Annales mathématiques Blaise Pascal

A.K. KATSARAS

Tensor products and γ_0 -nuclear spaces in p-adic analysis

Annales mathématiques Blaise Pascal, tome 2, nº 1 (1995), p. 155-168 http://www.numdam.org/item?id=AMBP 1995 2 1 155 0>

© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http://math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

TENSOR PRODUCTS AND Λ₀- NUCLEAR

SPACES IN P-ADIC ANALYSIS

A.K. Katsaras

Abstract. The Λ_0 -nuclearity of the topological tensor product of two Λ_0 -nuclear spaces is studied. This problem is related to the question of whether the operator $T_1 \otimes T_2$ is Λ_0 -nuclear when T_1 and T_2 are Λ_0 -nuclear.

1991 Mathematics subject classification: 46S10.

0. INTRODUCTION Throughout this paper, K will be a complete non-Archimedean valued field whose valuation is nontrivial.

As it shown in [1], if E, F are locally convex spaces over K, then $E \otimes_{\pi} F$ is nuclear iff E, F are nuclear. In this paper we study the analogous problem for the Λ_0 -nuclear spaces which were introduced in [7]. We show that the question is related to each of the following two equivalent conditions:

- (1) If $T_1: E_1 \to F_1$, $T_2: E_2 \to F_2$ are Λ_0 -nuclear operators, then $T_1 \otimes T_2: E_1 \otimes_{\pi} E_2 \to F_1 \otimes_{\pi} F_2$ is Λ_0 -nuclear.
- (2) If $\xi, \eta \in \Lambda_0 = \Lambda_0(P)$, then there exists a bijection $\sigma = (\sigma_1, \sigma_2) : N \to N \times N$ such that

$$(\xi_{\sigma_1(\eta)}\eta_{\sigma_2(\eta)})\in\Lambda_0$$

In case the Köthe set P is countable, it is shown that the above conditions are equivalent to:

(3) For each $\alpha \in P$ there exists $\beta \in P$ such that $\sup_{n} \alpha_{n^2}/\beta_n < \infty$.

1. PRELIMINARIES

By a Köthe set we will mean a collection P of sequences $\alpha = (\alpha_n)$ of non-negative real numbers with the following two properties:

(i) For every $n \in N$ there exists $\alpha \in P$ with $\alpha_n \neq 0$.

(ii) If $\alpha, \alpha' \in P$, then there exists $\beta \in P$ with $\alpha, \alpha' \ll \beta$, where $\alpha \ll \beta$ means that there exists d > 0 such that $\alpha_n \leq d\beta_n$ for all n.

For $\alpha \in P$ and $\xi = (\xi_n)$ a sequence in K, we define $p_{\alpha}(\xi) = \sup_{n} \alpha_n |\xi_n|$. The non-Archimedean Köthe sequence space $\Lambda(P) = \Lambda$ is the space of all $\xi \in K^N$ such that $p_{\alpha}(\xi) < \infty$ for all $\alpha \in P$. On $\Lambda(P)$ we consider the locally convex topology generated by the family of non-Archimedean seminorms $\{p_{\alpha} : \alpha \in P\}$. The subspace $\Lambda_0 = \Lambda_0(P)$ of $\Lambda(P)$ consists of all $\xi \in \Lambda(P)$ such that $\alpha_n |\xi_n| \to 0$ for all $\alpha \in P$. The Köthe set P is called stable if for each $\alpha \in P$ there exists $\beta \in P$ such that $\sup_{n} \alpha_{2n}/\beta_n < \infty$. By [5, Proposition 2.12], if P is stable and if $\xi, \eta \in \Lambda$ (resp. $\xi, \eta \in \Lambda_0$), then

$$\xi * \eta = (\xi_1, \eta_1, \xi_2, \eta_2, \ldots) \in \Lambda$$
 (resp. $\xi * \eta \in \Lambda_0$).

The Köthe set P is called a power set of infinite type if

- 1) For each $\alpha \in P$ we have $0 < \alpha_n \le \alpha_{n+1}$ for all n.
- 2) For every $\alpha \in P$ there exists $\beta \in P$ such that $\alpha^2 \ll \beta$.

If $\gamma = (\gamma_n)$ is an increasing sequence and if we take $P = \{(p^{\gamma_n}) : p > 1\}$, then P is a a power set of infinite type. In this case we denote $\Lambda(P)$ by $\Lambda_{\gamma,\infty}$. If $\gamma_n \to \infty$, then for $\Lambda = \Lambda_{\gamma,\infty}$, we have $\Lambda = \Lambda_0$ (see [3,, Corollary 3.5]).

Next we will recall the concepts of a Λ_0 -compactoid set and a Λ_0 nuclear map, which are given in [5], and the concept of a Λ_0 -nuclear space given in [7]. For a bounded subset A, of a locally convex space E over K, and for a non-negative integer n, the nth Kolmogorov diameter $\delta_{n,p}(A)$ of A, with respect to a continuous seminorm p on E ($p \in cs(E)$), is the infimum of all $|\mu|, \mu \in K$, for which there exists a subspace F of E, with $dim F \leq n$, such that $A \subset F + \mu B_p(0,1)$, where

$$B_p(0,1) = \{x \in E : p(x) \le 1\}.$$

The set A is called Λ_0 -compactoid if, for each $p \in cs(E)$, there exists $\xi = \xi_p \in \Lambda_0$ such that $\delta_{n,p}(A) \leq |\xi_{n+1}|$ for all n (or equivalently $\alpha_n \delta_{n-1,p}(A) \to 0$ for each $\alpha \in P$). A continuous linear operator $T: E \to F$ is called:

- a) Λ_0 -compactoid if there exists a neighborhood V of zero in E such that T(V) is Λ_0 -compactoid in F.
- b) Λ_0 -nuclear if there exist an equicontinuous sequence (f_n) in E', a bounded sequence $(y_n \text{ in } F \text{ and } (\lambda_n) \in \Lambda_0 \text{ such that } :$

$$Tx = \sum_{n=1}^{\infty} \lambda_n f_n(x) y_n \quad (x \in E).$$

For a continuous linear map T, from a normed space E to another one F, and for a non-negative integer n, the nth approximation number $\alpha_n(T)$ of T is defined by

$$\alpha_n(T) = \inf\{\|T - A\| : A \in \mathcal{A}_n(E, F)\}$$

where $A_n(E, F)$ is the collection of all continuous linear operators $A: E \to F$ with $dim A(E) \leq n$.

Throughout the rest of the paper, P will be a Köthe set, which is a power set of infinite type, and $\Lambda_0 = \Lambda_0(P)$.

Let now E be a locally convex space over K. For $p \in cs(E)$, we will denote by E_p the quotient space E/kerp equipped with the norm $||[x]_p|| = p(x)$. A Hausdorff locally convex space E is called Λ_0 -nuclear (see [7]) if for each $p \in cs(E)$ there exists $q \in cs(E)$, $p \leq q$, such that the canonical map $\phi_{pq} : E_q \to E_p$ is Λ_0 -nuclear (or equivalently Λ_0 -compactoid). If $\phi_q : E \to E_q$ is the quotient map, then $\phi_q(B_q(0,1))$ is the closed unit ball in E_q . It is now clear that E is Λ_0 -nuclear iff for each $p \in cs(E)$ the map $\phi_p : E \to E_p$ is Λ_0 -nuclear.

Note that if P consists of the single constant sequence $(1,1,\ldots)$, then $\Lambda_0(P)=c_0$ and so in this case the Λ_0 -compactoid sets, the Λ_0 -compactoid operators and the Λ_0 -nuclear operators coincide with the compactoid sets, the compactoid operators and the nuclear operators, respectively. Also, if $T_1: E \to F, T_2: F \to G$ are continuous linear maps and if one of the T_1, T_2 is Λ_0 -compactoid (resp. Λ_0 -nuclear), then T_1, T_2 is Λ_0 -compactoid (resp. Λ_0 -nuclear) ([5, Proposition 3.21 and Proposition 4.5]). But for normed spaces E, F the class of all Λ_0 -nuclear operators from E to F is not necessarily a closed subset of the space of all continuous linear operators from E to F ([6, Corollary 3.7]).

We will denote the completion, of a Hausdorff locally convex space E, by \widehat{E} .

We will need a Proposition which is given in [4, Proposition 5.1]. For an index set I, let $c_0(I)$ be the vector space of all $\xi \in K^I$ such that $|\xi_i| \to 0$, i.e. for each $\epsilon > 0$ the set $\{i \in I : |\xi_i| > \epsilon\}$ is finite. On $c_0(I)$ we consider the norm $\|\xi\| = \sup_i |\xi_i|$.

Proposition 0.1: Let $\zeta = (\zeta_i)$ be a fixed element of $c_0(I)$ and consider the map

$$T: c_0(I) \to c_0(I), \ (T\xi)_i = (\xi_i \zeta_i).$$

Then, for each non-negative integer n we have

$$\alpha_n(T) = \sup_{J \in \mathcal{F}_{n+1}} \inf_{i \in J} |\zeta_i|$$

where \mathcal{F}_{n+1} is the collection of all subsets of I containing n+1 elements.

2. ON THE Λ_0 -NUCLEAR MAPS

For a fixed $\xi \in c_0$, the map $T_{\xi}: c_0 \to c_0$ is defined by $(T_{\xi}x)_i = \xi_i x_i$ for each $x \in c_0$. As it easy to see, if $\xi \in \Lambda_0$, then T_{ξ} is Λ_0 -nuclear.

Proposition 2.1: Let E, F be locally convex spaces over K, where F is complete, and let $T: E \to F$ be a Λ_0 -nuclear map. Then, there exist $\xi \in \Lambda_0$ and continuous linear maps $T_1: E \to c_0, T_2: c_0 \to F$ such that $T = T_2 T_\xi T_1$.

Proof: Let $(\lambda_n) \in \Lambda_0$, (f_n) an equicontinuous sequence in E' and (y_n) a bounded sequence in F be such that $Tx = \sum_n \lambda_n f_n(x) y_n$ for all $x \in E$. Let $|\lambda| > 1$ and choose $\mu_n \in K$ such that $|\mu_n| \le \sqrt{|\lambda_n|} \le |\lambda \mu_n|$. As it is shown in the proof of Theorem 4.6 in [5], $(\mu_n) \in \Lambda_0$. Let $\xi = (\xi_n)$ where $\xi_n = 0$ if $\mu_n = 0$ and $\xi_n = \lambda_n \mu_n^{-1}$ if $\mu_n \ne 0$. Then $(\xi_n) \in \Lambda_0$. Define

$$T_1: E \to c_0, \ T_1 x = (\mu_n f_n(x)).$$

Let $D=(T_{\xi}T_1)(E)$. If \bar{D} is the closure of D in c_0 , then there exists a projection Q of c_0 onto \bar{D} with $\|Q\| \leq |\lambda|$ (see [10, Theorem 3.16]). Let $S:D\to F, S(T_{\xi}T_1x)=Tx$. Then S is well defined and continuous. Let $\tilde{S}:\bar{D}\to F$ be the continuous extension of S and define $T_2:c_0\to F, T_2=\bar{S}Q$. Now $T=T_2T_{\xi}T_1$

Lemma 2.2: Let $\xi = (\xi_n) \in K^N$ be such that $|\xi_n| \ge |\xi_{n+1}|$ for all n. If there exists a permutation σ of N such that $(\xi_{\sigma(n)}) \in \Lambda_0$, then $\xi \in \Lambda_0$

Proof. Let $\zeta = (\xi_{\sigma(n)})$ and let $T = T_{\zeta} : c_0 \to c_0$. Since $\zeta \in \Lambda_0$, T is Λ_0 -nuclear. In view of [5, Theorem 4.1], T is of type Λ_0 and so there exists $(\mu_n) \in \Lambda_0$ such that $\alpha_n(T) \leq |\mu_{n+1}|$ for all n. Using Proposition 0.1, we get that $\alpha_n(T) = |\xi_{n+1}|$, which clearly implies that $\xi \in \Lambda_0$.

Definition 2.3: Let Let $\xi = (\xi_n) \in K^N$. A sequence $\zeta = (\zeta_n)$ is called a decreasing rearrangement of ξ if:

- $|\zeta_n| \ge |\zeta_{n+1}|$, for all n.
- b) There exists a permutation σ on N such that $\zeta_n = \xi_{\sigma(n)}$ for all n.

It is easy to see that if (ζ_n) and (μ_n) are decreasing rearrangements of ξ , then $|\zeta_n| = |\mu_n|$ for all n,

Proposition 2.4: Let $\xi = (\xi_n) \in c_0$ with $\xi_n \neq 0$ for all n. Then:

- a) There exists a decreasing rearrangement of ξ .
- b) If $\xi \in \Lambda_0$ and if $(\xi_{\sigma(n)})$ is any decreasing rearrangement of ξ , then $(\xi_{\sigma(n)}) \in \Lambda_0$.

Proof: a) Let n_1 be the first of all indices k with $|\xi_k| = \sup_m |\xi_m| = \max_m |\xi_m|$. Having chosen n_1, n_2, \ldots, n_m , let n_{m+1} be the first index $k \neq n_1, n_2, \ldots, n_m$ with $|\xi_k| = \max\{|\xi_n| : n \neq n_1, n_2, \ldots, n_m\}$. Let $\sigma: N \to N, \sigma(m) = n_m$. We claim that $(\xi_{\sigma(n)})$ is a decreasing rearrangement of ξ . Since $|\xi_{n_m}| \geq |\xi_{n_{m+1}}|$ for all m, it only remains to show that $\sigma(N) = N$. So, let $m \in N$ and suppose $m \notin \sigma(N)$. For each $k \in N$, since $m \neq n_1, n_2, \ldots, n_{k-1}$, we have $|\xi_m| \leq |\xi_{n_k}|$. This contradicts the fact that the set $N_1 = \{k : |\xi_k| \geq |\xi_m|\}$ is finite.

b) It follows from Lemma 2.2.

Let ϕ be the subspace of Λ_0 consisting of all sequences in K with only a finite number of non-zero terms. Suppose that $\Lambda_0 \neq \phi$ (this for instance happens when P is countable

by [6, Remark 4,4]). If $\xi \in \Lambda_0 \setminus \phi$ and if $\mu_n \in K$, $|\mu_n| = \sup_{k \ge n} |\xi_k|$, then $(\mu_n) \in \Lambda_0$ and $\mu_n \ne 0$ for all n.

Proposition 2.5: Let E, F be locally convex spaces, where F is metrizable and let G be a dense subspace of F. Let $T \in L(E, F)$ be Λ_0 -nuclear and suppose that P is stable and that $\Lambda_0 \neq \phi$. Then, there exist $(\xi_n) \in \Lambda_0$, an equicontinuous sequence (g_n) in E' and a bounded sequence (z_n) in G such that

$$Tx = \sum_{n} \xi_{n} g_{n}(x) z_{n} \ (x \in E)$$

Proof: Let (p_m) be an increasing sequence of continuous seminorms on F generating its topology. Since G is dence in \widehat{F} , we may assume that F is complete. Let $(\lambda_n) \in \Lambda_0$, $0 < |\lambda_{n+1}| \le |\lambda_n|$. Since T is Λ_0 -nuclear, there exist $(\mu_n) \in \Lambda_0$, (h_n) an an equicontinuous sequence in E' and a bounded sequence (y_n) in F such that $Tx = \sum_n \mu_n h_n(x) y_n$. We may assume that $|\mu_n| \le 1$ for all n. For each positive integer n, there are unique positive integers k, m such that $n = (2m-1)2^{k-1}$. Set $\xi_m^{(k)} = \lambda_{(2m-1)2^{k-1}}$. Choose $z_m^{(k)} \in G$ such that

$$\max\{p_m(z_m^{(k)}-y_k),p_k(z_m^{(k)}-y_k)\} \leq |\xi_{m+1}^{(k)}|.$$

Set $w_1^{(k)} = z_1^{(k)}$ and $w_m^{(k)} = z_m^{(k)} - z_{m-1}^{(k)}$ if $m \ge 2$. For all k, we have $y_k = \lim_{m \to \infty} z_m^{(k)}$. Indeed, let $n \in \mathbb{N}$. If $m \ge n$, then

$$p_n(z_m^{(k)} - y_k) \le p_m(z_m^{(k)} - y_k) \le |\xi_{m+1}^{(k)}| \to 0 \text{ as } m \to \infty.$$

Since $\sum_{i=1}^m w_i^{(k)} = z_m^{(k)}$, we have that $y_k = \sum_{m=1}^\infty w_m^{(k)}$. Thus, for all $x \in E$, we have

$$Tx = \sum_k \mu_k h_k(x) y_k = \sum_k \sum_m \mu_k h_k(x) w_m^{(k)}.$$

Let $v_1^{(k)} = w_1^{(k)}$, $\eta_1^{(k)} = 1$. For $m \ge 2$, let $v_m^{(k)} = w_m^{(k)}/\xi_m^{(k)}$, $\eta_m^{(k)} = \xi_m^{(k)}$. The set $\{v_m^{(k)} : m \ge 2, k \in N\}$ is bounded in G. In fact, let $n \in N$. If k > n, then

$$p_n(w_m^{(k)}) = max\{p_k(z_m^{(k)} - y_k), p_k(z_{m-1}^{(k)} - y_k)\}$$

$$\leq max\{|\xi_{m+1}^{(k)}|, |\xi_m^{(k)}| = |\xi_m^{(k)}|.$$

Similarly, for m > n, we have

$$p_n(w_m^{(k)}) \le \max\{p_m(z_m^{(k)} - y_k), p_{m-1}(z_{m-1}^{(k)} - y_k)\} \le |\xi_m^{(k)}|.$$

160 A.K. Katsaras

Also, the set $\{v_1^{(k)}: k \in N\} = \{z_1^{(k)}: k \in N\}$ is bounded since, for $n \in N$ and k > n we have

$$p_n(z_1^{(k)}) \leq \max\{p_k(z_1^{(k)} - y_k), p_n(y_k)\} \leq \max\{|\xi_2^{(k)}|, p_n(y_k)\}$$

and so $\sup_{k} p_n(z_1^{(k)}) < \infty$ since (y_k) and (λ_m) are bounded. Let

$${n_1 < n_2 < \ldots} = {(2m-1)2^{k-1} : k \in N, m \ge 2}.$$

For $i \in N$, set $\xi_i = \mu_k \lambda_{(2m-1)2^{k-1}}$, $f_i = h_k$ and $z_i = v_m^{(k)}$ if $n_i = (2m-1)2^{k-1}$. Since every subsequence of (λ_n) is in Λ_0 and since $|\mu_k| \le 1$ for all k, it is clear that $\xi = (\xi_i) \in \Lambda_0$. Let $\zeta_k = \mu_k, w_k = z_1^{(k)}$. If $\zeta = (\zeta_k)$ then $\xi * \zeta \in \Lambda_0$ since P is stable. Moreover

$$Tx = \xi_1 f_1(x) z_1 + \zeta_1 h_1(x) w_1 + \xi_2 f_2(x) z_2 + \zeta_2 h_2(x) w_2 + \dots$$

This completes the proof.

Proposition 2.6: Let F be a dense subspace of a Hausdorff locally convex space over K. Then, E is Λ_0 -nuclear iff F is Λ_0 -nuclear.

Proof: In view of [7, Proposition 3.4], a locally convex space M is Λ_0 -nuclear iff every continuous linear map from M to any Banach space G is Λ_0 -nuclear. Now the result follows easily from this and the fact that every continuous linear map, from F to any Banach space, has a continuous extension to all of E.

3. TENSOR PRODUCTS AND Λ₀-NUCLEAR SPACES

Proposition 3.1: Let P be countable. Then, the following are equivalent:

- (1) P is stable.
- (2) For all $\xi, \eta \in \Lambda_0$ we have $\xi * \eta \in \Lambda_0$.
- (3) For every $\xi \in \Lambda_0$ we have $\xi * \xi \in \Lambda_0$.
- (4) If $\xi, \eta \in \Lambda_0$, then some rearrangement of the sequence $\xi * \eta$ is in Λ_0 .
- (5) If $\xi \in \Lambda_0$, then some rearrangement of $\xi * \xi$ is in Λ_0 .

Proof: (1) implies (2) by [5, Proposition 2.12].

- (3) \Rightarrow (4). Let $\zeta_n \in K$, $|\zeta_n| = max\{|\xi_n|, |\eta_n|\}$. Then $\zeta = (\zeta_n) \in \Lambda_0$. Since $\zeta * \zeta \in \Lambda_0$, it is clear that $\xi * \eta \in \Lambda_0$.
- (5) \Rightarrow (1). Let $|\lambda| > 1$. Without loss of generality, we may assume that $P = \{\alpha^n : n \in \mathbb{N}\}, |\lambda|\alpha^n \leq \alpha^{n+1}$.

Suppose that P is not stable and let $\alpha \in P$ be such that $\sup_n \alpha_{2n}/\beta_n = \infty$ for every $\beta \in P$. Choose indices $n_1 < n_2 < \dots$ such that $\alpha_{2n_k}/\alpha_{n_k}^{(k)} > k$ for all k. There are $\lambda_k \in K$ with

$$|\lambda^{-1}\lambda_k \leq (k\alpha_{n_k}^{(k)})^{-1} \leq |\lambda_k|.$$

Let $n_0 = 0$ and for $n_{k-1} < n \le n_k$ set $\xi_n = \lambda_k$. Now, for every $k \in K$ we have $|\lambda_{k+1}| \le |\lambda_k|$. Moreover $\xi = (\xi_n) \in \Lambda_0$. In fact, if $k_0 \in N$, then for $k \ge k_0$ we have

$$\alpha_{n_k}^{(k_0)}|\xi_{n_k}| \le \alpha_{n_k}^{(k)}|\xi_{n_k}| \le |\lambda|/k \to 0.$$

By our assumption (5), there exists a rearrangement of the sequence $(\gamma_n) = \xi * \xi$ which belongs to Λ_0 . This, and the fact that $|\gamma_n| \ge |\gamma_{n+1}|$ for all n, imply that $(\gamma_n) \in \Lambda_0$ (by Lemma 2.2). But $\alpha_{2n_k} |\xi_{n_k}| \ge k \alpha_{n_k}^{(k)} (k \alpha_{n_k}^{(k)})^{-1} = 1$, a contradiction.

Proposition 3.2: Let P be countable and suppose that for each $\xi \in \Lambda_0$ there exists a bijection $\sigma = (\sigma_1, \sigma_2) : N \to N \times N$ such that $(\xi_{\sigma_1(n)} \xi_{\sigma_2(n)}) \in \Lambda_0$. Then, P is stable.

Proof: Let $|\lambda| > 1$. Without loss of generality, we may assume that $P = \{\alpha^{(n)} : n \in N\}, |\lambda|\alpha^{(n)} \leq \alpha^{(n+1)}$ for all n. Suppose that P is not stable and let $\alpha \in P$ be such that $\sup_n \alpha_{2n}/\beta_n = \infty$ for all $\beta \in P$. As in the proof of the implication $(5) \Rightarrow (1)$ in the preceding proposition, let $n_0 = 0 < n_1 < \dots$ be such that $\alpha_{2n_k}/\alpha_{n_k}^{(k)} > k$ and let $|\lambda^{-1}\lambda_k| \leq (k\alpha_{n_k}^{(k)})^{-1} \leq |\lambda_k|$. If $n_{k-1} < n \leq n_k$, set $\xi_n = \lambda_k$. Then $(\xi_n) \in \Lambda_0$. By our hypothesis there is some rearrangement of the sequence

$$\zeta = (\xi_1 \xi_1, \xi_1 \xi_2, \xi_2 \xi_1, \xi_1 \xi_3, \xi_2 \xi_2, \xi_3 \xi_1, \ldots)$$

which belongs to Λ_0 . In view of Lemma 2.2, if (γ_n) is a decreasing rearrangement of ζ , then $(\gamma_n) \in \Lambda_0$. Consider the sequence

$$\eta = (\xi_1 \xi_1, \xi_2 \xi_1, \xi_2 \xi_2, \xi_1 \xi_2, \xi_3 \xi_1, \xi_1 \xi_3, \dots, \xi_n \xi_1, \xi_1 \xi_n, \dots)$$

and let (δ_n) be a decreasing rearrangement of η . Then $|\delta_k| \leq |\gamma_k|$ for all k. In fact, suppose that $|\delta_k| > |\gamma_k|$ for some k. Then $|\delta_1| \geq |\delta_2| \geq \ldots \geq |\delta_k| > |\gamma_k|$. Since $|\gamma_m| \leq |\gamma_k| < |\delta_k|$ for all $m \geq k$, we must have that

$$\{\delta_1,\ldots,\delta_k\}\subset\{\gamma_1,\ldots,\gamma_{k-1}\}$$

which clearly is a contradiction. Thus, $|\delta_k| \leq |\gamma_k|$ for all k, and so $(\delta_n) \in \Lambda_0$. let $\mu \in K, |\mu| = \min\{|\xi_1|, |\xi_2|\}$, and consider the sequence

$$(\lambda_n) = (\xi_1, \xi_1, \xi_2, \xi_2, \xi_3, \xi_3, \ldots) = \xi * \xi.$$

Since $|\eta_n| \ge |\mu \lambda_n|$ for all n, there exists some rearrangement of (λ_n) which belongs to Λ_0 and so $(\lambda_n) \in \Lambda_0$ since $|\lambda_n| \ge |\lambda_{n+1}|$ for all n. Since $\alpha_{2n_k} |\xi_{n_k} \ge 1$, we got a contradiction. This clearly completes the proof.

Proposition 3.3: Consider the following conditions:

(1) For each $\alpha \in P$ there exists $\beta \in P$ such that $\sup_{n} \alpha_{n^2} / \beta_n < \infty$.

- (2) If $\xi, \eta \in \Lambda_0$, then there exists a bijection $\sigma = (\sigma_1, \sigma_2) : N \to N \times N$ such that $(\xi_{\sigma_1(n)}\xi_{\sigma_2(n)}) \in \Lambda_0$.
- (3) If $\xi \in \Lambda_0$, then there exists a bijection $\sigma = (\sigma_1, \sigma_2) : N \to N \times N$ such that $(\xi_{\sigma_1(n)}\xi_{\sigma_2(n)}) \in \Lambda_0$.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. If P is countable, then (1), (2), (3) are equivalent.

Proof: $(1)\Rightarrow (2)$. Let $\sigma=(\sigma_1,\sigma_2):N\to N\times N$ be defined as follows: Let $\sigma(1)=(1,1)$. For $j=[1+2+\ldots+(n-1)]+k=\frac{n(n-1)}{2}+k,1\leq k\leq n$, let $\sigma(j)=(k,n+1-k)$. Then $(\lambda_n)=(\xi_{\sigma_1(n)}\xi_{\sigma_2(n)})\in\Lambda_0$. In fact, let $\alpha\in P$. Our assumption on P implies that P is stable. Thus, there exists $\beta\in P$ such that $\sup_n\alpha_{2n^2}/\beta_n=d<\infty$. Let $d_1>0$ be such that $|\xi_k|, |\eta_k|\leq d_1$ for all k. Let $\epsilon>0$ be given and choose n_0 such that $\beta_k|\xi_k|, \beta_k|\eta_k|<\frac{\epsilon}{dd_1}$ if $k\geq k_0$. Let now $j>\frac{m(m-1)}{2}$, where $m\geq 2k_0$, and let $j=\frac{n(n-1)}{2}+k,1\leq k\leq n$. Clearly $n\geq m$. We have that either $k\geq \frac{n+1}{2}$ or $n+1-k\geq \frac{n+1}{2}$. If, say, $k\geq \frac{n+1}{2}$, then $j\leq \frac{n(n+1)}{2}\leq 2k^2$ and $\alpha_j|\xi_k\eta_{n+1-k}|\leq d_1\alpha_{2k^2}|\xi_k|\leq d_1d\beta_k|\xi_k|<\epsilon$ since $k\geq \frac{n+1}{2}\geq \frac{m+1}{2}>k_0$. The same happens when $n+1-k\geq \frac{n+1}{2}$. Thus, for $j>\frac{m(m-1)}{2}$, we have $|\alpha_j\lambda_j|<\epsilon$, which proves that $(\lambda_n)\in\Lambda_0$.

Assume next that P is countable and that (3) holds. Let $|\lambda| > 1$. Without loss of generality we may assume that From : Athanasios Katsaras ¡akatsar@cc.uoi.gr; Organization : University of Ioannina Computer Center Dourouti, Ioannina, Greece 451 10 tel : +30-651-45298, fax : +30-651-45298 Date : Wed, 12 Oct 94 12 :32 :30 +0200 To : escassut@ucfma, katsara@cc.uoi.gr

$$P = \{\alpha^{(n)} : n = 0, 1, \ldots\}, [\alpha^{(n-1)}]^2 \le \alpha^{(n)}, |\lambda|\alpha^{(n)} \le \alpha^{(n+1)}$$

 $\alpha_1^{(0)} \geq 1$. Suppose that (1) does not hold and let $\alpha \in P$ be such that $\sup_n \alpha_{n^2}/\beta_n = \infty$ for all $\beta \in P$. Let (n_k) be a sequence of natural numbers, with $n_k > 2n_{k-1}$, such that $\alpha_{n_k^2}/\alpha_{n_k}^{(k)} > k^2$ for $k = 1, 2, \ldots$ Choose $\lambda_k \in K$ with

$$|\lambda^{-1}\lambda_k| \le (k\alpha_{n_k}^{(k-1)})^{-1} \le |\lambda_k|.$$

Let $n_0 = 0$ and, for $n_{k-1} < n \le n_k$, let $\xi_n = \lambda_k$. If $k \ge k_0 + 1$, then

$$\alpha_{n_k}^{(k_0)}|\xi_{n_k}| \le \alpha_{n_k}^{(k-1)}|\lambda|(k\alpha_{n_k}^{(k-1)})^{-1} = \frac{|\lambda|}{k} \to 0 \text{ as } k \to \infty.$$

This proves that $(\xi_n) \in \Lambda_0$. Also,

$$|\xi_{n_{k+1}}| \le |\lambda|((k+1)\alpha_{n_{k+1}}^{(k)})^{-1} \le (k\alpha_{n_k}^{(k-1)})^{-1} \le |\xi_{n_k}|.$$

Let $I_k = \{n : n_{k-1} < n \le n_k\}$. If $i, j \in I_k$, then $|\xi_i \xi_j| = |\xi_{n_k}|$. Let

$$\zeta = (\xi_1 \xi_1, \xi_1 \xi_2, \xi_2 \xi_1, \xi_1 \xi_3, \xi_2 \xi_2, \xi_3 \xi_1, \ldots)$$

and let $\eta = (\eta_1, \eta_2, ...)$ be the sequence which we get by writing first those $\xi_i \xi_j$ with $i, j \in I_1$, then those $i, j \in I_2$ e.t.c. Clearly $|\eta_1| \ge |\eta_2| \ge ...$ By our hypothesis (3), there exists a rearrangement, of the terms of the sequence ζ , which belongs to Λ_0 . This implies that any decreasing rearrangement (μ_n) of ζ also belongs to Λ_0 . Now, for every k, we have $|\mu_k| \ge |\eta_k|$. In fact, if $|\mu_k| < |\eta_k|$, for some k, then

$$\{\eta_1, \eta_2, \ldots, \eta_k\} \subset \{\mu_1, \mu_2, \ldots, \mu_{k-1}\},\$$

a contradiction. Hence $|\mu_m| \geq |\eta_m|$, for all m and so $(\eta_k) \in \Lambda_0$. The number of the terms $\xi_i \xi_j$, with $i, j \in I_k$, is $(\eta_k - \eta_{k-1})^2$. Let $m_1 = n_1^2, m_k = m_{k-1} + (\eta_k - \eta_{k-1})^2$ for $k \geq 2$. Since $n_k > 2n_{k-1}$, we have $n_k - n_{k-1} > \frac{n_k}{2}$ and so $m_k > \frac{n_k^2}{4}$. In view of Proposition 3.2, there exists $\beta \in P$ and $\mu \in K$ with $\alpha_4 n/\beta_n \leq |\mu|$ for all n. Now

$$\beta_{m_k} |\eta_{m_k}| = \beta_{m_k} |\xi_{n_k}|^2 \ge |\mu|^{-1} \alpha_{4m_k} |\xi_{n_k}|^2$$

$$\ge |\mu|^{-1} \alpha_{n_k^2} |\xi_{n_k}|^2 \ge |\mu|^{-1} k^2 \alpha_{n_k}^{(k)} |\xi_{n_k}|^2$$

$$\ge |\mu|^{-1} k^2 (\alpha_{n_k}^{(k-1)})^2 |\xi_{n_k}|^2 \ge |\mu|^{-1},$$

which contradicts the fact that $(\eta_m) \in \Lambda_0$. This clearly completes the proof.

Proposition 3.4: Let $\psi: c_0 \times c_0 \to c_0(N \times N)$ be defined by $\psi(x,y) = (x_iy_j)_{i,j}$ for $x = (x_i), y = (y_i)$. Then

- (1) ψ is a continuous bilinear map and $\|\psi(x,y)\| = \|x\| \|y\|$.
- (2) If $\widetilde{\psi}: c_0 \otimes_{\pi} c_0 \to c_0(N \times N)$ is the corresponding linear map, then $\widetilde{\psi}$ is an isometry and $D = \widetilde{\psi}(c_0 \otimes_{\pi} c_0)$ is dense in $c_0(N \times N)$.
 - (3) The continuous extension $\omega: c_0\widehat{\otimes}_{\pi}c_0 \to c_0(N\times N)$ of $\widetilde{\psi}$ is an onto isometry.

Proof: (1) It is trivial.

(2) Let $u \in c_0 \otimes_{\pi} c_0$ and let p the norm on c_0 and set $||.|| = p \otimes_{\pi} p$. If $u = \sum_{k=1}^m x^k \otimes_{\pi} y^k$, then

$$\|\widetilde{\psi}(u)\| \le \max_{k} \|\widetilde{\psi}(x^{k} \otimes y^{k})\| = \max_{k} \|\psi(x^{(k)}, y^{(k)})\| = \max_{k} p(x^{(k)})p(y^{(k)})$$

and so $\|\widetilde{\psi}(u)\| \leq \|u\|$. On the other hand, given 0 < t < 1, there are t-orthogonal elements $y^{(1)}, \ldots, y^{(n)}$ of c_0 and $x^{(1)}, \ldots, x^{(n)} \in c_0$ such that $u = \sum_{k=1}^n x^k \otimes y^k$. Thus

$$\begin{split} \|\widetilde{\psi}(u)\| &= \sup_{i,j} \|\sum_{k=1}^n x_i^k y_j^k\| \\ &= \sup_i [\sup_j |x_i^1 y_j^1 + x_i^2 y_j^2 + \dots x_i^n y_j^n|] \\ &= \sup_i p(x_i^1 y^{(1)} + x_i^2 y^{(2)} + \dots x_i^n y^{(n)}) \\ &\geq t \sup_i \max_{1 \leq k \leq n} |x_i^{(k)}| p(y^{(k)}) = t \max_{1 \leq k \leq n} p(x^{(k)}) p(y^{(k)}) \geq t \|u\|. \end{split}$$

Since 0 < t < 1 was arbitrary, we have that $\|\widehat{\psi}(u)\| \ge \|u\|$ and so $\|\widehat{\psi}(u)\| = \|u\|$. To see that D is dense in $c_0(N \times N)$, let $w = (\xi_{ij})_{i,j} \in c_0(N \times N)$ and let $\epsilon > 0$. Choose m such that $|\xi_{ij}| < \epsilon$ if i > m or j > m. Let $w_0 = (\mu_{ij})$ with $\mu_{ij} = \xi_{ij}$ if $i, j \le m$ and $\mu_{ij} = 0$ if i > m or j > m. Then $w_0 \in D$ and $\|w - w_0\| \le \epsilon$.

(3) If $u \in c_0 \widehat{\otimes}_{\pi} c_0$, then there exists a sequence $(u^{(n)})$ in $c_0 \otimes_{\pi} c_0$ converging to u. Now

$$\|\omega(u)\| = \lim_{n} \|\widetilde{\psi}(u^{(n)})\| = \lim_{n} \|u^{(n)}\| = \|u\|$$

and so u is an isometry. This and the fact that $\omega(c_0 \widehat{\otimes}_{\pi} c_0)$ is dense in $c_0(N \times N)$ imply that ω is onto.

Proposition 3.5 Let E, F be locally convex spaces over $K, E, F \neq \{0\}$. If $E \otimes F$ is Λ_0 -nuclear, then E and F are Λ_0 -nuclear.

Proof. Since $E \otimes_{\pi} F$ is Λ_0 -nuclear, it is by definition Hausdorff which implies that both E and F are Hausdorff. Let now $p \in cs(E)$ and choose $y_0 \in F$ and $q \in cs(F)$ such that $q(y_0) \neq 0$. Since $E \otimes_{\pi} F$ is Λ_0 -nuclear, there exist (by [7, Proposition 3.4]) $(\lambda_n) \in \Lambda_0$ and an equicontinuous sequence h_n in $(E \otimes_{\pi} F)'$ such that

$$p \otimes q(u) \leq \sup_{n} |\lambda_n h_n(u)| \ (u \in E \otimes_{\pi} F).$$

Let $f_n: E \to K$, $f_n(x) = h_n(x \otimes y_0)$. Then (f_n) is an equicontinuous sequence in E'. Let $\mu \in K$ with $q(y_0) \ge |\mu|^{-1}$. Then

$$p(x) \le |\mu| \sup_{n} |\lambda_n f_n(x)| \ (x \in E)$$

Thus E is Λ_0 -nuclear (by [7, Proposition 3.4]). The proof of the Λ_0 -nuclearity of F is analogous.

If E_1, E_2, F_1, F_2 are locally convex spaces over K and if $T_i: E_i \to F_i, i=1,2$, are linear maps, then $T_1 \otimes T_2: E_1 \otimes E_2 \to F_1 \otimes F_2$ will be defined by

$$T_1 \otimes T_2(x \otimes y) = T_1(x) \otimes T_2(y).$$

We will denote by $N_{\Lambda_0}(E, F)$ the collection of all Λ_0 -nuclear operators from E to F. Recall also that for $\xi \in c_0, T_{\xi} : c_0 \to c_0$ is defined by $(T_{\xi}x)_k = \xi_k x_k$.

Theorem 3.6: Consider the following properties:

- (1) If E_1, E_2, F_1, F_2 are locally convex spaces over K, where F_1, F_2 are Hausdorff, and if $T_i \in N_{\Lambda_0}(E_i, F_i)$, i = 1, 2, then $T_1 \otimes T_2 \in N_{\Lambda_0}(E_1 \otimes_{\pi} E_2, F_1 \otimes_{\pi} F_2)$.
 - (2) If $\xi, \eta \in \Lambda_0$, then $T_{\xi} \otimes T_{\eta} \in N_{\Lambda_0}(c_0 \otimes_{\pi} c_0, c_0 \otimes_{\pi} c_0)$.

- (3) If $\xi \in \Lambda_0$, then $T_{\xi} \otimes T_{\xi} \in N_{\Lambda_0}(c_0 \otimes_{\pi} c_0, c_0 \otimes_{\pi} c_0)$.
- (4) If $\xi, \eta \in \Lambda_0$, then there exists a bijection $\sigma = (\sigma_1, \sigma_2) : N \to N \times N$ such that $(\xi_{\sigma_1(n)}\eta_{\sigma_2(n)} \in \Lambda_0)$.
- (5) If $\xi \in \Lambda_0$, then there exists a bijection $\sigma = (\sigma_1, \sigma_2) : N \to N \times N$ such that $(\xi_{\sigma_1(n)}\xi_{\sigma_2(n)} \in \Lambda_0)$.
 - (6) If E, F are Λ_0 -nuclear spaces, then $E \otimes_{\pi} F$ is Λ_0 -nuclear.

Then, (1)-(5) are equivalent and they imply (6).

Proof: Since, for $\xi \in \Lambda_0$, T_{ξ} is Λ_0 -nuclear, it is clear that (1) implies (2).

(3) \Rightarrow (4) Let $\mu_n \in K$ with $|\mu_n| = max\{|\xi_n|, |\eta_n|\}$. Then $\zeta = (\mu_n) \in \Lambda_0$. If there exists a bijection $\sigma = (\sigma_1, \sigma_2) : N \to N \times N$ such that $(\xi_{\sigma_1(n)} \eta_{\sigma_2(n)} \in \Lambda_0, \text{ then } (\xi_{\sigma_1(n)} \eta_{\sigma_2(n)} \in \Lambda_0)$.

Thus, we may assume that $\xi = \eta$. If now ξ has only a finite number of nonzero terms, then it is clear that $(\xi_{\sigma_1(n)}\eta_{\sigma_2(n)} \in \Lambda_0 \text{ for any bijection } \sigma = (\sigma_1, \sigma_2) : N \to N \times N$. So, we may assume that the set $\{n : \xi_n \neq 0\}$ is infinite. If $\mu_n \in K$, $|\mu_n| = \sup_{k \geq n} |\xi_k|$, then $(\mu_n) \in \Lambda_0$. It is clear that if we prove the result for (μ_n) , then it would also hold for ξ . Thus, we may assume that $0 < |\xi_{n+1}| \leq |\xi_n|$ for all n. Let $T = T_{\xi}$. By our hypothesis $T \otimes T \in N_{\Lambda_0}(c_0 \otimes_{\pi} c_0, c_0 \otimes_{\pi} c_0)$. Let $\omega : c_0 \widehat{\otimes_{\pi}} c_0 \to c_0 (N \times N)$ be the onto isometry in Proposition 3.4. Since $T \otimes T$ is Λ_0 -nuclear, the same is true with the continuous extension $T \widehat{\otimes} T : c_0 \widehat{\otimes_{\pi}} c_0 \to c_0 \widehat{\otimes_{\pi}} c_0$. In view of [5, Proposition 4.5], the map

$$S = \omega(T \widehat{\otimes} T) \omega^{-1} : c_0(N \times N) \to c_0(N \times N)$$

is Λ_0 -nuclear. It is easy to see that for every $w = (w_{i,j})$ in $c_0(N \times N)$ we have $S(w) = (\xi_i \xi_j w_{ij})$. Let

$$\zeta = (\xi_1 \xi_1, \xi_1 \xi_2, \xi_2 \xi_1, \xi_1 \xi_3, \xi_2 \xi_2, \xi_3 \xi_1, \ldots)$$

and let (μ_n) be a decreasing rearrangement of ζ .

It is clear that there exists some bijection $\sigma = (\sigma_1, \sigma_2) : N \to N \times N$ such that $\mu_n = \xi_{\sigma_1(n)} \xi_{\sigma_2(n)}$ for all n. So it suffices to show that $(\mu_n) \in \Lambda_0$. If \mathcal{F}_{n+1} is the family of all subsets J of $N \times N$ containing n+1 elements, then

$$\alpha_n(S) = \sup_{J \in \mathcal{F}_{n+1}} \inf_{i \in J} |\xi_i \xi_j|$$

by Proposition 0.1. Since $|\mu_k| \ge |\mu_{k+1}|$ for all k, it is clear that $\alpha_n(S) = |\mu_{n+1}|$. Thus $(\mu_n) \in \Lambda_0$ since S is Λ_0 -nuclear and hence of type Λ_0 (see[5, Theorem 4.2]). This completes the proof of the implication $(1) \Rightarrow (4)$.

(5) \Rightarrow (1). Let $E_1, E_2, F_1, F_2, T_1, T_2$ be as in (1). Since $T_1 : E_1 \to \widehat{F}_1$ and $T_2 : E_2 \to \widehat{F}_2$ are Λ_0 -nuclear, there are (by Proposition 2.1) $\gamma = (\gamma_n), \delta = (\delta_n) \in \Lambda_0$ and continuous linear maps $S_1 : E_1 \to c_0, S_2 : c_o \to \widehat{F}_1, H_1 : E_2 \to c_0, H_2 : c_o \to \widehat{F}_2$ such that

$$T_1 = S_2 T_{\gamma} S_1$$
 and $T_2 = H_2 T_{\delta} H_1$.

Now

$$T_1 \otimes T_2 = (S_2 \otimes H_2)(T_{\gamma} \otimes T_{\delta})(S_1 \otimes H_1).$$

In order to show that $T_1 \otimes T_2$ is Λ_0 -nuclear, it suffices (by [5, Proposition 4.5]) to show that

$$S = T_{\gamma} \otimes T_{\delta} : c_0 \otimes_{\pi} c_0 \to c_0 \otimes_{\pi} c_0$$

is Λ_0 -nuclear. For this, it is enough to show that the continuous extension

$$\widehat{S}: c_0 \widehat{\otimes}_{\pi} c_0 \to c_0 \widehat{\otimes}_{\pi} c_0$$

is Λ_0 -nuclear. Let $\omega: c_0 \widehat{\otimes}_{\pi} c_0 \to c_0(N \times N)$ be the onto isometry defined in proposition 3.4 and let

$$H = \omega \widehat{S} \omega^{-1} : c_0(N \times N) \to c_0(N \times N)$$

Since $\widehat{S} = \omega^{-1}H\omega$, it suffices to show that H is Λ_0 -nuclear. It is easy to see that (5) implies (4). Thus, our hypothesis (5) implies that there exists a bijection $\sigma = (\sigma_1, \sigma_2) : N \to N \times N$ such that $(\gamma_{\sigma_1(n)}\delta_{\sigma_2(n)}) \in \Lambda_0$. For each $n \in N$, let $f_n \in c_0(N \times N)'$ be defined by $f_n(w) = w_{\sigma_1(n)\sigma_2(n)}$ and let $z^{(n)} \in c_0(N \times N)$, where $z_{ij}^{(n)} = 1$ if $(i,j) = \sigma(n)$ and $z_{ij}^{(n)} = 0$ if $(i,j) \neq \sigma(n)$. Now, $(z^{(n)})$ is a bounded sequence in $c_0(N \times N)$, (f_n) an equicontinuous sequence in $c_0(N \times N)'$ and

$$H(w) = \sum_{n=1}^{\infty} \xi_n f_n(w) z^{(n)}, \quad \xi_n = \gamma_{\sigma_1(n)} \delta_{\sigma_2(n)}.$$

Thus H is Λ_0 -nuclear, which proves the implication $(5) \Rightarrow (1)$.

 $(1) \Rightarrow (6)$. Let p, q be continuous seminorms on E and F, respectively, and $r = p \otimes q$. Consider the canonical linear isometry

$$h = E_p \otimes_{\pi} E_q \to (E \otimes F)_r.$$

Since E, F are Λ_0 -nuclear, the quotient maps

$$\phi_p: E \to E_p \quad and \quad \phi_q: F \to F_q$$

are Λ_0 -nuclear and so the map

$$\phi_p \otimes \phi_q : E \otimes_{\pi} F \to E_p \otimes_{\pi} F_q$$

is Λ_0 -nuclear. It follows that the map

$$f = h \circ (\phi_p \otimes \phi_q) : E \otimes_{\pi} F \to (E \otimes F)_r$$

is Λ_0 -nuclear. Since f is the canonical surjection, it follows that $E \otimes_{\pi} F$ is Λ_0 -nuclear.

In view of Proposition 3.3, we have the following

Corollary 3.7 Consider the following property for P:

- (*) For each $\alpha \in P$ there exists $\beta \in P$ such that $\sup_{n} \alpha_{n^2}/\beta_n < \infty$. Then
- a) If (*) holds, then (1)-(6) of the preceding Theorem hold.
- b) If P is countable, then property (\star) is equivalent to each of the (1)-(5) in the preceding Theorem.

Proposition 3.8 Let $\Lambda = \Lambda_{\gamma,\infty}$, where $\gamma = (\gamma_n)$ is not bounded. Then, the following are equivalent:

- (1) $\sup_{n} \gamma_{n^2}/\gamma_n < \infty$.
- (2) If $\zeta, \eta \in \Lambda = \Lambda_0$, then there exists a bijection $\sigma = (\sigma_1, \sigma_2 : N \to N \times N \text{ such that } (\xi_{\sigma_1(n)}\eta_{\sigma_2(n)}) \in \Lambda_0$.

Proof: (1) \Rightarrow (2) Let $d = \sup_{n} \gamma_{n^2} / \gamma_n$. Then $d \geq 1$. Given $\rho > 1$, let $\rho_1 = \rho^d$. Then

$$\rho^{\gamma_{n^2}}/\rho_1^{\gamma_n} \le \rho^{d\gamma_n}/\rho_1^{\gamma_n} = 1.$$

Now the implication follows from Proposition 3.3.

 $(2) \Rightarrow (1)$ If $\alpha^{(m)} = (m^{\gamma_n})$, for m = 2, 3, ... and if $P = \{\alpha^{(m)} : m \geq 2\}$, then $\Lambda_0 = \Lambda_0(P)$. In view of proposition 3.3, for each $\alpha \in P$ there exists $\beta \in P$ such that $\sup_n \alpha_{n^2}/\beta_n < \infty$. Hence, there exists $m \geq 2$ such that $\sup_n 2^{\gamma_{n^2}}/m^{\gamma_n} < \infty$. Suppose now that $\sup_n \gamma_{n^2}/\gamma_n = \infty$. Choose indices $n_1 < n_2 < ...$ such that $\gamma_{n_k^2}/\gamma_{n_k} > k$. If $2^k > m$, then

$$2^{\gamma_{n_k^2}}/m^{\gamma_{n_k}} \geq (\frac{2^k}{m})^{n_k} > \frac{2^k}{m} \to \infty \quad as \quad k \to \infty,$$

a contadiction.

REFERENCES

- [1] N. de Grande-de Kimpe and S. Navarro, Non-Archimedean nuclearity and spaces of continuous functions, Indag. Math. N.S, 2 (1991),201-206.
- [2] A. K. Katsaras, Non-Archimedean Köthe sequence spaces, Boll. U.M.I., 5-B(7) (1991), 703-725.
- [3] A. K. Katsaras, On non-Archimedean sequence spaces, Bull. Inst. Math. Acad. Sinica, 18 (1990), 113-126.
- [4] A. K. Katsaras, Non-Archimedean Λ-nuclear spaces, Proc. of the Laredo Conf. on p-adic Functional Analysis, Lecture Notes in Pure and Appl. Math. 137 (1992), 101-119
- [5] A. K. Katsaras, Non-Archimedean Λ_0 -compactoid sets and Λ_0 -nuclear operators, Boll. U.M.I., (7) 7-B (1993), 691-718.
- [6] A. K. Katsaras and C. Perez-Garcia, Λ_0 -compactoid sets and Λ_0 -compactoid operators versus compactoid sets and compact operators, *Boll. U.M.I.* (7) 8-B (1994), 371-389.

- [7] A. K. Katsaras and C. Perez-Garcia, Λ_0 -nuclear operators and Λ_0 -nuclear spaces in p-adic Analysis (preprint).
- [8] C. Perez-Garcia and W.H. Schikhof, Tensor product and p-adic vector valued continuous functions (preprint).
- [9] W.H. Schikhof, Locally convex topologies over non-spherically complete fields I-II, Bull. Soc. Math. Belg. Ser. B, 38 (1986), 187-224.
- [10] A.C.M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.

Department of Mathematics, University of Ioannina, Ioannina, Greece