Annales mathématiques Blaise Pascal

P.N. NATARAJAN
 Weighted means in non-archimedean fields

Annales mathématiques Blaise Pascal, tome 2, no 1 (1995), p. 191-200
http://www.numdam.org/item?id=AMBP_1995_2_1_191_0
© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.
L'accès aux archives de la revue « Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

WEIGHTED MEANS IN NON-ARCHIMEDEAN FIELDS

P.N. Natarajan

§1. Introduction.

In developing summability methods in non-archimedean fields, Srinivasan [6] defined the analogue of the classical weighted means $\left(\bar{N}, p_{n}\right)$ under the assumption that the sequence $\left\{p_{n}\right\}$ of weights satisfies the conditions :

$$
\begin{equation*}
\left|p_{0}\right|<\left|p_{1}\right|<\left|p_{2}\right|<\ldots<\left|p_{n}\right|<\ldots ; \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|p_{n}\right|=\infty \tag{2}
\end{equation*}
$$

However, it turned out that these weighted means were equivalent to convergence. In the present paper, an attempt is made to remedy the situation by assuming that the sequence $\left\{p_{n}\right\}$ of weights satisfies the conditions:

$$
\begin{equation*}
p_{n} \neq 0, \quad n=0,1,2, \ldots ; \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{i}\right| \leq\left|P_{j}\right|, i=0,1,2, \ldots, j, \quad j=0,1,2, \ldots \tag{4}
\end{equation*}
$$

where $P_{j}=\sum_{k=0}^{j} p_{k}, j=0,1,2, \ldots$. Note that (3) and (4) imply $P_{n} \neq 0, n=0,1,2, \ldots$.
(4) is equivalent to

$$
\max _{0 \leq i \leq j}\left|p_{i}\right| \leq\left|P_{j}\right|, j=0,1,2, \ldots
$$

Since the valuation is non-archimedean,

$$
\left|P_{j}\right| \leq \max _{0 \leq i \leq j}\left|p_{j}\right|
$$

so that (4) is equivalent to

$$
\left|P_{j}\right|=\max _{0 \leq i \leq j}\left|p_{j}\right|=\left|p_{j}\right|
$$

The assumptions (3) and (4) make the method of summability arising out of the weighted means non-trivial in certain cases (Remark 4) and further make it possible to compare two regular weighted means (Theorem 3) or compare a regular weighted mean with a regular matrix method (Theorem 4 and Theorem 5). This helps us to obtain (§4) a strictly increasing scale of regular summability methods in \mathbf{Q}_{p}, the p-adic field for a prime p; analogous to the scale of Cesàro means in \mathbb{R} (the field of real numbers). These arise out of taking the weights

$$
\begin{aligned}
p_{n} & =p^{n k}, \quad \text { if } n \text { is odd; } \\
& =\frac{1}{p^{n k}}, \quad \text { if } n \text { is even }
\end{aligned}
$$

$n=0,1,2, \ldots, k=0,1,2, \ldots$.
For a knowledge of (\bar{N}, p_{n}) methods in the classical case, the reader may refer [2],[5] and for analysis in non-archimedean fields [1].

§2. Preliminaries .

Throughout this paper, K denotes a complete, non-trivially valued, non-archimedean field and infinite matrices and sequences have their entries in K. Given an infinite matrix $A=\left(a_{n k}\right), n, k=0,1,2, \ldots$ and a sequence $\left\{x_{k}\right\}, k=0,1,2, \ldots$, by the A-transform of $\left\{x_{k}\right\}$, we mean the sequence $\left\{(A x)_{n}\right\}$ where

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, n=0,1,2, \ldots
$$

it being assumed that the series on the right converge. If $\lim _{n \rightarrow \infty}(A x)_{n}=s$, we say that $\left\{x_{k}\right\}$ is A-summable (or summable by the infinite matrix method A) to s. If $\lim _{n \rightarrow \infty}(A x)_{n}=s$ whenever $\lim _{k \rightarrow \infty} x_{k}=s$, the matrix method A is said to be regular. It is well-known (see [3], [4]) that A is regular if and only if
(a) $\sup _{n, k}\left|a_{n k}\right|<\infty$;
(b) $\quad \lim _{n \rightarrow \infty} a_{n k}=0, \quad k=0,1,2, \ldots$;
and
(c) $\left.\quad \lim _{n \rightarrow \infty}\left(\sum_{k=0}^{\infty} a_{n k}\right)=1 . \quad\right)$
(cf. For criterion for the regularity of a matrix method in the classical case see [2], p.43, Theorem 2). If a regular matrix A is such that $\lim _{n \rightarrow \infty}(A x)_{n}=s$ implies $\lim _{k \rightarrow \infty} x_{k}=s$, the matrix method A is said to be trivial. Given two infinite matrix methods A, B, we say that A is included in B, written as $A \subset B$, if any sequence $\left\{x_{k}\right\}$ that is A-summable to s is also B-summable to s. An infinite matrix $A=\left(a_{n k}\right)$ is said to be triangular (or, more precisely, lower triangular) if $a_{n k}=0, \quad k>n, \quad n=0,1,2, \ldots$.

Definition 1. The $\left(\bar{N}, p_{n}\right)$ method is defined by the infinite matrix ($a_{n k}$) where

$$
\left.\begin{array}{rl}
a_{n k} & =\frac{p_{k}}{P_{n}}, k \leq n ; \tag{6}\\
& =0, k>n .
\end{array}\right\}
$$

Remark 1. If $\left|\frac{P_{n+1}}{P_{n}}\right|>1, n=0,1,2 \ldots$ and $\lim _{n \rightarrow \infty}\left|P_{n}\right|=\infty$ i.e. $\left|P_{n}\right|$ strictly increases to infinity, then the method $\left(\bar{N}, p_{n}\right)$ is trivial. For $\left|p_{n}\right|=\left|P_{n}-P_{n-1}\right|=\left|P_{n}\right|$, since $\left|P_{n}\right|>\left|P_{n-1}\right|$. So (1) is satisfied. Since $\lim _{n \rightarrow \infty}\left|P_{n}\right|=\infty, \lim _{n \rightarrow \infty}\left|p_{n}\right|=\infty$ so that (2) is satisfied too. Hence (\bar{N}, p_{n}) is trivial because of Theorem 4.2 of [6].

In the sequel we shall suppose that the sequence $\left\{p_{n}\right\}$ of weights satisfies conditions (3) and (4).

An example of such an $\left(\bar{N}, p_{n}\right)$ method corresponds to $\left\{p_{n}\right\}$ defined by

$$
\begin{aligned}
p_{n} & =p^{n}, \quad \text { if } n \text { is odd } \\
& =\frac{1}{p^{n}}, \quad \text { if } n \text { is even }
\end{aligned}
$$

where $K=\mathbf{Q}_{p}$.
Remark 2. We note that (4) is equivalent to

$$
\begin{equation*}
\left|P_{n+1}\right| \geq\left|P_{n}\right|, \quad n=0,1,2, \ldots \tag{7}
\end{equation*}
$$

Proof. Let (4) hold. Now

$$
\begin{aligned}
\left|P_{n+1}\right| & =\max _{0 \leq i \leq n+1}\left|p_{i}\right| \\
& =\max \left[\max _{0 \leq i \leq n}\left|p_{i}\right|, \quad\left|p_{n+1}\right|\right] \\
& =\max \left[\left|P_{n}\right|, \quad\left|p_{n+1}\right|\right] \\
& \geq\left|P_{n}\right|, \quad n=0,1,2, \ldots .
\end{aligned}
$$

Conversely, let (7) hold. For a fixed integer $j \geq o$ let $0 \leq i \leq j$. Then

$$
\begin{aligned}
&\left|p_{i}\right|=\left|P_{i}-P_{i-1}\right| \\
& \leq \max \left[\left|P_{i}\right|,\left|P_{i-1}\right|\right] \\
& \leq\left|P_{i}\right| \\
& \leq\left|P_{j}\right|
\end{aligned}
$$

by (7).

§3. Main results.

Theorem 1. $\left(\bar{N}, p_{n}\right)$ is regular if an only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|P_{n}\right|=\infty \tag{8}
\end{equation*}
$$

Proof. Let the (\bar{N}, p_{n}) method be regular Using (6) and (5)(b), we note that (8) holds. Conservely, let (8) hold. In view of (6) and (8) it follows that $\lim _{n \rightarrow \infty} a_{n k}=0, k=0,1,2, \ldots$.
Now, $\left|a_{n k}\right|=0, k>n$. If $k \leq n,\left|a_{n k}\right|=\frac{\left|p_{k}\right|}{\left|P_{n}\right|} \leq 1$, in view of (4).
Also $\sum_{k=0}^{\infty} a_{n k}=1, n=0,1,2, \ldots$ so that $\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{\infty} a_{n k}\right)=1$. Thus, by (5) the method (\bar{N}, p_{n}) is regular.

Remark 3. If $\left(\bar{N}, p_{n}\right)$ is non-trivial, then (1) cannot be satisfied. Suppose (1) holds, then $\left|p_{n}\right|=\left|P_{n}\right|$ so that (2) also holds. Thus $\left(\bar{N}, p_{n}\right)$ is trivial by Theorem 4.2 of [6], a contradiction. This establishes the claim.

Remark 4. There are non-trivial $\left(\bar{N}, p_{n}\right)$ methods. Let $\alpha \in K$ such that $0<c=|\alpha|<1$, this being possible since K is non-trivially valued. Let

$$
\left\{p_{n}\right\}=\left\{\alpha, \frac{1}{\alpha^{2}}, \alpha^{3}, \frac{1}{\alpha^{4}}, \ldots\right\}
$$

and

$$
\left\{s_{n}\right\}=\left\{\frac{1}{\alpha}, \alpha^{2}, \frac{1}{\alpha^{3}}, \alpha^{4}, \ldots\right\}
$$

It is clear that $\left\{s_{n}\right\}$ does not converge. If $\left\{t_{n}\right\}$ is the $\left(\bar{N}, p_{n}\right)$ transform of $\left\{s_{k}\right\}$,

$$
\begin{aligned}
\left|t_{2 k}\right| & =\left|\frac{2 k}{\alpha+\frac{1}{\alpha^{2}}+\alpha^{3}+\ldots+\frac{1}{\alpha^{2 k}}}\right| \\
& =\frac{|2 k|}{\left(\frac{1}{c^{2 k}}\right)} \\
& \leq c^{2 k} \\
\left|t_{2 k+1}\right| & =\left|\frac{2 k+1}{\alpha+\frac{1}{\alpha^{2}}+\alpha^{3}+\ldots+\frac{1}{\alpha^{2 k}}+\alpha^{2 k+1}}\right| \\
& =\frac{|2 k+1|}{\left(\frac{1}{c^{2 k}}\right)} \\
& \leq c^{2 k}
\end{aligned}
$$

so that $\lim _{n \rightarrow \infty} t_{n}=0$. Thus $\left\{s_{n}\right\}$, though non convergent, is summable $\left(\bar{N}, p_{n}\right)$ (in fact, to 0). This establishes our claim.

Theorem 2. (Limitation theorem) If $\left\{s_{n}\right\}$ is summable $\left(\bar{N}, p_{n}\right)$ to s, then

$$
\left|s_{n}-s\right|=o\left(\left|\frac{P_{n}}{p_{n}}\right|\right), n \rightarrow \infty
$$

Proof. If $\left\{t_{n}\right\}$ is the $\left(\bar{N}, p_{n}\right)$ transform of $\left\{s_{k}\right\}$, then

$$
\begin{aligned}
\left|\frac{p_{n}\left(s_{n}-s\right)}{P_{n}}\right| & =\left|\frac{\left.p_{n} s_{n}-p_{n} s\right)}{P_{n}}\right| \\
& =\left|\frac{P_{n} t_{n}-P_{n-1} t_{n-1}-s\left(P_{n}-P_{n-1}\right.}{P_{n}}\right| \\
& =\left|\frac{P_{n}\left(t_{n}-s\right)-P_{n-1}\left(t_{n-1}-s\right)}{P_{n}}\right| \\
& \leq \max \left[\left|t_{n}-s\right|,\left|\frac{P_{n-1}}{P_{n}}\right|\left|t_{n-1}-s\right|\right] \\
& \leq \max \left[\left|t_{n}-s\right|,\left|t_{n-1}-s\right|\right]
\end{aligned}
$$

since $\left|\frac{P_{n-1}}{P_{n}}\right| \leq 1$, by (7). Since $\lim _{n \rightarrow \infty} t_{n}=s$, it follows that $\lim _{n \rightarrow \infty}\left|\frac{p_{n}\left(s_{n}-s\right)}{P_{n}}\right|=0$. Thus

$$
\left|s_{n}-s\right|=o\left(\left|\frac{P_{n}}{p_{n}}\right|\right), n \rightarrow \infty
$$

Theorem 3. (Comparison theorem for two regular weighted means). If (\bar{N}, p_{n}), (\bar{N}, q_{n}) are two regular methods and if

$$
\begin{equation*}
\left|\frac{P_{n}}{p_{n}}\right| \leq H\left|\frac{Q_{n}}{q_{n}}\right|, \quad n=0,1,2, \ldots \tag{9}
\end{equation*}
$$

where $H>0$ is a constant and $Q_{n}=\sum_{k=0}^{\infty} q_{k}$, then $\left(\bar{N}, p_{n}\right) \subset\left(\bar{N}, q_{n}\right)$.
Proof. Let, for a given sequence $\left\{s_{n}\right\}$,

$$
\begin{aligned}
t_{n} & =\frac{p_{0} s_{0}+p_{1} s_{1}+\ldots+p_{n} s_{n}}{P_{n}} \\
u_{n} & =\frac{q_{0} s_{0}+q_{1} s_{1}+\ldots+q_{n} s_{n}}{Q_{n}}, n=0,1,2, \ldots
\end{aligned}
$$

Then $p_{0} s_{0}=P_{0} t_{0}, p_{n} s_{n}=P_{n} t_{n}-P_{n-1} t_{n-1}, n=1,2, \ldots$. Now,

$$
\begin{aligned}
u_{n} & =\frac{1}{Q_{n}}\left[\frac{q_{0}}{p_{0}} P_{0} t_{0}+\frac{q_{1}}{p_{1}}\left(P_{1} t_{1}-P_{0} t_{0}\right)+\ldots+\frac{q_{n}}{p_{n}}\left(P_{n} t_{n}-P_{n-t_{n-1}}\right)\right] \\
& =\sum_{k=0}^{\infty} c_{n k} t_{k}
\end{aligned}
$$

where

$$
\begin{aligned}
c_{n k} & =\left(\frac{q_{k}}{p_{k}}-\frac{q_{k+1}}{p_{k+1}}\right) \frac{P_{k}}{Q_{n}}, k<n \\
& =\frac{q_{k}}{p_{k}} \frac{P_{k}}{Q_{k}}, k=n \\
& =0, k>n
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left|Q_{n}\right|=\infty, \lim _{n \rightarrow \infty} c_{n k}=0, k=0,1,2, \ldots$. If $s_{n}=1, n=0,1,2, \ldots$, $t_{n}=u_{n}=1, n=0,1,2, \ldots$ so that $\sum_{k=0}^{\infty} c_{n k}=1, n=0,1,2, \ldots$ and so $\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{\infty} c_{n k}\right)=1$. Let $k<n$.

$$
\begin{aligned}
\left|c_{n k}\right| & =\left|\frac{q_{k}}{p_{k}}-\frac{q_{k+1}}{p_{k+1}}\right|\left|\frac{P_{k}}{Q_{n}}\right| \\
& \leq \max \left[\left|\frac{q_{k}}{p_{k}}\right|\left|\frac{P_{k}}{Q_{n}}\right|,\left|\frac{q_{k+1}}{p_{k+1}}\right|\left|\frac{P_{k}}{Q_{n}}\right|\right] \\
& \leq \max \left[\left|\frac{q_{k}}{p_{k}}\right|\left|\frac{P_{k}}{Q_{k}}\right|,\left|\frac{q_{k+1}}{p_{k+1}}\right|\left|\frac{P_{k+1}}{Q_{k+1}}\right|\right] \\
& \leq H
\end{aligned}
$$

by (9), since $k<n$ implies $\left|Q_{k}\right|,\left|Q_{k+1}\right| \leq\left|Q_{n}\right|$ and so $\frac{1}{Q_{n}} \leq \frac{1}{Q_{k}}, \frac{1}{Q_{k+1}}$ and $\left|P_{k}\right| \leq\left|P_{k+1}\right|$.
If $k=n,\left|c_{n n}\right|=\left|\frac{q_{n}}{p_{n}} \frac{P_{n}}{Q_{n}}\right| \leq H$ and $\left|c_{n k}\right|=0 \leq H, k>n$. Consequently $\sup _{n, k}\left|a_{n k}\right| \leq H$.. The method $\left(c_{n k}\right)$ is thus regular, using (5) and so $\left(\bar{N}, p_{n}\right) \subset\left(\bar{N}, q_{n}\right)$. The proof of the theorem is now complete.

Remark 5. Note that the classical counterpart of Theorem 3 (see [2], p.58, Theorem 14) has an additional hypothesis.

Theorem 4. (Comparison theorem for a regular $\left(\bar{N}, p_{n}\right)$ method and a regular matrix). Let $\left(\bar{N}, p_{n}\right)$ be a regular method and A be a regular matrix. If

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{a_{n k} P_{k}}{p_{k}}=0, \quad n=0,1,2, \ldots \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n, k}\left|\left(\frac{a_{n k}}{p_{k}}-\frac{a_{n, k+1}}{p_{k+1}}\right) P_{k}\right|<\infty \tag{11}
\end{equation*}
$$

then $\left(\bar{N}, p_{n}\right) \subset A$.
Proof. Let $\left\{s_{n}\right\}$ be any sequence, $\left\{t_{n}\right\},\left\{\tau_{n}\right\}$ be its (\bar{N}, p_{n}), A transforms respectively so that

$$
\begin{aligned}
t_{n} & =\frac{p_{0} s_{0}+p_{1} s_{1}+\ldots+p_{n} s_{n}}{P_{n}} \\
\tau_{n} & =\sum_{k=0}^{\infty} a_{n k} s_{k}, n=0,1,2, \ldots
\end{aligned}
$$

Now,

$$
s_{n}=\frac{P_{n} t_{n}-P_{n-1} s_{1} t_{n-1}}{p_{n}}, P_{-1}=0
$$

Let $\lim _{n \rightarrow \infty} t_{n}=s . \tau_{n}=\sum_{k=0}^{\infty} a_{n k} s_{k}$ exists. $n=0,1,2 \ldots$ and in fact

$$
\begin{aligned}
\tau_{n}=\sum_{k=0}^{\infty} a_{n k} s_{k} & =\sum_{k=0}^{\infty} a_{n k}\left\{\frac{P_{k} t_{k}-P_{k-1} t_{k-1}}{p_{k}}\right\} \\
& =\sum_{k=0}^{\infty}\left(\frac{a_{n k}}{p_{k}}-\frac{a_{n, k+1}}{p_{k+1}}\right) P_{k} t_{k},
\end{aligned}
$$

since $\lim _{k \rightarrow \infty} \frac{a_{n, k+1}}{p_{k+1}} P_{k} t_{k}=0$ by (10) and using the fact that $\left\{t_{k}\right\}$ is convergent and so bounded and $\left|\frac{P_{k}}{P_{k+1}}\right| \leq 1$. We can now write
where

$$
\tau_{n}=\sum_{k=0}^{\infty} b_{n k} t_{k}
$$

$$
b_{n k}=\left(\frac{a_{n k}}{p_{k}}-\frac{a_{n, k+1}}{p_{k+1}}\right) P_{k} .
$$

By (11) , $\sup _{n, k}\left|b_{n k}\right|<\infty$. Since A is regular, $\lim _{n \rightarrow \infty} a_{n k}=0, k=0,1,2, \ldots$ so that $\lim _{n \rightarrow \infty} b_{n k}=0, k=0,1,2, \ldots$. Let $s_{n}=1, n=0,1,2, \ldots$. Then $t_{n}=1, n=0,1,2, \ldots$. It now follows that $\sum_{k=0}^{\infty} b_{n k}=\sum_{k=0}^{\infty} a_{n k}, n=0,1,2, \ldots$. Consequently $\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{\infty} b_{n k}\right)=$ $\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{\infty} a_{n k}\right)=1$. The method $\left(b_{n k}\right)$ is thus regular and so $\lim _{n \rightarrow \infty} t_{n}=s$ implies $\lim _{n \rightarrow \infty} \tau_{n}=$ s i.e. $\left(\bar{N}, p_{n}\right) \subset A$.

Theorem 5. $\left(\bar{N}, p_{n}\right)$ is a regular method and $A=\left(a_{n k}\right)$ is a regular triangular matrix. Then $\left(\bar{N}, p_{n}\right) \subset A$ if and only if (11) holds.

Proof . Let (11) hold. Since A is a triangular matrix, (10) clearly holds. In view of Theorem 4, we have $\left(\bar{N}, p_{n}\right) \subset A$. Conversely, let $\left(\bar{N}, p_{n}\right) \subset A$. Following the notation of Theorem 4, let $\lim _{n \rightarrow \infty} t_{n}=s$. As in the proof of Theorem 4,

$$
\tau_{n}=\sum_{k=0}^{\infty} a_{n k} s_{k}=\sum_{k=0}^{\infty} b_{n k} t_{k},
$$

where

$$
b_{n k}=\left(\frac{a_{n k}}{p_{k}}-\frac{a_{n, k+1}}{p_{k+1}}\right) P_{k}
$$

Since $\left(\bar{N}, p_{n}\right) \subset A$, for every sequence $\left\{t_{k}\right\}$ with $\lim _{k \rightarrow \infty} t_{k}=s, \lim _{n \rightarrow \infty} \tau_{n}=s$. This means that $\left(b_{n k}\right)$ is a regular matrix and so (11) holds. This complices the proof.

§4. A SCALE OF STRICTLY INCREASING WEIGHTED MEANS.

We conclude the present paper by obtaining a strictly increasing scale of regular summability methods in \mathbf{Q}_{p}. We define, for $k=0,1,2, \ldots$, the method $\left(\bar{N}, p_{n}^{(k)}\right)$ by

We now establish that

$$
\begin{aligned}
p_{n}^{(k)} & =p^{n k}, \quad \text { if } n \text { is odd } \\
& =\frac{1}{p_{n k}}, \text { if } n \text { is even }
\end{aligned}
$$

$$
\begin{equation*}
\left(\bar{N}, p_{n}^{(k)}\right) \not \subset\left(\bar{N}, p_{n}^{(k+1)}\right) \tag{12}
\end{equation*}
$$

We apply Theorem 3 to prove this assertion. For convenience, let $p_{n}=p_{n}^{(k)}$ and $q_{n}=p_{n}^{(k+1)}, n=0,1,2, \ldots$. If n is odd,

$$
\begin{aligned}
\left|\frac{P_{n}}{p_{n}}\right| & =\frac{1}{c^{(n-1) k}} \cdot \frac{1}{c^{n k}} \\
\left|\frac{Q_{n}}{q_{n}}\right| & =\frac{1}{c^{(2 n-1) k}} \\
c^{(n-1)(k+1)} & \frac{1}{c^{n(k+1)}}
\end{aligned}=\frac{1}{c^{(2 n-1)(k+1)}}, \quad c=|p|<1, ~ l
$$

so that

$$
\left|\frac{P_{n}}{p_{n}}\right| \leq\left|\frac{Q_{n}}{q_{n}}\right|
$$

If n is even,

Thus

$$
\begin{aligned}
&\left|\frac{P_{n}}{p_{n}}\right|= \frac{1}{c^{n k}} \cdot c^{n k}=1 \\
&\left|\frac{Q_{n}}{q_{n}}\right|= \frac{1}{c^{n(k+1)}} \cdot c^{n(k+1)}=1 \\
&\left|\frac{P_{n}}{p_{n}}\right| \leq\left|\frac{Q_{n}}{q_{n}}\right|
\end{aligned}
$$

in this case too. Consequently, by Theorem $3,\left(\bar{N}, p_{n}^{(k)}\right) \subset\left(\bar{N}, p_{n}^{(k+1)}\right)$. Let now

$$
\begin{aligned}
s_{n} & =0, & \text { if } n \text { is even } ; \\
& =\frac{1}{p^{n(k+1)+k(n-1)}}, & \text { if } n \text { is odd } .
\end{aligned}
$$

Let $\left\{\tau_{n}\right\}$ be the $\left(\bar{N}, q_{n}\right)$ transform of $\left\{s_{n}\right\}$.
If n is odd,

$$
\begin{aligned}
\left|\tau_{n}\right| & =\left|\frac{0+p^{k+1} \cdot \frac{1}{p^{k+1}}+0+p^{3(k+1)} \cdot \frac{1}{p^{3(k+1)+2 k}}+\ldots+0+p^{n(k+1)} \cdot \frac{1}{p^{n(k+1)+k(n-1)}}}{1+p^{k+1}+\frac{1}{p^{2(k+1)}}+\ldots+\frac{1}{p^{(n-1)(k+1)}}+p^{n(k+1)}}\right| \\
& =\frac{\frac{1}{c^{k(n-1)}}}{\frac{1}{c^{(k+1)(n-1)}}} \\
& =c^{n-1}
\end{aligned}
$$

If n is even,

$$
\begin{aligned}
&\left|\tau_{n}\right|=\left\lvert\, 0+p^{k+1} \cdot \frac{1}{p^{k+1}}+0+p^{3(k+1)} \cdot \frac{1}{p^{3(k+1)+2 k}}+\ldots+0\right. \\
&\left|\frac{+p^{(n-1)(k+1)} \cdot \frac{1}{p^{(n-1)(k+1)+k(n-2)}}+0}{1+p^{k+1}+\frac{1}{p^{2(k+1)}}+\ldots+p^{(n-1)-(k+1)}+\frac{1}{p^{n(k+1)}}}\right| \\
&=\frac{\frac{1}{c^{k(n-2)}}}{\frac{1}{c^{n(k+1)}}} \\
&=c^{n+2 k}
\end{aligned}
$$

In both the cases, $\lim _{n \rightarrow \infty} \tau_{n}=0$. Thus $\left\{s_{n}\right\}$ is summable $\left(\bar{N}, q_{n}\right)$ to 0 . Let, now, $\left\{t_{n}\right\}$ be the $\left(\bar{N}, p_{n}\right)$ transform of $\left\{s_{n}\right\}$.

If n is odd

$$
\begin{aligned}
\left|\tau_{n}\right| & =\left|\frac{0+p^{k} \cdot \frac{1}{p^{k+1}}+0+p^{3 k} \cdot \frac{1}{p^{3(k+1)+2 k}}+\ldots+0+p^{n k} \cdot \frac{1}{p^{n(k+1)+k(n-1)}}}{1+p^{k}+\frac{1}{p^{2 k}}+\ldots+\frac{1}{p^{(n-1) k}}+p^{n k}}\right| \\
& =\frac{\frac{1}{c^{n+k(n-1)}}}{\frac{1}{c^{(n-1) k}}} \\
& =\frac{1}{c^{n}}
\end{aligned}
$$

Since $\frac{1}{c}>1, \lim _{n \rightarrow \infty}\left|t_{n}\right|=\infty$ that $\left\{t_{n}\right\}$ cannot converge. Thus $\left\{s_{n}\right\}$ is not $\left(\bar{N}, p_{n}\right)$ summable and consequently (12) holds.

REFERENCES

[1] G. BACHMAM, Introduction to p-adic numbers and valuation theory, Academic Press, 1964.
[2] G.H. HARDY, Divergent Series, Oxford, 1949.
[3] A.F. MONNA, Sur le théorème de Banach-Steinhauss, Indag. Math. 25(1963), 121131.
[4] P.N. NATARAJAN, Criterion for regular matrices in non-archimedean fields J. Ramanujan Math. Soc. 6 (1991), 185-195.
[5] G.M. PETERSEN, Regular matrix transformations,Mc Graw-Hill, London, 1966.
[6] V.K. SRINIVASAN, On certain summation processes in the p-adic field, Indag. Math. 27 (1965) , 368-374.

