(x)$ by $f(x-1)$ in (2) to get

$$
\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=-\frac{f(-1)}{z}+\frac{1}{z} \int_{\mathbf{Z}_{p}} f(x-1) \mu_{z}(x)
$$

Iteration of this formula yields (5).
P3 $\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=\sum_{k=0}^{n-1}\left(\Delta^{k} f\right)(0) \frac{z^{k}}{(1-z)^{k+1}}+\frac{z^{n}}{(1-z)^{n}} \int_{\mathbf{Z}_{p}}\left(\Delta^{n} f\right)(x) \mu_{z}(x)$

$$
\begin{equation*}
=\sum_{k=0}^{\infty}\left(\Delta^{k} f\right)(0) \frac{z^{k}}{(1-z)^{k+1}} \quad \text { in } D \tag{6}
\end{equation*}
$$

Here Δ is the difference operator defined by $(\Delta f)(x)=f(x+1)-f(x)$.

Proof: Write (2) in the form

$$
\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=\frac{f(0)}{1-z}+\frac{z}{1-z} \int_{\mathbf{Z}_{p}}(\Delta f)(x) \mu_{z}(x)
$$

then iterate.
Let E be the translation operator defined by $(E f)(x)=f(x+1)$ and put $Q=\Delta E^{-1}$ then
P4 $\quad \int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=\sum_{k=0}^{n-1} \frac{\left(Q^{k} f\right)(-1)}{(1-z)^{k+1}}+\frac{1}{(1-z)^{n}} \int_{\mathbf{Z}_{p}}\left(Q^{n} f\right)(x) \mu_{z}(x)$
Proof: This follows from the obvious

$$
\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=\frac{f(-1)}{1-z}+\frac{1}{1-z} \int_{\mathbf{Z}_{p}}(Q f)(x) \mu_{z}(x)
$$

P5 $\quad \int_{\mathbf{Z}_{\boldsymbol{p}}} f(x) \mu_{z}(x)+\int_{\mathbf{Z}_{\boldsymbol{p}}} f(-x) \mu_{1 / \mathbf{z}}(x)=f(0)$ in D
Proof : Suppose first that $|z|>1$ and use (5) for the first integral and (3) for the second integral. The formula then reduces to the obvious identity.

$$
-\sum_{k=1}^{\infty} \frac{f(-k)}{z^{k}}+\sum_{k=0}^{\infty} \frac{f(-k)}{z^{k}}=f(0)
$$

The formula is valid in D by analytic continuation.
P6 If f is an even function then $\int_{\mathbf{Z}_{\boldsymbol{p}}} f(x) \mu_{-1}(x)=\frac{f(0)}{2}$
Proof: Put $z=-1$ in (8).
P7 If $F(z)=\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x), G(z)=\int_{\mathbf{Z}_{p}} g(x) \mu_{z}(x)$

$$
\begin{equation*}
\text { then } F(z) G(z)=\int_{\mathbf{Z}_{p}}(f * g)(x) \mu_{z}(x) \quad \text { in } D \tag{10}
\end{equation*}
$$

where $f * g$ the convolution of f and g.
$f * g$ is by definition the continuous function with value equal to $(f * g)(n)=\sum_{k=0}^{n} f(k) g(n-k)$ if n is a natural number.

Proof : For $|z| \leq 1$ the equality $F(z) G(z)=\int_{\mathbf{Z}_{p}}(f * g)(x) \mu_{z}(x)$ is simply

$$
\left(\sum_{k=0}^{\infty} f(k) z^{k}\right)\left(\sum_{k=0}^{\infty} g(k) z^{k}\right)=\sum_{k=0}^{\infty}(f * g)(k) z^{k}
$$

which is obvious. The formula is valid in D by analytic continuation.
P8 $\left|\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)\right| \leq\|f\|$
where $\|f\|$ denotes the sup-norm.
Remark : It follows from (5) that $\lim _{z \rightarrow \infty} z F(z) G(z)=-(f * g)(-1)$.
But $\lim _{z \rightarrow \infty} z F(z) G(z)=-f(-1) \lim _{z \rightarrow \infty} G(z)=0$.
Hence we deduce the (known) fact that $(f * g)(-1)=0$, i.e. the convolution of the two continuous functions is 0 at the point -1 .

3. The p-adic Z-transform

Let $C\left(\mathbf{Z}_{p}\right)$ denote the Banach space of the all continuous functions from \mathbf{Z}_{p} to \mathbb{C}_{p}, equipped with the sup-norm.
Let $\left(a_{n}\right)$ be a sequence in \mathbb{C}_{p}. A series of the form

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} \frac{z^{k}}{(1-z)^{k+1}} \quad \text { with } \quad \lim _{k \rightarrow \infty} a_{k}=0 \tag{12}
\end{equation*}
$$

is convergent in D.
Let B be the set of all functions $F: D \rightarrow \mathbb{C}_{p}$ that are the sum of a series of the form (12) with $\lim _{k \rightarrow \infty} a_{k}=0$.
If we define $\|F\|=\sup _{z \in D}|F(z)|$ then B is a Banach space.
Formula (6) shows that $\left.F(z)=\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)\right)$ belongs to B if $f \in C\left(\mathbf{Z}_{p}\right)$.
Hence it makes sense to consider the mapping

$$
T: C\left(\mathbf{Z}_{p}\right) \rightarrow B: f \rightarrow F(z)=\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)
$$

We will call $F(z)$ the p -adic z -transform of f for the following reason. If $|z|<1$ then
$F(z)=\sum_{k=0}^{\infty} f(k) z^{k}$. In applied mathematics it is customary to call the "generating function" $F(z)$ the z-transform of f .

We now examine the properties of the z-transform.
It is easily verified that T is linear and continuous.
If $F(z)$ is identical 0 then $\sum_{k=0}^{\infty} f(k) z^{k}=0$ for $|z|<1$. Hence $f(x) \equiv 0$.
This proves that T is injective.
T is also surjective. To see this we start from a given $F(z)=\sum_{k=0}^{\infty} a_{k} \frac{z^{k}}{(1-z)^{k+1}}$ with
$\lim _{k \rightarrow \infty} a_{k}=0$. It follows from (6) that the z-transform of the function $f(x)=\sum_{k=0}^{\infty} a_{k}\binom{x}{k}$ is equal to the given $F(z)$ since $\left(\Delta^{k} f\right)(0)=a_{k}$.

Although we do not need it in the sequel we will also prove that T is an isometry. For this we need a lemma.

Lemma 1

If $a=\left(a_{k}\right)$ is a sequence in \mathbb{C}_{p}, with $\lim _{k \rightarrow \infty} a_{k}=0$, then
$\sup \left|a_{k}\right|=\sup \left\{\left|a_{0}\right|,\left|a_{0}+a_{1}\right|,\left|a_{1}+a_{2}\right|, \ldots,\left|a_{k}+a_{k+1}\right|, \ldots\right\}$.
Proof: Put $\|a\|=\sup \left|a_{k}\right|,\left|\left||a| \|=\sup \left\{\left|a_{0}\right|, \ldots,\left|a_{k}+a_{k+1}\right|, \ldots\right\}\right.\right.$.
Since $\left|a_{k}+a_{k+1}\right| \leq \max \left\{\left|a_{k}\right|,\left|a_{k+1}\right|\right\} \leq\|a\|$ we see that $\|a \mid\| \leq\|a\|$.
Put $b_{0}=a_{0}, b_{1}=a_{0}+a_{1}, \ldots, b_{k}=a_{k-1}+a_{k}, \ldots$.
Then $a_{k}=b_{k}-b_{k-1}+b_{k-2}-\ldots \pm b_{0}$.
Hence $\left|a_{k}\right| \leq \max \left\{\left|b_{0}\right|,\left|b_{1}\right|, \ldots,\left|b_{k}\right|\right\} \leq\|||a| \|$
thus $\|a\| \leq|\|a\||$ and the lemma is proved.
Proposition : T is an isometry.
Proof : Let $F(z)=\sum_{k=0}^{\infty} a_{k} \frac{z^{k}}{(1-z)^{k+1}}$ be the z-transform of $f(x)=\sum_{k=0}^{\infty}\left(\triangle^{k} f\right)(0)\binom{x}{k}$.
$\|f\|=\sup _{k}\left|\left(\Delta^{k} f\right)(0)\right|$ since the polynomials $\binom{x}{k}$ form an orthogonal base for $C\left(\mathbf{Z}_{p}\right)$ $=\sup \left|a_{k}\right|$ $=\sup \left\{\left|a_{0}\right|,\left|a_{0}+a_{1}\right|, \ldots,\left|a_{k}+a_{k+1}\right|, \ldots\right\}$ by lemma 1

Writing $u=\frac{z}{1-z}$ we observe that $z \in D$ if and only if $|u+1| \leq 1$.
Now

$$
\begin{aligned}
\|f\| & =\sup \left\{\left|a_{0}\right|,\left|a_{0}+a_{1}\right|, \ldots,\left|a_{k}+a_{k+1}\right|, \ldots\right\} \\
& =\sup _{|u| \leq 1}\left\{a_{0}+\left(a_{0}+a_{1}\right) u+\ldots+\left(a_{k-1}+a_{k}\right) u^{k}+\ldots\right\} \\
& =\sup _{|u+1| \leq 1}\left\{a_{0}+\left(a_{0}+a_{1}\right) u+\ldots+\left(a_{k-1}+a_{k}\right) u^{k}+\ldots\right\} \\
& =\sup _{z \in D}|F(z)|=\|F\|
\end{aligned}
$$

We now show how the z-transform can be used in p-adic analysis.
Application 1 Mahler's expansion with remainder
We start from formula (6)

$$
\begin{equation*}
F(z)=\sum_{k=0}^{n-1}\left(\Delta^{k} f\right)(0) \frac{z^{k}}{(1-z)^{k+1}}+\frac{z^{n}}{(1-z)^{n}} \int_{\mathbf{Z}_{p}}\left(\Delta^{n} f\right)(x) \mu_{z}(x) \tag{6}
\end{equation*}
$$

If $f(x)=\binom{x}{n-1}$ all terms on the R.H.S. vanish except the term $\frac{z^{n-1}}{(1-z)^{n}}$. This means that the z-transform of $\binom{x}{n-1}$ is $\frac{z^{n-1}}{(1-z)^{n}}$.
Hence every term of (3) is the transform of a function in $C\left(\mathbf{Z}_{p}\right)$. Taking the inverse transform we get something of the form

$$
f(x)=\sum_{k=0}^{n-1}\left(\Delta^{k} f\right)(0)\binom{x}{k}+r_{n}(x)
$$

where $r_{n}(x)$ is the inverse transform of

$$
\begin{equation*}
z \cdot \frac{z^{n-1}}{(1-z)^{n}} \cdot \int_{\mathbf{Z}_{p}}\left(\Delta^{n} f\right)(x) \mu_{z}(x) \tag{13}
\end{equation*}
$$

Using (10) we see that $r_{n}(x)=\left\{\binom{x}{n-1} * \Delta^{n} f\right\}(x-1)$.
The presence of the first factor z in the product (13) makes it necessary to evaluate the convolution of $\binom{x}{n-1}$ and $\Delta^{n} f$ at the point $x-1$ instead of x.
This gives Mahler's expansion with an expression for the remainder

$$
f(x)=\sum_{k=0}^{n-1}\left(\Delta^{k} f\right)(0)\binom{x}{k}+\left\{\binom{x}{n-1} * \Delta^{n} f\right\}(x-1)
$$

This was obtained in [5] by a different method.

Remark : Until now we have assumed that the functions of $C\left(\mathbf{Z}_{p}\right)$ take their values in \mathbb{C}_{p}. If we replace \mathbb{C}_{p} by a field that is complete for a non archimedean valuation containing Q_{p}, the method still works. The only restriction is that we can no longer use any property whose proof uses analytic continuation.

Application 2 Van der Put's expansion
Notation : If $n=a_{0}+a_{1} p+\ldots+a_{s} p^{s}$ with $a_{s} \neq 0$ then we put $m(n)=s$ and
$n_{-}=a_{0}+a_{1} p+\ldots+a_{s-1} p^{s-1}$.
Take $f \in C\left(\mathbf{Z}_{p}\right)$ and let f_{r} denote the locally constant function defined by

$$
\begin{aligned}
& f_{r}(k)=f(k) \quad \text { for } k=0,1, \ldots, p^{r}-1 \\
& f_{r}(x)=f_{r}\left(x+p^{r}\right)
\end{aligned}
$$

By induction on r we can verify that

$$
\begin{equation*}
\sum_{0 \leq n<p^{r}}\left(f(n)-f\left(n_{-}\right)\right) \frac{z^{n}}{1-z^{m(n)}}=\frac{\sum_{n=0}^{p^{r}-1} f(n) z^{n}}{1-z^{p^{r}}} \tag{14}
\end{equation*}
$$

Using the definition (1) we see that the R.H.S. of (14) is the z-transform of f_{r}. In the same way we can verify that $\frac{z^{n}}{1-z^{m(n)}}$ is the z-transform of the function

$$
\begin{array}{ll}
e_{n}(x)=1 & \text { if }|x-n|<\frac{1}{n} \\
e_{n}(x)=0 & \text { if }|x-n| \geq \frac{1}{n}
\end{array}
$$

The inverse transform of (8) gives the identity

$$
\sum_{0 \leq n<p^{r}}\left[f(n)-f\left(n_{-}\right)\right] e_{n}(x)=f_{r}(x)
$$

If $r \rightarrow \infty$ we recover the Van der Put expansion of $f(x)$.

Application 3

If we put $f(x)=\binom{x+n}{n}$ in (7) we see that z-transform of $\binom{x+n}{n}$ is $\frac{1}{(1-z)^{n+1}}$. The inverse of (7) yields

$$
f(x)=\sum_{k=0}^{n}\left(Q^{k} f\right)(-1)\binom{x+k}{k}+\left\{\binom{x+n}{n} * Q^{n+1} f\right\}(x) \quad Q=\Delta E^{-1}
$$

4. The expansion of a continuous function in a series of Sheffer polynomials

In this section we will use the p-adic z-transform to generalize the main theorem of [6]. We first recall a few elements of the p-adic umbral calculus developed in [6].

Let R be a linear continuous operator on $C\left(\mathbf{Z}_{p}, K\right)$, where K is a field containing \mathbb{Q}_{p} that is complete for a non archimedean valution. If R commutes with E it can be written in the form $R=\sum_{i=0}^{\infty} b_{i} \Delta^{i}$ where $\left(b_{i}\right)$ is a bounded sequence in K. The result that we want to generalize is the following.

Proposition [6]

If $Q=\sum_{i=0}^{\infty} b_{i} \Delta^{i}$ is a linear continous operator on $C\left(\mathbf{Z}_{p}, K\right)$ such that $b_{0}=0,\left|b_{1}\right|=1,\left|b_{i}\right| \leq 1$ for $i \geq 2$ then
a) there exists a unique sequence of polynomials $p_{n}(x)$ such that

$$
Q p_{n}=p_{n-1}, \operatorname{deg} p_{n}=n, p_{n}(0)=0 \text { for } n \geq 1 \text { and } p_{0}=1
$$

b) every continuous function $f: \mathbf{Z}_{p} \rightarrow K$ has a uniformly convergent expansion of the form

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty}\left(Q^{n} f\right)(0) p_{n}(x) \tag{15}
\end{equation*}
$$

With an operator $R=\sum_{i=0}^{\infty} b_{i} \Delta^{i}$ we can associate a measure on \mathbf{Z}_{p} by means of the functional sending a $f \in C\left(\mathbf{Z}_{p}, K\right)$ to $(R f)(0)$.

Example : Take $R=\frac{1}{1-E z}$ with $z \in D$. Then

$$
R=\frac{1}{1-z+\Delta z}=\sum_{k=0}^{\infty} \Delta^{k} \frac{z^{k}}{(1-z)^{k+1}}
$$

Formula (6) shows that the measure obtained in this way is the measure introduced in section 1.

Now let $Q=\sum_{i=0}^{\infty} b_{i} \Delta^{i}$ and $S=\sum_{i=0}^{\infty} s_{i} \Delta^{i}$ be two operators commuting with E where S is invertible.

If $b_{0}=0$, any operator R, commuting with E, can be written in the form

$$
R=\sum_{n=0}^{\infty} r_{n} Q^{n}, \quad r_{n} \in K
$$

We can see this as an equality between operators or as an identity between formal power series in Δ. If we take $R=\frac{S}{1-E z}$ the coefficients r_{n} will depend on z. Let us write it in the form

$$
\begin{equation*}
\frac{S}{1-E z}=\sum_{n=0}^{\infty} \frac{T_{n}(z)}{(1-z)^{n+1}} Q^{n} \tag{16}
\end{equation*}
$$

Writing out everything as a powerseries in Δ and comparing the coefficient of Δ^{n} we see that $T_{n}(z)$ is a polynomial of degree n in z. If, moreover, $\left|b_{1}\right|=1$ the sequence $\frac{T_{n}(z)}{(1-z)^{n+1}}$ is bounded.
Multiplying (16) with S^{-1} and applying the operators on both sides to a function $f \in$ $C\left(\mathbf{Z}_{p}, K\right)$ we get the series

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty}\left(S^{-1} Q^{n} f\right)(0) \frac{T_{n}(z)}{(1-z)^{n+1}} \tag{17}
\end{equation*}
$$

This series is uniformly convergent since $\lim _{n \rightarrow \infty}\left(S^{-1} Q^{n} f\right)(0)=0$.
The idea is now to take the inverse z-transform of (17).
Now the z-transform of $\binom{x}{n}$ is $\frac{z^{n}}{(1-z)^{n+1}}$. Hence the z-transform of a polynomial of degree n is of the form $\frac{P_{n}(z)}{(1-z)^{n+1}}$ where $P_{n}(z)$ is also a polynomial of degree n.
Taking the inverse transform of (17) we get

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty}\left(S^{-1} Q^{n} f\right)(0) t_{n}(x) \tag{18}
\end{equation*}
$$

where $t_{n}(x)$ is a polynomial of degree n.
This is the expansion we wanted to obtain.
To see that (18) is a generalization of (15) take S equal to the identity operator and take f equal to the polynomial p_{n} in (15). (18) then reduces to $p_{n}(x)=t_{n}(x)$.
In the general case the polynomials $t_{n}(x)$ are called "Sheffer polynomials" in umbral calculus.

Remark

It is possible to work in an even more general situation. Let $Q_{1}, Q_{2}, \ldots, Q_{n}, \ldots$ be a sequence operators satisfying the same conditions as the operator Q above. There exists a sequence of polynomials $T_{n}(z), \operatorname{deg} T_{n}=n$, such that

$$
\frac{S}{1-E z}=\sum_{n=0}^{\infty} \frac{T_{n}(z)}{(1-z)^{n+1}} Q_{1} Q_{2} \ldots Q^{n}
$$

5. A formula for $\lg 2$

The formula

$$
2\left(1-\frac{1}{p}\right) \lg 2=\lim _{n \rightarrow \infty} \sum_{\substack{k=1 \\(k, p)=1}}^{p^{n}} \frac{(-1)^{k+1}}{k}, \quad p \neq 2
$$

is proved in [2] p. 180 and [3] p. 38. Here $\lg 2$ is the p-adic logarithm.
In this section we show that it is possible to refine this result using the properties of the integral studied in section 2.

Let $f(x)=0 \quad$ for $|x|<1$

$$
=\frac{1}{x} \quad \text { for }|x|=1
$$

In [1] (lemma 6.4, chapter 12) it is proved that, for $z \in D$,

$$
\begin{equation*}
\int_{\mathbf{Z}_{p}} f(x) \mu_{z}(x)=\frac{1}{p} \lg \frac{1-z^{p}}{(1-z)^{p}} \tag{19}
\end{equation*}
$$

If $U_{p}=\mathbf{Z}_{p} \backslash p \mathbf{Z}_{p}$ denotes the group of units of \mathbf{Z}_{p} the integral can be written as

$$
\int_{U_{p}} \frac{\mu_{z}(x)}{x}=\frac{1}{p} \lg \frac{1-z^{p}}{(1-z)^{p}}
$$

Putting $z=-1$ we get

$$
\begin{equation*}
\int_{U_{p}} \frac{\mu_{-1}(x)}{x}=-\left(1-\frac{1}{p}\right) \lg 2 \tag{20}
\end{equation*}
$$

The idea is to construct approximations for the integral on the LHS of (20). This will yield the following theorem.

Theorem : If $p \neq 2$ then
a) $\quad 2\left(1-\frac{1}{p}\right) \lg 2 \equiv \sum_{k=1,(k, p)=1}^{p^{n}} \frac{(-1)^{k+1}}{k} \quad\left(\bmod p^{2 n}\right)$
b) $\quad 2\left(1-\frac{1}{p}\right) \lg 2 \equiv 4 \varepsilon_{n} \sum_{\substack{k=0 \\(2 k+1, p)=1}}^{\frac{p^{n}-3}{2}} \frac{(-1)^{k+1}}{2 k+1} \quad\left(\bmod p^{2 n}\right)$
where $\varepsilon_{n}=(-1)^{n \cdot \frac{p-1}{2}}$
c) $\quad-2\left(1-\frac{1}{p}\right) \lg 2 \equiv \sum_{\substack{k=1 \\(k, p)=1}}^{p^{n}} \frac{(-1)^{k+1}}{k}-8 \varepsilon_{n} \sum_{k=0}^{\frac{n^{n}-3}{2}} \frac{(-1)^{k+1}}{2 k+1} \quad\left(\bmod p^{4 n}\right)$

For the proof we need the value of a few integrals. We collect these results in the following lemma. i denotes a squareroot of -1 .

Lemma 2

$$
\begin{equation*}
\int_{U_{p}} \frac{\mu_{-1}(x)}{x^{2}}=\int_{U_{p}} \frac{\mu_{-1}(x)}{x^{4}}=0 \tag{1}
\end{equation*}
$$

(2)

$$
\begin{aligned}
& \int_{U_{p}} \frac{\mu_{i}(x)}{x^{2}}+\int_{U_{p}} \frac{\mu_{-i}(x)}{x^{2}}=0 \\
& \int_{U_{p}} \frac{\mu_{i}(x)}{x^{4}}+\int_{U_{p}} \frac{\mu_{-i}(x)}{x^{4}}=0
\end{aligned}
$$

(3)

$$
\int_{U_{p}} \frac{\mu_{i}(x)}{x}=\int_{U_{p}} \frac{\mu_{-i}(x)}{x}=-\frac{1}{2}\left(1-\frac{1}{p}\right) \lg 2 \quad \text { for } p \neq 2
$$

$$
\begin{equation*}
\int_{U_{p}} \frac{\mu_{i}(x)}{x^{3}}=\int_{U_{p}} \frac{\mu_{-i}(x)}{x^{3}}=\frac{1}{8} \int_{U_{p}} \frac{\mu_{-1}(x)}{x^{3}} \tag{4}
\end{equation*}
$$

Proof of the lemma

(1) These are special cases of formula (9).
(2) These are special cases of (8) with $z=i$.
(3) Suppose first that $p \equiv 1(\bmod 4)$. Then $i^{p}=i$, hence

$$
\int_{U_{p}} \frac{\mu_{i}(x)}{x}=\frac{1}{p} \lg \frac{1-i}{(1-i)^{p}}=-\left(1-\frac{1}{p}\right) \lg (1-i)
$$

Since $(1-i)^{2}=-2 i$ and $\lg i=0$ we see that $\lg (1-i)=\frac{1}{2} \lg 2$ and the assertion is proved. If $p \equiv 3(\bmod 4)$ we have $i^{p}=-i$ and we get

$$
\int_{U_{p}} \frac{\mu_{i}(x)}{x}=\frac{1}{p} \lg \frac{1+i}{(1-i)^{p}}
$$

Since $\frac{1+i}{1-i}=i$ and $\lg i=0$ we conclude that

$$
\frac{1}{p} \lg \frac{1+i}{(1-i)^{p}}=-\left(1-\frac{1}{p}\right) \lg (1-i)=-\frac{1}{2}\left(1-\frac{1}{p}\right) \lg 2
$$

The integral $\int_{U_{p}} \frac{\mu_{-i}(x)}{x}$ is calculated in the same way.
(4) Let k be a natural number and let $\zeta(s)$ be the Riemann zeta function. It is well-known that the numbers $\zeta(-k)$ are rational and that the sequence $k \rightarrow\left(1-p^{k}\right) \zeta(-k)$ can be interpolated p-adically. This can be deduced from the following formula (see [1] p. 295).

$$
\begin{equation*}
\left(1-p^{k}\right) \zeta(-k)=\frac{1}{q^{k+1}-1} \sum \int_{U_{p}} x^{k} \mu_{\theta}(x) \tag{21}
\end{equation*}
$$

The sum is extended over all primitive q-th roots of unity θ with $\theta \neq 1 . q$ is an integer prime to p.
In [1] the author supposes that q is a prime but this restriction is not necessary.
Clearly the LHS of (21) is independant of q. Taking respectively $q=2$ and $q=4$ we get

$$
\frac{1}{2^{k+1}-1} \int_{U_{p}} x^{k} \mu_{-1}(x)=\frac{1}{4^{k+1}-1}\left\{\int_{U_{p}} x^{k} \mu_{-1}(x)+\int_{U_{p}} x^{k} \mu_{i}(x)+\int_{U_{p}} x^{k} \mu_{-i}(x)\right\}
$$

or

$$
\begin{equation*}
2^{k+1} \int_{U_{p}} x^{k} \mu_{-1}(x)=\int_{U_{p}} x^{k} \mu_{i}(x)+\int_{U_{p}} x^{k} \mu_{-i}(x) \tag{22}
\end{equation*}
$$

If k remains in a fixed residue class $\bmod (p-1)$ the LHS of (21) is a continuous function of k. Hence (21) and (22) remain valid for negative integers (except possibly for $k=-1$). Taking $k=-3$ we get

$$
4 \int_{U_{p}} \frac{\mu_{-1}(x)}{x^{3}}=\int_{U_{p}} \frac{\mu_{i}(x)}{x^{3}}+\int_{U_{p}} \frac{\mu_{-i}(x)}{x^{3}}
$$

Since (8) implies that $\int_{U_{p}} \frac{\mu_{i}(x)}{x^{3}}=\int_{U_{p}} \frac{\mu_{-i}(x)}{x^{3}}$ the last assertion of lemma 2 is proved.

Proof of the theorem

Starting from (1) we have

$$
\int_{U_{p}} \frac{\mu_{z}(x)}{x}=\sum_{\substack{k=1 \\(k, p)=1}}^{p^{n}} \frac{z^{k}}{k}+z^{p^{n}} \int_{U_{p}} \frac{\mu_{z}(x)}{x+p^{n}}
$$

Now $\quad \frac{1}{x+p^{n}}=\frac{1}{x}-\frac{p^{n}}{x^{2}}+\frac{p^{2 n}}{x^{3}}-\frac{p^{3 n}}{x^{4}}+\frac{p^{4 n}}{x^{4}(x+p)}$
Integrating this over U_{p} and observing that (11) implies

$$
\left|\int_{U_{p}} \frac{\mu_{z}(x)}{x^{4}\left(x+p^{n}\right)}\right| \leq 1
$$

we see that the (p-adic) value of

$$
\begin{equation*}
\left(1-z^{p^{n}}\right) \int_{U_{p}} \frac{\mu_{z}(x)}{x}-\sum_{\substack{k=1 \\(k, p)=1}}^{p^{n}} k+z^{p^{n}}\left[p^{n} \int_{U_{p}} \frac{\mu_{z}(x)}{x^{2}}-p^{2 n} \int_{U_{p}} \frac{\mu_{z}(x)}{x^{3}}+p^{3 n} \int_{U_{p}} \frac{\mu_{z}(x)}{x^{4}}\right] \tag{23}
\end{equation*}
$$

is $\leq \frac{1}{p^{4}}$.
For $z=-1$ the first assertion of lemma 2 implies that two of these integrals are zero. Since the other integrals clearly lie in \mathbf{Z}_{p} we obtain the following congruence in \mathbf{Z}_{p}

$$
\begin{equation*}
2 \int_{U_{p}} \frac{\mu_{-1}(x)}{x} \equiv \sum_{\substack{k=1 \\(k, p)=1}}^{p^{n}} \frac{(-1)^{k}}{k}-p^{2 n} \int_{U_{p}} \frac{\mu_{-1}(x)}{x^{3}} \quad\left(\bmod p^{4 n}\right) \tag{24}
\end{equation*}
$$

If we compare this with (20) we see that point (a) of the theorem is proved.
In order to prove (b) note that $i^{p}=(-1)^{\frac{p-1}{2}}$ and hence $i^{p^{n}}=\varepsilon_{n} i$.
Now put $z=i$ in (23). This gives

$$
\begin{aligned}
& \left|\left(1-\varepsilon_{n} i\right) \int_{U_{p}} \frac{\mu_{i}(x)}{x}-\sum_{\substack{k=1 \\
(k, p)=1}}^{p^{n}} \frac{i^{k}}{k}+p^{n} \varepsilon_{n} i \int_{U_{p}} \frac{\mu_{i}(x)}{x^{2}}-p^{2 n} \varepsilon_{n} i \int_{U_{p}} \frac{\mu_{z}(x)}{x^{3}}+p^{3 n} \varepsilon_{n} i \int_{U_{p}} \frac{\mu_{z}(x)}{x^{4}}\right| \\
& \leq \frac{1}{p^{4}}
\end{aligned}
$$

Replace i by $-i$ and subtract. When the integrals are replaced by their values given in lemma 2 we obtain the congruence

$$
\begin{equation*}
\varepsilon_{n} i\left(1-\frac{1}{p}\right) \lg 2 \equiv 2 i \sum_{\substack{k=0 \\(2 k+1, p)=1}}^{\frac{p^{n}}{2}} \frac{(-1)^{k}}{2 k+1}+\frac{\varepsilon_{n} i p^{2 n}}{4} \int_{U_{p}} \frac{\mu_{-1}(x)}{x^{3}} \quad\left(\bmod p^{4 n}\right) \tag{25}
\end{equation*}
$$

Neglecting the last term we see that (b) is proved.
To obtain (c) it is sufficient to take a linear combination of (24) and (25) such that the integral $\int_{U_{p}} \frac{\mu_{-1}(x)}{x^{3}}$ disappears.

We can deduce the following purely arithmetical result from the theorem.

Corollary

For $p \neq 2$

$$
\begin{aligned}
2 . \frac{2^{(p-1)}-1}{p^{2}} & \equiv 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots-\frac{1}{p-1} \quad\left(\bmod p^{2}\right) \\
& \equiv 4(-1)^{\frac{p-1}{2}}\left(1-\frac{1}{3}+\frac{1}{5}-\ldots \pm \frac{1}{p-2}\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

Proof: Since $2^{(p-1) p} \equiv 1\left(\bmod p^{2}\right)$ we have

$$
p(p-1) \lg 2=\lg \left(2^{(p-1) p}-1+1\right) \equiv 2^{(p-1) p}-1 \quad\left(\bmod p^{4}\right)
$$

and hence

$$
\left(1-\frac{1}{p}\right) \lg 2 \equiv \frac{2^{(p-1) p}-1}{p^{2}} \quad\left(\bmod p^{4}\right)
$$

Combining this with the congruences (a) and (b) of the theorem (for $n=1$) we see that the required congruences are established.

REFERENCES

[1] J.W.S. CASSELS : Local Fields.
Cambridge University Press, 1986.
[2] W. SCHIKHOF : Ultrametric Calculus.
Cambridge University Press, 1984.
[3] N. KOBLITZ : p-Adic Analysis : A Short Course on Recent Work.
Cambridge University Press, 1980.
[4] Y. AMICE - J. FRESNEL : Fonctions zêta p-adiques des corps de nombres abéliens réels.
Acta Arithmetica, vol 20 (1972) p. 355-385.
[5] L. VAN HAMME : Three generalizations of Mahler's expansion for continuous functions on \mathbf{Z}_{p}.
in "p-adic analysis" - Lecture Notes on Mathematics vol 1454 (1990) p. 356-361, Springer Verlag.
[6] L. VAN HAMME : Continuous operators which commute with translations on the space of continuous functions on \mathbf{Z}_{p}.
in "p-adic Functional Analysis" J. Bayod, N. De Grande-De Kimpe, J. Martinez - Maurica (editors) p. 75-88, Marcel Dekker, New York (1992).

Vrije Universiteit Brussel
Faculty of Applied Sciences
Pleinlaan 2
B - 1050 Brussels
Belgium

