Annales mathématiques Blaise Pascal

A.K. Katsaras
 Tensor products and γ_{0}-nuclear spaces in p-adic analysis

Annales mathématiques Blaise Pascal, tome 2, n ${ }^{\circ} 1$ (1995), p. 155-168
http://www.numdam.org/item?id=AMBP_1995__2_1_155_0
© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.
L’accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

TENSOR PRODUCTS AND Λ_{0} - NUCLEAR

SPACES IN P-ADIC ANALYSIS

A.K. Katsaras

Abstract

The Λ_{0}-nuclearity of the topological tensor product of two Λ_{0}-nuclear spaces is studied. This problem is related to the question of whether the operator $T_{1} \otimes T_{2}$ is Λ_{0}-nuclear when T_{1} and T_{2} are Λ_{0}-nuclear.

1991 Mathematics subject classification : 46 S10.
0. INTRODUCTION Throughout this paper, K will be a complete non-Archimedean valued field whose valuation is nontrivial.

As it shown in [1], if E, F are locally convex spaces over K, then $E \otimes_{\pi} F$ is nuclear iff E, F are nuclear. In this paper we study the analogous problem for the Λ_{0}-nuclear spaces which were introduced in [7]. We show that the question is related to each of the following two equivalent conditions :
(1) If $T_{1}: E_{1} \rightarrow F_{1}, T_{2}: E_{2} \rightarrow F_{2}$ are Λ_{0}-nuclear operators, then $T_{1} \otimes T_{2}: E_{1} \otimes_{\pi} E_{2} \rightarrow$ $F_{1} \otimes_{\pi} F_{2}$ is Λ_{0}-nuclear.
(2) If $\xi, \eta \in \Lambda_{0}=\Lambda_{0}(P)$, then there exists a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ such that

$$
\left(\xi_{\sigma_{1}(\eta)} \eta_{\sigma_{2}(\eta)}\right) \in \Lambda_{0}
$$

In case the Köthe set P is countable, it is shown that the above conditions are equivalent to :
(3) For each $\alpha \in P$ there exists $\beta \in P$ such that $\sup _{n} \alpha_{n^{2}} / \beta_{n}<\infty$.

1. PRELIMINARIES

By a Köthe set we will mean a collection P of sequences $\alpha=\left(\alpha_{n}\right)$ of non-negative real numbers with the following two properties :
(i) For every $n \in N$ there exists $\alpha \in P$ with $\alpha_{n} \neq 0$.
(ii) If $\alpha, \alpha^{\prime} \in P$, then there exists $\beta \in P$ with $\alpha, \alpha^{\prime} \ll \beta$, where $\alpha \ll \beta$ means that there exists $d>0$ such that $\alpha_{n} \leq d \beta_{n}$ for all n .

For $\alpha \in P$ and $\xi=\left(\xi_{n}\right)$ a sequence in K, we define $p_{\alpha}(\xi)=\sup _{n} \alpha_{n}\left|\xi_{n}\right|$. The non-Archimedean Köthe sequence space $\Lambda(P)=\Lambda$ is the space of all $\xi \in K^{N}$ such that $p_{\alpha}(\xi)<\infty$ for all $\alpha \in P$. On $\Lambda(P)$ we consider the locally convex topology generated by the family of non-Archimedean seminorms $\left\{p_{\alpha}: \alpha \in P\right\}$. The subspace $\Lambda_{0}=\Lambda_{0}(P)$ of $\Lambda(P)$ consists of all $\xi \in \Lambda(P)$ such that $\alpha_{n}\left|\xi_{n}\right| \rightarrow 0$ for all $\alpha \in P$. The Köthe set P is called stable if for each $\alpha \in P$ there exists $\beta \in P$ such that $\sup _{n} \alpha_{2 n} / \beta_{n}<\infty$. By [5, Proposition 2.12], if P is stable and if $\xi, \eta \in \Lambda$ (resp. $\xi, \eta \in \Lambda_{0}$), then

$$
\xi * \eta=\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}, \ldots\right) \in \Lambda \quad\left(\text { resp. } \xi * \eta \in \Lambda_{0}\right)
$$

The Köthe set P is called a power set of infinite type if

1) For each $\alpha \in P$ we have $0<\alpha_{n} \leq \alpha_{n+1}$ for all n.
2) For every $\alpha \in P$ there exists $\beta \in P$ such that $\alpha^{2} \ll \beta$.

If $\gamma=\left(\gamma_{n}\right)$ is an increasing sequence and if we take $P=\left\{\left(p^{\gamma_{n}}\right): p>1\right\}$, then P is a a power set of infinite type. In this case we denote $\Lambda(P)$ by $\Lambda_{\gamma, \infty}$. If $\gamma_{n} \rightarrow \infty$, then for $\Lambda=\Lambda_{\gamma, \infty}$, we have $\Lambda=\Lambda_{0}$ (see [3,, Corollary 3.5]).

Next we will recall the concepts of a Λ_{0}-compactoid set and a Λ_{0} nuclear map, which are given in [5], and the concept of a Λ_{0}-nuclear space given in [7]. For a bounded subset A, of a locally convex space E over K, and for a non-negative integer n, the nth Kolmogorov diameter $\delta_{n, p}(A)$ of A, with respect to a continuous seminorm p on $E(p \in c s(E))$, is the infimum of all $|\mu|, \mu \in K$, for which there exists a subspace F of E, with $\operatorname{dim} F \leq n$, such that $A \subset F+\mu B_{p}(0,1)$, where

$$
B_{p}(0,1)=\{x \in E: p(x) \leq 1\}
$$

The set A is called Λ_{0}-compactoid if, for each $p \in c s(E)$, there exists $\xi=\xi_{p} \in \Lambda_{0}$ such that $\delta_{n, p}(A) \leq\left|\xi_{n+1}\right|$ for all n (or equivalently $\alpha_{n} \delta_{n-1, p}(A) \rightarrow 0$ for each $\alpha \in P$). A continuous linear operator $T: E \rightarrow F$ is called :
a) Λ_{0}-compactoid if there exists a neighborhood V of zero in E such that $T(V)$ is Λ_{0}-compactoid in F.
b) Λ_{0}-nuclear if there exist an equicontinuous sequence $\left(f_{n}\right)$ in E^{\prime}, a bounded sequence (y_{n} in F and $\left(\lambda_{n}\right) \in \Lambda_{0}$ such that :

$$
T x=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(x) y_{n} \quad(x \in E)
$$

For a continuous linear map T, from a normed space E to another one F, and for a non-negative integer n, the nth approximation number $\alpha_{n}(T)$ of T is defined by

$$
\alpha_{n}(T)=\inf \left\{\|T-A\|: A \in \mathcal{A}_{n}(E, F)\right\}
$$

where $\mathcal{A}_{\boldsymbol{n}}(E, F)$ is the collection of all continuous linear operators $A: E \rightarrow F$ with $\operatorname{dim} A(E) \leq n$.

Throughout the rest of the paper, P will be a Köthe set, which is a power set of infinite type, and $\Lambda_{0}=\Lambda_{0}(P)$.

Let now E be a locally convex space over K. For $p \in c s(E)$, we will denote by E_{p} the quotient space $E / k e r p$ equipped with the norm $\left\|[x]_{p}\right\|=p(x)$. A Hausdorff locally convex space E is called Λ_{0}-nuclear (see [7]) if for each $p \in c s(E)$ there exists $q \in c s(E), p \leq q$, such that the canonical map $\phi_{p q}: E_{q} \rightarrow E_{p}$ is Λ_{0}-nuclear (or equivalently Λ_{0}-compactoid). If $\phi_{q}: E \rightarrow E_{q}$ is the quotient map, then $\phi_{q}\left(B_{q}(0,1)\right)$ is the closed unit ball in E_{q}. It is now clear that E is Λ_{0}-nuclear iff for each $p \in c s(E)$ the map $\phi_{p}: E \rightarrow E_{p}$ is Λ_{0}-nuclear.

Note that if P consists of the single constant sequence ($1,1, \ldots$), then $\Lambda_{0}(P)=c_{0}$ and so in this case the Λ_{0}-compactoid sets, the Λ_{0}-compactoid operators and the Λ_{0}-nuclear operators coincide with the compactoid sets, the compactoid operators and the nuclear operators, respectively. Also, if $T_{1}: E \rightarrow F, T_{2}: F \rightarrow G$ are continuous linear maps and if one of the T_{1}, T_{2} is Λ_{0}-compactoid (resp. Λ_{0}-nuclear), then T_{1}, T_{2} is Λ_{0}-compactoid (resp. Λ_{0}-nuclear) ($[5$, Proposition 3.21 and Proposition 4.5]). But for normed spaces E, F the class of all Λ_{0}-nuclear operators from E to F is not necessarily a closed subset of the space of all continuous linear operators from E to F ($[6$, Corollary 3.7$]$).

We will denote the completion, of a Hausdorff locally convex space E, by \widehat{E}.
We will need a Proposition which is given in [4, Proposition 5.1]. For an index set I, let $c_{0}(I)$ be the vector space of all $\xi \in K^{I}$ such that $\left|\xi_{i}\right| \rightarrow 0$, i.e. for each $\epsilon>0$ the set $\left\{i \in I:\left|\xi_{i}\right|>\epsilon\right\}$ is finite. On $c_{0}(I)$ we consider the norm $\|\xi\|=\sup _{i}\left|\xi_{i}\right|$.

Proposition 0.1 : Let $\zeta=\left(\zeta_{i}\right)$ be a fixed element of $c_{0}(I)$ and consider the map

$$
T: c_{0}(I) \rightarrow c_{0}(I), \quad(T \xi)_{i}=\left(\xi_{i} \zeta_{i}\right)
$$

Then, for each non-negative integer n we have

$$
\alpha_{n}(T)=\sup _{J \in \mathcal{F}_{n+1}} \inf _{i \in J}\left|\zeta_{i}\right|
$$

where \mathcal{F}_{n+1} is the collection of all subsets of I containing $n+1$ elements.

2. ON THE Λ_{0}-NUCLEAR MAPS

For a fixed $\xi \in c_{0}$, the map $T_{\xi}: c_{0} \rightarrow c_{0}$ is defined by $\left(T_{\xi} x\right)_{i}=\xi_{i} x_{i}$ for each $x \in c_{0}$. As it easy to see, if $\xi \in \Lambda_{0}$, then T_{ξ} is Λ_{0}-nuclear.

Proposition 2.1 : Let E, F be locally convex spaces over K, where F is complete, and let $T: E \rightarrow F$ be a Λ_{0}-nuclear map. Then, there exist $\xi \in \Lambda_{0}$ and continuous linear maps $T_{1}: E \rightarrow c_{0}, T_{2}: c_{0} \rightarrow F$ such that $T=T_{2} T_{\xi} T_{1}$.

Proof : Let $\left(\lambda_{n}\right) \in \Lambda_{0},\left(f_{n}\right)$ an equicontinuous sequence in E^{\prime} and $\left(y_{n}\right)$ a bounded sequence in F be such that $T x=\sum_{n} \lambda_{n} f_{n}(x) y_{n}$ for all $x \in E$. Let $|\lambda|>1$ and choose $\mu_{n} \in K$ such that $\left|\mu_{n}\right| \leq \sqrt{\left|\lambda_{n}\right|} \leq\left|\lambda \mu_{n}\right|$. As it is shown in the proof of Theorem 4.6 in [5], $\left(\mu_{n}\right) \in \Lambda_{0}$. Let $\xi=\left(\xi_{n}\right)$ where $\xi_{n}=0$ if $\mu_{n}=0$ and $\xi_{n}=\lambda_{n} \mu_{n}^{-1}$ if $\mu_{n} \neq 0$. Then $\left(\xi_{n}\right) \in \Lambda_{0}$. Define

$$
T_{1}: E \rightarrow c_{0}, \quad T_{1} x=\left(\mu_{n} f_{n}(x)\right)
$$

Let $D=\left(T_{\xi} T_{1}\right)(E)$. If \bar{D} is the closure of D in c_{0}, then there exists a projection Q of c_{0} onto \bar{D} with $\|Q\| \leq|\lambda|$ (see [10, Theorem 3.16]). Let $S: D \rightarrow F, S\left(T_{\xi} T_{1} x\right)=T x$. Then S is well defined and continuous. Let $\bar{S}: \bar{D} \rightarrow F$ be the continuous extension of S and define $T_{2}: c_{0} \rightarrow F, T_{2}=\bar{S} Q$. Now $T=T_{2} T_{\xi} T_{1}$

Lemma 2.2 : Let $\xi=\left(\xi_{n}\right) \in K^{N}$ be such that $\left|\xi_{n} \geq\left|\xi_{n+1}\right|\right.$ for all n. If there exists a permutation σ of N such that $\left(\xi_{\sigma(n)}\right) \in \Lambda_{0}$, then $\xi \in \Lambda_{0}$

Proof. Let $\zeta=\left(\xi_{\sigma(n)}\right)$ and let $T=T_{\zeta}: c_{0} \rightarrow c_{0}$. Since $\zeta \in \Lambda_{0}, T$ is Λ_{0}-nuclear. In view of [5, Theorem 4.1], T is of type Λ_{0} and so there exists $\left(\mu_{n}\right) \in \Lambda_{0}$ such that $\alpha_{n}(T) \leq\left|\mu_{n+1}\right|$ for all n. Using Proposition 0.1 , we get that $\alpha_{n}(T)=\left|\xi_{n+1}\right|$, which clearly implies that $\xi \in \Lambda_{0}$.

Definition 2.3 : Let Let $\xi=\left(\xi_{n}\right) \in K^{N}$. A sequence $\zeta=\left(\zeta_{n}\right)$ is called a decreasing rearrangement of ξ if :
a) $\left|\zeta_{n}\right| \geq\left|\zeta_{n+1}\right|$, for all n.
b) There exists a permutation σ on N such that $\zeta_{n}=\xi_{\sigma(n)}$ for all n.

It is easy to see that if $\left(\zeta_{n}\right)$ and $\left(\mu_{n}\right)$ are decreasing rearrangements of ξ, then $\left|\zeta_{n}\right|=$ $\left|\mu_{n}\right|$ for all n,

Proposition 2.4: Let Let $\xi=\left(\xi_{n}\right) \in c_{0}$ with $\xi_{n} \neq 0$ for all n. Then :
a) There exists a decreasing rearrangement of ξ.
b) If $\xi \in \Lambda_{0}$ and if $\left(\xi_{\sigma(n)}\right)$ is any decreasing rearrangement of ξ, then $\left(\xi_{\sigma(n)}\right) \in \Lambda_{0}$.

Proof: a) Let n_{1} be the first of all indices k with $\left|\xi_{k}\right|=\sup _{m}\left|\xi_{m}\right|=\max _{m}\left|\xi_{m}\right|$. Having chosen $n_{1}, n_{2}, \ldots, n_{m}$, let n_{m+1} be the first index $k \neq n_{1}, n_{2}, \ldots, n_{m}$ with $\left|\xi_{k}\right|=\max \left\{\left|\xi_{n}\right|\right.$: $\left.n \neq n_{1}, n_{2}, \ldots, n_{m}\right\}$. Let $\sigma: N \rightarrow N, \sigma(m)=n_{m}$. We claim that $\left(\xi_{\sigma(n)}\right)$ is a decreasing rearrangement of ξ. Since $\left|\xi_{n_{m}}\right| \geq\left|\xi_{n_{m+1}}\right|$ for all m, it only remains to show that $\sigma(N)=N$. So, let $m \in N$ and suppose $m \notin \sigma(N)$. For each $k \in N$, since $m \neq n_{1}, n_{2}, \ldots, n_{k-1}$, we have $\left|\xi_{m}\right| \leq\left|\xi_{n_{k}}\right|$. This contradicts the fact that the set $N_{1}=\left\{k:\left|\xi_{k}\right| \geq\left|\xi_{m}\right|\right\}$ is finite.
b) It follows from Lemma 2.2.

Let ϕ be the subspace of Λ_{0} consisting of all sequences in K with only a finite number of non-zero terms. Suppose that $\Lambda_{0} \neq \phi$ (this for instance happens when P is countable
by [6, Remark 4,4]). If $\xi \in \Lambda_{0} \backslash \phi$ and if $\mu_{n} \in K,\left|\mu_{n}\right|=\sup _{k \geq n}\left|\xi_{k}\right|$, then $\left(\mu_{n}\right) \in \Lambda_{0}$ and $\mu_{n} \neq 0$ for all n.

Proposition 2.5 : Let E, F be locally convex spaces, where F is metrizable and let G be a dense subspace of F. Let $T \in L(E, F)$ be Λ_{0}-nuclear and suppose that P is stable and that $\Lambda_{0} \neq \phi$. Then, there exist $\left(\xi_{n}\right) \in \Lambda_{0}$, an equicontinuous sequence $\left(g_{n}\right)$ in E^{\prime} and a bounded sequence $\left(z_{n}\right)$ in G such that

$$
T x=\sum_{n} \xi_{n} g_{n}(x) z_{n}(x \in E)
$$

Proof : Let (p_{m}) be an increasing sequence of continuous seminorms on F generating its topology. Since G is dence in \widehat{F}, we may assume that F is complete. Let $\left(\lambda_{n}\right) \in \Lambda_{0}$, $0<\left|\lambda_{n+1}\right| \leq\left|\lambda_{n}\right|$. Since T is Λ_{0}-nuclear, there exist $\left(\mu_{n}\right) \in \Lambda_{0},\left(h_{n}\right)$ an an equicontinuous sequence in E^{\prime} and a bounded sequence $\left(y_{n}\right)$ in F such that $T x=\sum_{n} \mu_{n} h_{n}(x) y_{n}$. We may assume that $\left|\mu_{n}\right| \leq 1$ for all n. For each positive integer n, there are unique positive integers k, m such that $n=(2 m-1) 2^{k-1}$. Set $\xi_{m}^{(k)}=\lambda_{(2 m-1) 2^{k-1}}$. Choose $z_{m}^{(k)} \in G$ such that

$$
\max \left\{p_{m}\left(z_{m}^{(k)}-y_{k}\right), p_{k}\left(z_{m}^{(k)}-y_{k}\right)\right\} \leq\left|\xi_{m+1}^{(k)}\right|
$$

Set $w_{1}^{(k)}=z_{1}^{(k)}$ and $w_{m}^{(k)}=z_{m}^{(k)}-z_{m-1}^{(k)}$ if $m \geq 2$. For all k, we have $y_{k}=\lim _{m \rightarrow \infty} z_{m}^{(k)}$. Indeed, let $n \in N$. If $m \geq n$, then

$$
p_{n}\left(z_{m}^{(k)}-y_{k}\right) \leq p_{m}\left(z_{m}^{(k)}-y_{k}\right) \leq\left|\xi_{m+1}^{(k)}\right| \rightarrow 0 \text { as } m \rightarrow \infty
$$

Since $\sum_{i=1}^{m} w_{i}^{(k)}=z_{m}^{(k)}$, we have that $y_{k}=\sum_{m=1}^{\infty} w_{m}^{(k)}$. Thus, for all $x \in E$, we have

$$
T x=\sum_{k} \mu_{k} h_{k}(x) y_{k}=\sum_{k} \sum_{m} \mu_{k} h_{k}(x) w_{m}^{(k)}
$$

Let $v_{1}^{(k)}=w_{1}^{(k)}, \eta_{1}^{(k)}=1$.For $m \geq 2$, let $v_{m}^{(k)}=w_{m}^{(k)} / \xi_{m}^{(k)}, \eta_{m}^{(k)}=\xi_{m}^{(k)}$. The set $\left\{v_{m}^{(k)}\right.$: $m \geq 2, k \in N\}$ is bounded in G. In fact, let $n \in N$. If $k>n$, then

$$
\begin{aligned}
p_{n}\left(w_{m}^{(k)}\right) & =\max \left\{p_{k}\left(z_{m}^{(k)}-y_{k}\right), p_{k}\left(z_{m-1}^{(k)}-y_{k}\right)\right\} \\
& \leq \max \left\{\left|\xi_{m+1}^{(k)}\right|,\left|\xi_{m}^{(k)}\right|=\left|\xi_{m}^{(k)}\right|\right.
\end{aligned}
$$

Similarly, for $m>n$, we have

$$
p_{n}\left(w_{m}^{(k)}\right) \leq \max \left\{p_{m}\left(z_{m}^{(k)}-y_{k}\right), p_{m-1}\left(z_{m-1}^{(k)}-y_{k}\right)\right\} \leq\left|\xi_{m}^{(k)}\right|
$$

Also, the set $\left\{v_{1}^{(k)}: k \in N\right\}=\left\{z_{1}^{(k)}: k \in N\right\}$ is bounded since, for $n \in N$ and $k>n$ we have

$$
p_{n}\left(z_{1}^{(k)}\right) \leq \max \left\{p_{k}\left(z_{1}^{(k)}-y_{k}\right), p_{n}\left(y_{k}\right)\right\} \leq \max \left\{\left|\xi_{2}^{(k)}\right|, p_{n}\left(y_{k}\right)\right\}
$$

and so $\sup _{k} p_{n}\left(z_{1}^{(k)}\right)<\infty$ since $\left(y_{k}\right)$ and $\left(\lambda_{m}\right)$ are bounded. Let

$$
\left\{n_{1}<n_{2}<\ldots\right\}=\left\{(2 m-1) 2^{k-1}: k \in N, m \geq 2\right\}
$$

For $i \in N$, set $\xi_{i}=\mu_{k} \lambda_{(2 m-1) 2^{k-1}}, f_{i}=h_{k}$ and $z_{i}=v_{m}^{(k)}$ if $n_{i}=(2 m-1) 2^{k-1}$. Since every subsequence of $\left(\lambda_{n}\right)$ is in Λ_{0} and since $\left|\mu_{k}\right| \leq 1$ for all k, it is clear that $\xi=\left(\xi_{i}\right) \in \Lambda_{0}$. Let $\zeta_{k}=\mu_{k}, w_{k}=z_{1}^{(k)}$. If $\zeta=\left(\zeta_{k}\right)$ then $\xi * \zeta \in \Lambda_{0}$ since P is stable. Moreover

$$
T x=\xi_{1} f_{1}(x) z_{1}+\zeta_{1} h_{1}(x) w_{1}+\xi_{2} f_{2}(x) z_{2}+\zeta_{2} h_{2}(x) w_{2}+\ldots
$$

This completes the proof.
Proposition 2.6 : Let F be a dense subspace of a Hausdorff locally convex space over K. Then, E is Λ_{0}-nuclear iff F is Λ_{0}-nuclear.
Proof : In view of [7, Proposition 3.4], a locally convex space M is Λ_{0}-nuclear iff every continuous linear map from M to any Banach space G is Λ_{0}-nuclear. Now the result follows easily from this and the fact that every continuous linear map, from F to any Banach space, has a continuous extension to all of E.

3. TENSOR PRODUCTS AND Λ_{0}-NUCLEAR SPACES

Proposition 3.1 : Let P be countable. Then, the following are equivalent :
(1) P is stable.
(2) For all $\xi, \eta \in \Lambda_{0}$ we have $\xi * \eta \in \Lambda_{0}$.
(3) For every $\xi \in \Lambda_{0}$ we have $\xi * \xi \in \Lambda_{0}$.
(4) If $\xi, \eta \in \Lambda_{0}$, then some rearrangement of the sequence $\xi * \eta$ is in Λ_{0}.
(5) If $\xi \in \Lambda_{0}$, then some rearrangement of $\xi * \xi$ is in Λ_{0}.

Proof : (1) implies (2) by [5, Proposition 2.12].
(3) \Rightarrow (4). Let $\zeta_{n} \in K,\left|\zeta_{n}\right|=\max \left\{\left|\xi_{n}\right|,\left|\eta_{n}\right|\right\}$. Then $\zeta=\left(\zeta_{n}\right) \in \Lambda_{0}$. Since $\zeta * \zeta \in \Lambda_{0}$, it is clear that $\xi * \eta \in \Lambda_{0}$.
$(5) \Rightarrow(1)$. Let $|\lambda|>1$. Without loss of generality, we may assume that $P=\left\{\alpha^{n}:\right.$ $n \in N\},|\lambda| \alpha^{n} \leq \alpha^{n+1}$.

Suppose that P is not stable and let $\alpha \in P$ be such that $\sup _{n} \alpha_{2 n} / \beta_{n}=\infty$ for every $\beta \in P$. Choose indices $n_{1}<n_{2}<\ldots$ such that $\alpha_{2 n_{k}} / \alpha_{n_{k}}^{(k)}>k$ for all k. There are $\lambda_{k} \in K$ with

$$
\left|\lambda^{-1} \lambda_{k} \leq\left(k \alpha_{n_{k}}^{(k)}\right)^{-1} \leq\left|\lambda_{k}\right|\right.
$$

Let $n_{0}=0$ and for $n_{k-1}<n \leq n_{k}$ set $\xi_{n}=\lambda_{k}$. Now, for every $k \in K$ we have $\left|\lambda_{k+1}\right| \leq\left|\lambda_{k}\right|$. Moreover $\xi=\left(\xi_{n}\right) \in \Lambda_{0}$. In fact, if $k_{0} \in N$, then for $k \geq k_{0}$ we have

$$
\alpha_{n_{k}}^{\left(k_{0}\right)}\left|\xi_{n_{k}}\right| \leq \alpha_{n_{k}}^{(k)}\left|\xi_{n_{k}}\right| \leq|\lambda| / k \rightarrow 0
$$

By our assumption (5), there exists a rearrangement of the sequence $\left(\gamma_{n}\right)=\xi * \xi$ which belongs to Λ_{0}. This, and the fact that $\left|\gamma_{n}\right| \geq\left|\gamma_{n+1}\right|$ for all n, imply that (γ_{n}) $\in \Lambda_{0}$ (by Lemma 2.2). But $\alpha_{2 n_{k}}\left|\xi_{n_{k}}\right| \geq k \alpha_{n_{k}}^{(k)}\left(k \alpha_{n_{k}}^{(k)}\right)^{-1}=1$, a contradiction.

Proposition 3.2 : Let P be countable and suppose that for each $\xi \in \Lambda_{0}$ there exists a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ such that $\left(\xi_{\sigma_{1}(n)} \xi_{\sigma_{2}(n)}\right) \in \Lambda_{0}$. Then, P is stable.
Proof : Let $|\lambda|>1$. Without loss of generality, we may assume that $P=\left\{\alpha^{(n)}: n \in\right.$ $N\},|\lambda| \alpha^{(n)} \leq \alpha^{(n+1)}$ for all n. Suppose that P is not stable and let $\alpha \in P$ be such that $\sup _{n} \alpha_{2 n} / \beta_{n}=\infty$ for all $\beta \in P$. As in the proof of the implication (5) \Rightarrow (1) in the preceding proposition, let $n_{0}=0<n_{1}<\ldots$ be such that $\alpha_{2 n_{k}} / \alpha_{n_{k}}^{(k)}>k$ and let $\left|\lambda^{-1} \lambda_{k} \leq\left(k \alpha_{n_{k}}^{(k)}\right)^{-1} \leq\left|\lambda_{k}\right|\right.$. If $n_{k-1}<n \leq n_{k}$, set $\xi_{n}=\lambda_{k}$. Then $\left(\xi_{n}\right) \in \Lambda_{0}$. By our hypothesis there is some rearrangement of the sequence

$$
\zeta=\left(\xi_{1} \xi_{1}, \xi_{1} \xi_{2}, \xi_{2} \xi_{1}, \xi_{1} \xi_{3}, \xi_{2} \xi_{2}, \xi_{3} \xi_{1}, \ldots\right)
$$

which belongs to Λ_{0}. In view of Lemma 2.2, if $\left(\gamma_{n}\right)$ is a decreasing rearrangement of ζ, then $\left(\gamma_{n}\right) \in \Lambda_{0}$. Consider the sequence

$$
\eta=\left(\xi_{1} \xi_{1}, \xi_{2} \xi_{1}, \xi_{2} \xi_{2}, \xi_{1} \xi_{2}, \xi_{3} \xi_{1}, \xi_{1} \xi_{3}, \ldots, \xi_{n} \xi_{1}, \xi_{1} \xi_{n}, \ldots\right)
$$

and let $\left(\delta_{n}\right)$ be a decreasing rearrangement of η. Then $\left|\delta_{k}\right| \leq\left|\gamma_{k}\right|$ for all k. In fact, suppose that $\left|\delta_{k}\right|>\left|\gamma_{k}\right|$ for some k. Then $\left|\delta_{1}\right| \geq\left|\delta_{2}\right| \geq \ldots \geq\left|\delta_{k}\right|>\left|\gamma_{k}\right|$. Since $\left|\gamma_{m}\right| \leq\left|\gamma_{k}\right|<\left|\delta_{k}\right|$ for all $m \geq k$, we must have that

$$
\left\{\delta_{1}, \ldots, \delta_{k}\right\} \subset\left\{\gamma_{1}, \ldots, \gamma_{k-1}\right\}
$$

which clearly is a contradiction. Thus, $\left|\delta_{k}\right| \leq\left|\gamma_{k}\right|$ for all k, and so $\left(\delta_{n}\right) \in \Lambda_{0}$. let $\mu \in K,|\mu|=\min \left\{\left|\xi_{1}\right|,\left|\xi_{2}\right|\right\}$, and consider the sequence

$$
\left(\lambda_{n}\right)=\left(\xi_{1}, \xi_{1}, \xi_{2}, \xi_{2}, \xi_{3}, \xi_{3}, \ldots\right)=\xi * \xi
$$

Since $\left|\eta_{n}\right| \geq\left|\mu \lambda_{n}\right|$ for all n, there exists some rearrangement of $\left(\lambda_{n}\right)$ which belongs to Λ_{0} and so $\left(\lambda_{n}\right) \in \Lambda_{0}$ since $\left|\lambda_{n}\right| \geq\left|\lambda_{n+1}\right|$ for all n. Since $\alpha_{2 n_{k}} \mid \xi_{n_{k}} \geq 1$, we got a contradiction. This clearly completes the proof.

Proposition 3.3 : Consider the following conditions :
(1) For each $\alpha \in P$ there exists $\beta \in P$ such that $\sup _{n} \alpha_{n^{2}} / \beta_{n}<\infty$.
(2) If $\xi, \eta \in \Lambda_{0}$, then there exists a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ such that $\left(\xi_{\sigma_{1}(n)} \xi_{\sigma_{2}(n)}\right) \in \Lambda_{0}$.
(3) If $\xi \in \Lambda_{0}$, then there exists a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ such that $\left(\xi_{\sigma_{1}(n)} \xi_{\sigma_{2}(n)}\right) \in \Lambda_{0}$.

Then $(1) \Rightarrow(2) \Rightarrow(3)$. If P is countable, then (1), (2), (3) are equivalent.
Proof: (1) $\Rightarrow(2)$. Let $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ be defined as follows: Let $\sigma(1)=(1,1)$. For $j=[1+2+\ldots+(n-1)]+k=\frac{n(n-1)}{2}+k, 1 \leq k \leq n$, let $\sigma(j)=(k, n+1-k)$. Then $\left(\lambda_{n}\right)=\left(\xi_{\sigma_{1}(n)} \xi_{\sigma_{2}(n)}\right) \in \Lambda_{0}$. In fact, let $\alpha \in P$. Our assumption on P implies that P is stable. Thus, there exists $\beta \in P$ such that $\sup _{n} \alpha_{2 n^{2}} / \beta_{n}=d<\infty$. Let $d_{1}>0$ be such that $\left|\xi_{k}\right|,\left|\eta_{k}\right| \leq d_{1}$ for all k. Let $\epsilon>0$ be given and choose n_{0} such that $\beta_{k}\left|\xi_{k}\right|, \beta_{k}\left|\eta_{k}\right|<\frac{\epsilon}{d d_{1}}$ if $k \geq k_{0}$. Let now $j>\frac{m(m-1)}{2}$, where $m \geq 2 k_{0}$, and let $j=\frac{n(n-1)}{2}+k, 1 \leq k \leq n$. Clearly $n \geq m$. We have that either $k \geq \frac{n+1}{2}$ or $n+1-k \geq \frac{n+1}{2}$. If, say, $k \geq \frac{n+1}{2}$, then $j \leq \frac{n(n+1)}{2} \leq 2 k^{2}$ and $\alpha_{j}\left|\xi_{k} \eta_{n+1-k}\right| \leq d_{1} \alpha_{2 k^{2}}\left|\xi_{k}\right| \leq d_{1} d \beta_{k}\left|\xi_{k}\right|<\epsilon$ since $k \geq \frac{n+1}{2} \geq \frac{m+1}{2}>k_{0}$. The same happens when $n+1-k \geq \frac{n+1}{2}$. Thus, for $j>\frac{m(m-1)}{2}$, we have $\left|\alpha_{j} \lambda_{j}\right|<\epsilon$, which proves that $\left(\lambda_{n}\right) \in \Lambda_{0}$.

Assume next that P is countable and that (3) holds. Let $|\lambda|>1$. Without loss of generality we may assume that From : Athanasios Katsaras jakatsar@cc.uoi.gri Organization : University of Ioannina Computer Center Dourouti, Ioannina, Greece 45110 tel : +30-65145298, fax : +30-651-45298 Date : Wed, 12 Oct 9412 :32 :30 + 0200 To : escassut@ucfma, katsara@cc.uoi.gr

$$
P=\left\{\alpha^{(n)}: n=0,1, \ldots\right\},\left[\alpha^{(n-1)}\right]^{2} \leq \alpha^{(n)},|\lambda| \alpha^{(n)} \leq \alpha^{(n+1)}
$$

$\alpha_{1}^{(0)} \geq 1$. Suppose that (1) does not hold and let $\alpha \in P$ be such that $\sup _{n} \alpha_{n^{2}} / \beta_{n}=\infty$ for all $\beta \in P$. Let $\left(n_{k}\right)$ be a sequence of natural numbers, with $n_{k}>2 n_{k-1}$, such that $\alpha_{n_{k}^{2}} / \alpha_{n_{k}}^{(k)}>k^{2}$ for $k=1,2, \ldots$. Choose $\lambda_{k} \in K$ with

$$
\left|\lambda^{-1} \lambda_{k}\right| \leq\left(k \alpha_{n_{k}}^{(k-1)}\right)^{-1} \leq\left|\lambda_{k}\right| .
$$

Let $n_{0}=0$ and, for $n_{k-1}<n \leq n_{k}$, let $\xi_{n}=\lambda_{k}$. If $k \geq k_{0}+1$, then

$$
\alpha_{n_{k}}^{\left(k_{0}\right)}\left|\xi_{n_{k}}\right| \leq \alpha_{n_{k}}^{(k-1)}|\lambda|\left(k \alpha_{n_{k}}^{(k-1)}\right)^{-1}=\frac{|\lambda|}{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

This proves that $\left(\xi_{n}\right) \in \Lambda_{0}$. Also,

$$
\left|\xi_{n_{k+1}}\right| \leq|\lambda|\left((k+1) \alpha_{n_{k+1}}^{(k)}\right)^{-1} \leq\left(k \alpha_{n_{k}}^{(k-1)}\right)^{-1} \leq\left|\xi_{n_{k}}\right| .
$$

Let $I_{k}=\left\{n: n_{k-1}<n \leq n_{k}\right\}$. If $i, j \in I_{k}$, then $\left|\xi_{i} \xi_{j}\right|=\left|\xi_{n_{k}}^{2}\right|$. Let

$$
\zeta=\left(\xi_{1} \xi_{1}, \xi_{1} \xi_{2}, \xi_{2} \xi_{1}, \xi_{1} \xi_{3}, \xi_{2} \xi_{2}, \xi_{3} \xi_{1}, \ldots\right)
$$

and let $\eta=\left(\eta_{1}, \eta_{2}, \ldots\right)$ be the sequence which we get by writing first those $\xi_{i} \xi_{j}$ with $i, j \in I_{1}$, then those $i, j \in I_{2}$ e.t.c. Clearly $\left|\eta_{1}\right| \geq\left|\eta_{2}\right| \geq \ldots$. By our hypothesis (3), there exists a rearrangement, of the terms of the sequence ζ, which belongs to Λ_{0}. This implies that any decreasing rearrangement $\left(\mu_{n}\right)$ of ζ also belongs to Λ_{0}. Now, for every k, we have $\left|\mu_{k}\right| \geq\left|\eta_{k}\right|$. In fact, if $\left|\mu_{k}\right|<\left|\eta_{k}\right|$, for some k, then

$$
\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{k}\right\} \subset\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k-1}\right\}
$$

a contradiction. Hence $\left|\mu_{m}\right| \geq\left|\eta_{m}\right|$, for all m and so $\left(\eta_{k}\right) \in \Lambda_{0}$. The number of the terms $\xi_{i} \xi_{j}$, with $i, j \in I_{k}$, is $\left(\eta_{k}-\eta_{k-1}\right)^{2}$. Let $m_{1}=n_{1}^{2}, m_{k}=m_{k-1}+\left(\eta_{k}-\eta_{k-1}\right)^{2}$ for $k \geq 2$. Since $n_{k}>2 n_{k-1}$, we have $n_{k}-n_{k-1}>\frac{n_{k}}{2}$ and so $m_{k}>\frac{n_{k}^{2}}{4}$. In view of Proposition 3.2, there exists $\beta \in P$ and $\mu \in K$ with $\alpha_{4 n} / \beta_{n} \leq|\mu|$ for all n. Now

$$
\begin{aligned}
\beta_{m_{k}}\left|\eta_{m_{k}}\right| & =\beta_{m_{k}}\left|\xi_{n_{k}}\right|^{2} \geq|\mu|^{-1} \alpha_{4 m_{k}}\left|\xi_{n_{k}}\right|^{2} \\
& \geq|\mu|^{-1} \alpha_{n_{k}^{2}}\left|\xi_{n_{k}}\right|^{2} \geq|\mu|^{-1} k^{2} \alpha_{n_{k}}^{(k)}\left|\xi_{n_{k}}\right|^{2} \\
& \geq|\mu|^{-1} k^{2}\left(\alpha_{n_{k}}^{(k-1)}\right)^{2}\left|\xi_{n_{k}}\right|^{2} \geq|\mu|^{-1}
\end{aligned}
$$

which contradicts the fact that $\left(\eta_{m}\right) \in \Lambda_{0}$. This clearly completes the proof.
Proposition 3.4: Let $\psi: c_{0} \times c_{0} \rightarrow c_{0}(N \times N)$ be defined by $\psi(x, y)=\left(x_{i} y_{j}\right)_{i, j}$ for $x=\left(x_{i}\right), y=\left(y_{i}\right)$. Then
(1) ψ is a continuous bilinear map and $\|\psi(x, y)\|=\|x\|\|y\|$.
(2) If $\tilde{\psi}: c_{0} \otimes_{\pi} c_{0} \rightarrow c_{0}(N \times N)$ is the corresponding linear map, then $\tilde{\psi}$ is an isometry and $D=\widetilde{\psi}\left(c_{0} \otimes_{\pi} c_{0}\right)$ is dense in $c_{0}(N \times N)$.
(3) The continuous extension $\omega: c_{0} \widehat{\otimes_{\pi}} c_{0} \rightarrow c_{0}(N \times N)$ of $\tilde{\psi}$ is an onto isometry.

Proof : (1) It is trivial.
(2) Let $u \in c_{0} \otimes_{\pi} c_{0}$ and let p the norm on c_{0} and set $\|\cdot\|=p \otimes_{\pi} p$. If $u=\sum_{k=1}^{m} x^{k} \otimes_{\pi} y^{k}$, then

$$
\|\widetilde{\psi}(u)\| \leq \max _{k}\left\|\widetilde{\psi}\left(x^{k} \otimes y^{k}\right)\right\|=\max _{k}\left\|\psi\left(x^{(k)}, y^{(k)}\right)\right\|=\max _{k} p\left(x^{(k)}\right) p\left(y^{(k)}\right)
$$

and so $\|\tilde{\psi}(u)\| \leq\|u\|$. On the other hand, given $0<t<1$, there are t-orthogonal elements $y^{(1)}, \ldots, y^{(n)}$ of c_{0} and $x^{(1)}, \ldots, x^{(n)} \in c_{0}$ such that $u=\sum_{k=1}^{n} x^{k} \otimes y^{k}$. Thus

$$
\begin{aligned}
\|\tilde{\psi}(u)\| & =\sup _{i, j}\left\|\sum_{k=1}^{n} x_{i}^{k} y_{j}^{k}\right\| \\
& =\sup _{i}\left[\sup _{j}\left|x_{i}^{1} y_{j}^{1}+x_{i}^{2} y_{j}^{2}+\ldots x_{i}^{n} y_{j}^{n}\right|\right] \\
& =\sup _{i} p\left(x_{i}^{1} y^{(1)}+x_{i}^{2} y^{(2)}+\ldots x_{i}^{n} y^{(n)}\right) \\
& \geq t \sup _{i} \max _{1 \leq k \leq n}\left|x_{i}^{(k)}\right| p\left(y^{(k)}\right)=t \max _{1 \leq k \leq n} p\left(x^{(k)}\right) p\left(y^{(k)}\right) \geq t\|u\| .
\end{aligned}
$$

Since $0<t<1$ was arbitrary, we have that $\|\widehat{\psi}(u)\| \geq\|u\|$ and so $\|\widehat{\psi}(u)\|=\|u\|$. To see that D is dense in $c_{0}(N \times N)$, let $w=\left(\xi_{i j}\right)_{i, j} \in c_{0}(N \times N)$ and let $\epsilon>0$. Choose m such that $\left|\xi_{i j}\right|<\epsilon$ if $i>m$ or $j>m$. Let $w_{0}=\left(\mu_{i j}\right)$ with $\mu_{i j}=\xi_{i j}$ if $i, j \leq m$ and $\mu_{i j}=0$ if $i>m$ or $j>m$. Then $w_{0} \in D$ and $\left\|w-w_{0}\right\| \leq \epsilon$.
(3) If $u \in c_{0} \widehat{\otimes}_{\pi} c_{0}$, then there exists a sequence $\left(u^{(n)}\right)$ in $c_{0} \otimes_{\pi} c_{0}$ converging to u. Now

$$
\|\omega(u)\|=\lim _{n}\left\|\tilde{\psi}\left(u^{(n)}\right)\right\|=\lim _{n}\left\|u^{(n)}\right\|=\|u\|
$$

and so u is an isometry. This and the fact that $\omega\left(c_{0} \widehat{\otimes}_{\pi} c_{0}\right)$ is dense in $c_{0}(N \times N)$ imply that ω is onto.

Proposition 3.5 Let E, F be locally convex spaces over $K, E, F \neq\{0\}$. If $E \otimes F$ is Λ_{0}-nuclear, then E and F are Λ_{0}-nuclear.

Proof. Since $E \otimes_{\pi} F$ is Λ_{0}-nuclear, it is by definition Hausdorff which implies that both E and F are Hausdorff. Let now $p \in c s(E)$ and choose $y_{0} \in F$ and $q \in c s(F)$ such that $q\left(y_{0}\right) \neq 0$. Since $E \otimes_{\pi} F$ is Λ_{0}-nuclear, there exist (by [7, Proposition 3.4]) $\left(\lambda_{n}\right) \in \Lambda_{0}$ and an equicontinuous sequence h_{n} in $\left(E \otimes_{\pi} F\right)^{\prime}$ such that

$$
p \otimes q(u) \leq \sup _{n}\left|\lambda_{n} h_{n}(u)\right|\left(u \in E \otimes_{\pi} F\right)
$$

Let $f_{n}: E \rightarrow K, f_{n}(x)=h_{n}\left(x \otimes y_{0}\right)$. Then $\left(f_{n}\right)$ is an equicontinuous sequence in E^{\prime}. Let $\mu \in K$ with $q\left(y_{0}\right) \geq|\mu|^{-1}$. Then

$$
p(x) \leq|\mu| \sup _{n}\left|\lambda_{n} f_{n}(x)\right|(x \in E)
$$

Thus E is Λ_{0}-nuclear (by [7, Proposition 3.4]). The proof of the Λ_{0}-nuclearity of F is analogous.

If $E_{1}, E_{2}, F_{1}, F_{2}$ are locally convex spaces over K and if $T_{i}: E_{i} \rightarrow F_{i}, i=1,2$, are linear maps, then $T_{1} \otimes T_{2}: E_{1} \otimes E_{2} \rightarrow F_{1} \otimes F_{2}$ will be defined by

$$
T_{1} \otimes T_{2}(x \otimes y)=T_{1}(x) \otimes T_{2}(y)
$$

We will denote by $N_{\Lambda_{0}}(E, F)$ the collection of all Λ_{0}-nuclear operators from E to F. Recall also that for $\xi \in c_{0}, T_{\xi}: c_{0} \rightarrow c_{0}$ is defined by $\left(T_{\xi} x\right)_{k}=\xi_{k} x_{k}$.

Theorem 3.6: Consider the following properties :
(1) If $E_{1}, E_{2}, F_{1}, F_{2}$ are locally convex spaces over K, where F_{1}, F_{2} are Hausdorff, and if $T_{i} \in N_{\Lambda_{0}}\left(E_{i}, F_{i}\right), i=1,2$, then $T_{1} \otimes T_{2} \in N_{\Lambda_{0}}\left(E_{1} \otimes_{\pi} E_{2}, F_{1} \otimes_{\pi} F_{2}\right)$.
(2) If $\xi, \eta \in \Lambda_{0}$, then $T_{\xi} \otimes T_{\eta} \in N_{\Lambda_{0}}\left(c_{0} \otimes_{\pi} c_{0}, c_{0} \otimes_{\pi} c_{0}\right)$.
(3) If $\xi \in \Lambda_{0}$, then $T_{\xi} \otimes T_{\xi} \in N_{\Lambda_{0}}\left(c_{0} \otimes_{\pi} c_{0}, c_{0} \otimes_{\pi} c_{0}\right)$.
(4) If $\xi, \eta \in \Lambda_{0}$, then there exists a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ such that $\left(\xi_{\sigma_{1}(n)} \eta_{\sigma_{2}(n)} \in \Lambda_{0}\right.$.
(5) If $\xi \in \Lambda_{0}$, then there exists a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ such that $\left(\xi_{\sigma_{1}(n)} \xi_{\sigma_{2}(n)} \in \Lambda_{0}\right.$.
(6) If E, F are Λ_{0}-nuclear spaces, then $E \otimes_{\pi} F$ is Λ_{0}-nuclear.

Then, (1)-(5) are equivalent and they imply (6).
Proof : Since, for $\xi \in \Lambda_{0}, T_{\xi}$ is Λ_{0}-nuclear, it is clear that (1) implies (2).
(3) \Rightarrow (4) Let $\mu_{n} \in K$ with $\left|\mu_{n}\right|=\max \left\{\left|\xi_{n}\right|,\left|\eta_{n}\right|\right\}$. Then $\zeta=\left(\mu_{n}\right) \in \Lambda_{0}$. If there exists a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ such that $\left(\xi_{\sigma_{1}(n)} \eta_{\sigma_{2}(n)} \in \Lambda_{0}\right.$, then $\left(\xi_{\sigma_{1}(n)} \eta_{\sigma_{2}(n)} \in \Lambda_{0}\right.$.

Thus, we may assume that $\xi=\eta$. If now ξ has only a finite number of nonzero terms, then it is clear that $\left(\xi_{\sigma_{1}(n)} \eta_{\sigma_{2}(n)} \in \Lambda_{0}\right.$ for any bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$. So, we may assume that the set $\left\{n: \xi_{n} \neq 0\right\}$ is infinite. If $\mu_{n} \in K,\left|\mu_{n}\right|=\sup _{k \geq n}\left|\xi_{k}\right|$, then $\left(\mu_{n}\right) \in \Lambda_{0}$. It is clear that if we prove the result for $\left(\mu_{n}\right)$, then it would also hold for ξ. Thus, we may assume that $0<\left|\xi_{n+1}\right| \leq\left|\xi_{n}\right|$ for all n. Let $T=T_{\xi}$. By our hypothesis $T \otimes T \in N_{\Lambda_{0}}\left(c_{0} \otimes_{\pi} c_{0}, c_{0} \otimes_{\pi} c_{0}\right)$. Let $\omega: c_{0} \widehat{\otimes_{\pi}} c_{0} \rightarrow c_{0}(N \times N)$ be the onto isometry in Proposition 3.4. Since $T \otimes T$ is Λ_{0}-nuclear, the same is true with the continuous extension $T \widehat{\otimes} T: c_{0} \widehat{\otimes_{\pi}} c_{0} \rightarrow c_{0} \widehat{\otimes_{\pi}} c_{0}$. In view of [5, Proposition 4.5], the map

$$
S=\omega(T \widehat{\otimes} T) \omega^{-1}: c_{0}(N \times N) \rightarrow c_{0}(N \times N)
$$

is Λ_{0}-nuclear. It is easy to see that for every $w=\left(w_{i, j}\right)$ in $c_{0}(N \times N)$ we have $S(w)=$ $\left(\xi_{i} \xi_{j} w_{i j}\right)$. Let

$$
\zeta=\left(\xi_{1} \xi_{1}, \xi_{1} \xi_{2}, \xi_{2} \xi_{1}, \xi_{1} \xi_{3}, \xi_{2} \xi_{2}, \xi_{3} \xi_{1}, \ldots\right)
$$

and let $\left(\mu_{n}\right)$ be a decreasing rearrangement of ζ.
It is clear that there exists some bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ such that $\mu_{n}=\xi_{\sigma_{1}(n)} \xi_{\sigma_{2}(n)}$ for all n. So it suffices to show that $\left(\mu_{n}\right) \in \Lambda_{0}$. If \mathcal{F}_{n+1} is the family of all subsets J of $N \times N$ containing $n+1$ elements, then

$$
\alpha_{n}(S)=\sup _{J \in \mathcal{F}_{n+1}} \inf _{(i, j) \in J}\left|\xi_{i} \xi_{j}\right|
$$

by Proposition 0.1. Since $\left|\mu_{k}\right| \geq\left|\mu_{k+1}\right|$ for all k, it is clear that $\alpha_{n}(S)=\left|\mu_{n+1}\right|$. Thus $\left(\mu_{n}\right) \in \Lambda_{0}$ since S is Λ_{0}-nuclear and hence of type Λ_{0} (see[5, Theorem 4.2]). This completes the proof of the implication (1) \Rightarrow (4).
$(5) \Rightarrow(1)$ Let $E_{1}, E_{2}, F_{1}, F_{2}, T_{1}, T_{2}$ be as in (1). Since $T_{1}: E_{1} \rightarrow \widehat{F}_{1}$ and $T_{2}: E_{2} \rightarrow \widehat{F}_{2}$ are Λ_{0}-nuclear, there are (by Proposition 2.1) $\gamma=\left(\gamma_{n}\right), \delta=\left(\delta_{n}\right) \in \Lambda_{0}$ and continuous linear maps $S_{1}: E_{1} \rightarrow c_{0}, S_{2}: c_{o} \rightarrow \widehat{F}_{1}, H_{1}: E_{2} \rightarrow c_{0}, H_{2}: c_{o} \rightarrow \widehat{F}_{2}$ such that

$$
T_{1}=S_{2} T_{\gamma} S_{1} \quad \text { and } \quad T_{2}=H_{2} T_{\delta} H_{1}
$$

Now

$$
T_{1} \otimes T_{2}=\left(S_{2} \otimes H_{2}\right)\left(T_{\gamma} \otimes T_{\delta}\right)\left(S_{1} \otimes H_{1}\right)
$$

In order to show that $T_{1} \otimes T_{2}$ is Λ_{0}-nuclear, it suffices (by [5, Proposition 4.5]) to show that

$$
S=T_{\gamma} \otimes T_{\delta}: c_{0} \otimes_{\pi} c_{0} \rightarrow c_{0} \otimes_{\pi} c_{0}
$$

is Λ_{0}-nuclear. For this, it is enough to show that the continuous extension

$$
\widehat{S}: c_{0} \widehat{\otimes}_{\pi} c_{0} \rightarrow c_{0} \widehat{\otimes}_{\pi} c_{0}
$$

is Λ_{0}-nuclear. Let $\omega: c_{0} \widehat{\otimes}_{\pi} c_{0} \rightarrow c_{0}(N \times N)$ be the onto isometry defined in proposition 3.4 and let

$$
H=\omega \widehat{S} \omega^{-1}: c_{0}(N \times N) \rightarrow c_{0}(N \times N)
$$

Since $\widehat{S}=\omega^{-1} H \omega$, it suffices to show that H is Λ_{0}-nuclear. It is easy to see that (5) implies (4). Thus, our hypothesis (5) implies that there exists a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}\right): N \rightarrow N \times N$ such that $\left(\gamma_{\sigma_{1}(n)} \delta_{\sigma_{2}(n)}\right) \in \Lambda_{0}$. For each $n \in N$, let $f_{n} \in c_{0}(N \times N)^{\prime}$ be defined by $f_{n}(w)=w_{\sigma_{1}(n) \sigma_{2}(n)}$ and let $z^{(n)} \in c_{0}(N \times N)$, where $z_{i j}^{(n)}=1$ if $(i, j)=\sigma(n)$ and $z_{i j}^{(n)}=0$ if $(i, j) \neq \sigma(n)$. Now, $\left(z^{(n)}\right)$ is a bounded sequence in $c_{0}(N \times N),\left(f_{n}\right)$ an equicontinuous sequence in $c_{0}(N \times N)^{\prime}$ and

$$
H(w)=\sum_{n=1}^{\infty} \xi_{n} f_{n}(w) z^{(n)}, \quad \xi_{n}=\gamma_{\sigma_{1}(n)} \delta_{\sigma_{2}(n)}
$$

Thus H is Λ_{0}-nuclear, which proves the implication (5) \Rightarrow (1).
$(1) \Rightarrow(6)$. Let p, q be continuous seminorms on E and F, respectively, and $r=p \otimes q$. Consider the canonical linear isometry

$$
h=E_{p} \otimes_{\pi} E_{q} \rightarrow(E \otimes F)_{r}
$$

Since E, F are Λ_{0}-nuclear, the quotient maps

$$
\phi_{p}: E \rightarrow E_{p} \quad \text { and } \quad \phi_{q}: F \rightarrow F_{q}
$$

are Λ_{0}-nuclear and so the map

$$
\phi_{p} \otimes \phi_{q}: E \otimes_{\pi} F \rightarrow E_{p} \otimes_{\pi} F_{q}
$$

is Λ_{0}-nuclear. It follows that the map

$$
f=h \circ\left(\phi_{p} \otimes \phi_{q}\right): E \otimes_{\pi} F \rightarrow(E \otimes F)_{r}
$$

is Λ_{0}-nuclear. Since f is the canonical surjection, it follows that $E \otimes_{\pi} F$ is Λ_{0}-nuclear.

In view of Proposition 3.3, we have the following

Corollary 3.7 Consider the following property for P :

(\star) For each $\alpha \in P$ there exists $\beta \in P$ such that $\sup _{n} \alpha_{n^{2}} / \beta_{n}<\infty$. Then
a) If (\star) holds, then (1)-(6) of the preceding Theorem hold.
b) If P is countable, then property (\star) is equivalent to each of the (1)-(5) in the preceding Theorem.

Proposition 3.8 Let $\Lambda=\Lambda_{\gamma, \infty}$, where $\gamma=\left(\gamma_{n}\right)$ is not bounded. Then, the following are equivalent :
(1) $\sup _{n} \gamma_{n^{2}} / \gamma_{n}<\infty$.
(2) If $\zeta, \eta \in \Lambda=\Lambda_{0}$, then there exists a bijection $\sigma=\left(\sigma_{1}, \sigma_{2}: N \rightarrow N \times N\right.$ such that $\left(\xi_{\sigma_{1}(n)} \eta_{\sigma_{2}(n)}\right) \in \Lambda_{0}$.
Proof : (1) \Rightarrow (2) Let $d=\sup _{n} \gamma_{n^{2}} / \gamma_{n}$. Then $d \geq 1$. Given $\rho>1$, let $\rho_{1}=\rho^{d}$. Then

$$
\rho^{\gamma_{n} 2} / \rho_{1}^{\gamma_{n}} \leq \rho^{d \gamma_{n}} / \rho_{1}^{\gamma_{n}}=1
$$

Now the implication follows from Proposition 3.3.
(2) \Rightarrow (1) If $\alpha^{(m)}=\left(m^{\gamma_{n}}\right)$, for $m=2,3, \ldots$ and if $P=\left\{\alpha^{(m)}: m \geq 2\right\}$, then $\Lambda_{0}=\Lambda_{0}(P)$. In view of proposition 3.3, for each $\alpha \in P$ there exists $\beta \in P$ such that
 that $\sup _{n} \gamma_{n^{2}} / \gamma_{n}=\infty$. Choose indices $n_{1}<n_{2}<\ldots$ such that $\gamma_{n_{k}^{2}} / \gamma_{n_{k}}>k$. If $2^{k}>m$, then

$$
2^{\gamma_{n_{k}^{2}}} / m^{\gamma_{n_{k}}} \geq\left(\frac{2^{k}}{m}\right)^{n_{k}}>\frac{2^{k}}{m} \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty
$$

a contadiction.

REFERENCES

[1] N. de Grande-de Kimpe and S. Navarro, Non-Archimedean nuclearity and spaces of continuous functions, Indag.Math. N.S, 2 (1991),201-206.
[2] A. K. Katsaras,Non-Archimedean Köthe sequence spaces, Boll. U.M.I., 5-B(7) (1991), 703-725.
[3] A. K. Katsaras,On non-Archimedean sequence spaces, Bull. Inst. Math. Acad. Sinica, 18 (1990), 113-126.
[4] A. K. Katsaras,Non-Archimedean Λ-nuclear spaces, Proc. of the Laredo Conf. on p-adic Functional Analysis, Lecture Notes in Pure and Appl. Math. 137. (1992), 101-119
[5] A. K. Katsaras,Non-Archimedean Λ_{0}-compactoid sets and Λ_{0}-nuclear operators, Boll. U.M.I., (7) 7-B (1993), 691-718.
[6] A. K. Katsaras and C. Perez-Garcia, Λ_{0}-compactoid sets and Λ_{0}-compactoid operators versus compactoid sets and compact operators, Boll. U.M.I. (7) 8-B (1994), 371-389.
[7] A. K. Katsaras and C. Perez-Garcia, Λ_{0}-nuclear operators and Λ_{0}-nuclear spaces in p-adic Analysis (preprint).
[8] C. Perez-Garcia and W.H. Schikhof,Tensor product and p-adic vector valued continuous functions (preprint).
[9] W.H. Schikhof, Locally convex topologies over non-spherically complete fields I-II,Bull. Soc. Math. Belg. Ser. B, 38 (1986), 187-224.
[10] A.C.M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.

Department of Mathematics, University of Ioannina, Ioannina, Greece

