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RESTRICTED RANGE SIMULTANEOUS APPROXIMATION AND

INTERPOLATION WITH PRESERVATION OF THE NORM

J.B. Prolla and S. Navarro

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.225-235

Abstract. Let (F. ; ~ ~ ) be a complete non-archimedean non-trivially valued division ring.
w ith valuation ring V. Let X be a compact 0-dimensional Hausdorff space. and let D(X)
be the ring of all continuous functions f from X into V equipped with the supremum norm.
Let A C D(X). Assume that for every ordered pair (s. t) of distinct elements of X. there
is some multiplier of A; say ~;. such that = 1 and = 0. Assume that A contains
the constants. We show that A is uniformly dense in D(X ). and when A is an interpolating
family then simultaneous approximation and interpolation, with preservation of the norm,
by elements of .4 is always possible. We apply this to the case of von Neumann subsets and
to the case of restricted range polynomial algebras.

1991 Mathematics subject classification: 46S10.

1. Introduction

Throughout this paper X is a compact Hausdorff space which is 0-dimensional i.E. , for
any point ir and any open set 44 containing ~. there exists a closed and open set ~l~’ with
ir E C .A. and (.F. j - j) is a complete. non-Archimedean non-trivially valued division ring.
We denote by V the valuation ring of F. i.e., V = {t e F: |t| I  1}, and by D(X) the set
of all continuous functions from the space fY into Y. equipped with the topology of uniform
convergence on X. determined by the metric d defined by

= ~f - g~ = sup{|f(x) - g(x)|:x E X}

for every pair, f and g, of elements of D(X).
Our aim is to use the idea of T.J. Ransford (see ~7~); to prove results in D(X) that are
analogous to those in C(X; [0. and C(X; F), which were proved in (5] and [6]. respectively.
To avoid trivialities we assume that A’ has at least two points. 

’

Definition 1 A non-empty subset A C D(X) is said to be a von Neumann subset if
03C8 

, 

+ (1 - 03C6)~ belongs to A, whenever 03C6, 03C8 and ~ belong to A . .
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Clearly, if A C D(X) is a von Neumann subset containing the constant functions 0 and 1.
then the follow ing properties are true:

(i) if ’f E A. then belongs to A:

(ii) if ; and ~,~ belong to .4. then ~;y belongs to A.

When A C D(X) has properties (i) and (ii), we say that A has property y’. This
definition is motivated by the similar one introduced by R. I. Jewett, who in [1] proved the
variation of the Veierstrass - Stone Theorem stated by von Neumann in [8].

Definition 2 Let A C D(X) be a non-empty subset. Ve say that ; E is a multiplier
of A if 03C6 f + (1 - belongs to A . .

Clearly. if :LI is the set of all multipliers of A, then M satisfies property (i) above. The
identity

+ (1 - = + (1 - + (1 - 03C6)g
shows that VI satisfies condition (ii) as well. Hence 11I has property V.

Definition 3 A subset A C D(X) is said to be strongly separating over X. if given any
ordered pair (x. y) E .Y x X. with y; there exists a function.; E A such that ;(x) = 1
and ~( r~) = 0.

Lemma 1 Let AI C D(X) ) be a subset which has proper V and is strongly separating over
X. . Let be a clopen proper subset of X . For each 03B4 > 0 , there -is 03C6 E M such that

~~(t) - lj  b, for all t E N. (I)

|03C6(t)|  03B4, for all t ~ N. (2)

Proof. This result is essentially Lemma 1 of Prolla [6]. For the sake of completeness we
include here its proof. Fix y E X. y ~ N. Since ~I is strongly separating; for each t E N,
there is ;t E M such that 03C6t(y) = 1. = 0. By continuity there is a neighborhood V(t)
of t such that ]  ~ for all s E V(t). By compactness of N there are ti , ....tn E ~’ such
that N C U ... U V (tn). Consider the function 03C8y =1- 03C6t1 03C6t2...... 03C6tn. Clearly 03C8y E M
and = 0, while  L~ for all t E N. Indeed, if t E N, then t E for some
index E {I. 2..... n~. Hence

~~ t 1 =  b.

By continuity, there is a neighborhood of y such that  ~ for all s E fr’(.r~). By
compactness of K = N. there are E K such that K C U ... U W(ym).
Let ; = 03C8y2 -... - Clearly 03C6 E M. We claim that for each 1 ~ k ~ m we have

~ 1-  ð, for all t E 1V. (3)
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We prove (3) by induction. For k = 1. (3) is clear, since |03C8y(t) - 1|  b for all t E 1V and
all y E K. Assume (3) has been proved some k. To simplify notation we write 03C8i = 03C8yi for
all 1  i  m. Then, for each t E iV

I1 - ’ ... . tl,’k+l~t~i -

!i - + ~~)..... ~). ~+~~j I
 ma:r {jl - ~ ... ~  ~

because |1 -  b.  1, and |1 - 03C81(t) .....  E by the induction
hypothesis. Hence (3) is valid for k + 1.

Clearly (1) follows from (3) by taking k = m. It remains to prove (2). Now if t e K then
t E for some 1  z  m. Hence  E. while  1 for all j ~ i. Therefore
~~;(t)~  b and (2) is proved.

C

Remark. If .4 c D(X) is a non-empty subset and f E D(X ). the distance of f from A.
denoted by dist(f..4). is defined as

dist ( f. A) = inf {~) f~ - y~~: y E A}

Clearly, f belongs to the uniform closure of A in D(X) if. and only if, dist(f: A) = 0.
If S ~ X is a non-empty closed subset of X. we denote by fs E D(S). Similarly.

As = E .4}. for each .4 C D(X). ‘Vhen S is a singleton set, say S = {~}, we identify
fs with its value f(x), and As with {03C6(x); If E A} = A(x).

Lemma 2 Let A c D(X) be a non-empty subset. For each f E D(X), there exists a
miniinal closed and non-empty subset S C .Y such that

dist( fs; ,9S) = dist( f; A )

Proof. Since. for each x E X, we have

dist (f(~): A(~)) _ dist (f; A).

we see that when dist ( f; A) = 0, any singleton set S = {:~} satisfies

dist ( fy: = dist( f; A)

Assume now dist ( f; A) > 0. Let us put d = dist ( f; A). Define

7(X) = {T C X; T is closed and non-empty}
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and
F = {T E F(X); dist (fT; :4T) = d}.

Clearly .~’ ~ 0. because X E .F. Let us order .~’ by set inclusion. Let C be a totally
ordered non-empty subset of 0.

Let S = n{T: T E C}. Clearly. S is closed. If J is a finite subset of C. there is some
To E .J such that T0 ~ T for all T E J. Hence

To = n{T; T E J}.

Now 0 and by compactness 5’ 7~ 0. Hence S E ~’(fY). We claim that S E -F.
Clearly, dist ( fs~: Js)  d. Suppose that dist ( fs; As)  d and choose a real number r such
that dist (fS: AS)  r  d. By definition of dist ( f 5: As) there exists g E A such that

 r for all x E S. Let

U = {t E .Y; ~f (t) - 9(t)~  r}.

Then U is open and contains S. By compactness, there is finite subset .J C C such that
n{T: T E J} C L’. Let To E J be such that To C T for all T E .J. Then n{T: T E J} = To
and so To C L’. Hence  r for all t E To. and so dist (fT0); AT4  r  d,
which contradicts the fact that To E F. This contradiction establishes our claim that dist

(is; As) ) = d. Therefore S is a lower bound for C in:F. By Zorn’s Lemma there exists a
minimal element in 7. and this element satisfies all our requirements.

a

2. The Main Results

Theorem 1 Let A C D(X) be a non-empty subset. whose set of multipliers is strongly sep-
arating over JB". . For each f E D(X ), , there is some x E X such that

(*) dist ( f (x): A(~’)) = dist ( f A )

Proof. By Lemma 2 above, there is a minimal closed and non-empty subset S C J~ such
that

dist = dist (/: A)

We claim that S = {~~, for some :r E X. Since for any x E dist ( f (x); A(:~~))  dist

( f A) we see that when dist (/; ; A~ = o, then (*) is true for all :r E X. Hence we may assume
d = dist (/; A) is strictly positive.

Assume that S contains at least two distinct points, say y and z. Let N be a dopen
subset of X such that while ~ ~ N. Define

y = S n N
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where K = X B 1’. Notice that both Y and Z are closed. Y n Z = 0.and Y U Z = S. Since
y E Y and z E Z. both Y and Z are non-empty. Furthermore, z ~ r’ and y g Z. Hence
both Y and Z are proper subsets of S. By the minimality of S we have

dy := dist ( fy: Ay)  d;

dz:= dist (fz:Az)  d.

Choose a real number r such that

max{dY, dZ}  r  d.

Since dy  r. there is some g E A such that g(t)1  -r, for all t E Y. Similarly.
since dz  r, there is some h E A such that ( f (t) - h(t)|  r, for all t E Z. Choose
0  b  r. By Lemma 1, there is a multiplier of A, say ~;, such that

(1) ~1 - ~:(t)I  d, for all t E N.

(2)  F., for all t ~ N.

The function k = jg + ( 1 - )h belongs to A. ‘Ve claim that k(t)~  r for all
t E S. Let t E S. There are two cases to consider, namely t e Y and t E Z.

Case I. t E Y

Let us write g + (1 - :~)g. Then

Ik(t) - g(t)I = )i - g(t)I ~ )i - ~)!  5

because Y C N implies, by (1), that ~1-~;(t)~  b, and ~h(t)-g(t)~  max {~h(t)~. ~g(t)~}  1.
Hence

k(t)| = |f(t) - g(t) + g(t) - k(t)| _ max {|f(t) - g(t)| ,|g(t) -  r

Case II. t 6 Z

Let us write h = wh + (1 - c~)h. Then

Ik(t) - h(t)1 = ~9(t) -  b

because Z C K = .Y B N implies that lV and by (2),  b.
Hence

h(t) + h(t) - k(t)1  max  r.

Therefore k(t)~  r, for all t E S and dist ( fs, As)  r  d, a contradiction.
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Remark. If ,4 c D(X } is as in Theorem i and A(x) ~ {0, I }, for every x E .Y, then
it follows that the closure of .~ contains the characteristic function of each clopen subset of
X . Indeed, let S c .Y be a clopen subset of X and let f be its characteristic function. Let
x E X be given by Theorem 1. Now f(x) is either 0 or 1 and therefore A(x} contains f(x)
and so dist ( f , A) = 0.

Corollary 1 Let A c D(X} be a von Neumann subset which is strongly separating over X. .
For each f E D{X ). . there is some ~ E X such that

(*) dist ( f {x); A(:r)) = dist ( f . A}

Proof. Let be the set of all multipliers of A. Since A is a von Neumann subset, we
see that A C M. Hence M is strongly separating too, and the result follows from Theorem
1.

t7

Theorem 2 Let :-1 c D(X) ) be a non-empty subset. whose set of multipliers is strongly
separating over .Y. . Let f E D(X } and ~ > 0 be given. The following are equivalent:

(1) there is some g E A such that ~f - g~  ~,

(2) for each t E X,there is some gc E A such that ! f (t) -  ~.

Proof. Clearly. (1) ~ (2). Conversely, assume that (2) holds. Let x E X be given by
Theorem 1,i.e.,
(*) dist ( f A) = dist ( f (x); A(x}).

By (2) applied to t = x, there is some gx E A such that - gx(x)|  ~. Hence
dist { f (x); A(x))  ~. By (*) above. dist { f A)  ~, and therefore some g E A such that
~~ f - g~~  ~ can be found. Hence (1) is valid.

O

Corollary 2 Let A C D(X} ) be a von Neumann subset which is strongly separating over X .
Let f E D(X } and ~ > 0 be given. The following are equivalent:

(1) there is some g E A such that ~f - g~  ~,

(2) for each t E X. . there is gt E A such that - gt |  ~

Proof. Corollary 2 follows from Corollary 1 in the same way that Theorem 2 follows from
Theorem I. Or else. note that A c M if M denotes the set of all multipliers of A and then
apply Theorem 2 to A, since ~I is strongly separating over X because it contains A.
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Theorem 3 Let..4 c D(X) be a non-empty subset such that the set M of its multipliers is
strongty separating, and each a E I’ and each x E X, there r 03C6 E A such that = a.

Then A .is uniformly dense in D(X).

Proof. Let f E D(X ). By Theorem 1. there is some x E X such that

dist ( f : :-I) = dist ( f (x}; A(x}).

Now, by hypothesis. A(x) = V. Hence f(x) E A{x) and so dist ( f (x); A(x}) = 0 Hence

dist ( f ; A) = 0 for all f e D(X ), and :=1 is uniformly dense in D(X).

0

Remark. If A C D(.Y) is as in Theorem 1 and contains all the constant functions with
values in V, then Theorem 3 applies trivially and A is uniformly dense in D()().

Corollary 3 Let..4 C D(X ) be a von Neumann subset which is strongly separating over X.

and for each a E L’ and x E X there is 03C6 E A such that = a. Then A is uniformly
dense in D(X).

Corollary 4 Let be a subring of D(..Y) which is strongly separating over X and W(x) =
V. for each x E ~’. Then is uniformly dense in D(X ).

Proof. Clearly, every subring of D(X) is a von Neumann subset.

Q

Remark. The valuation ring V is a topological ring with unit, and has a fundamental
system of neighborhoods of 0 which are ideals in V. Hence Theorem 32 of Kaplansky [2]
applies, giving an alternate proof for Corollary 4.

3. Examples

Let us give some examples of von Neumann subsets of D(X) which are strongly separating
over X. Let us first remark that a separating subring of D(X) is not necessarily strongly
separating over X. . The set = { f E D(X ); |f(x)|  1, for all x E X} is an example of a
separating subring of D(X) infact, it is a closed two-sided ideal of D(X ), which is not strongly
separating. Indeed no function in W can take the value 1 at any point in X. Further examples
can be found. Indeed, for a fixed point  E ,Y let us define Wa = { f E D(X); f(a) = 0}.
Clearly, Wa is a subring of D(X). Now Wa is separating over X. Indeed, let x i= y be given
in X. If x = a or y = a, the function.; E D(X) which is zero at a and one at the other
point is such that 03C6(x) ~ 03C6(y) and 03C6 E Wa. In case x ~ a and y ~ a,let 03C6 E D(X) be
such that cp(a) = 0 and = 1, and let E D(X) be such that = 0 and 03C8(y) = 1.
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Then 11 = E it] and = 0 while = 1. On the other hand, Wa is not strongly
separating over X. . For every ordered pair (a. x). with x. there is no function °° E yi~u
such that 03C6(a) = 1 and ;(x) = 0. Indeed. 03C6 E Wa implies f’(a) = 0, and so Wa is not
strongly separating over X.

Example 1 The collection A of the characteristic functions of all the clopen subsets of X is
a von Neumann subset of D(X}, containing 0 and 1. and moreover. since X is a o-dimensional
compact Hausdorff space. A is strongly separating over X.

Example 2 Let X = V = {t E Qp;  1~. where is the p-adic field. Then the
unitary subalgebra i~’ of all polynomials q : Qp -; Qp is separating over X. . By Proposition
1, Prolla [6], A = {q E W; q(X) C V} is strongly separating over X. . Clearly. A is a von
Neumann subset containing the constants in D(..Y).

Example 3 Let n > 1 be an integer and let V = {t E I  1~ and assume that V is
compact. Then the unitary subalgebra ~V of all polynomials q : F in n-variables

is separating over .Y = ~’n, because V’ contains all the n projections. By Proposition 1.
Prolla ~6j. A = {q E H’: q(Vn) C V} is a strongly separating von Neumann subset of D(vn).
containing all constant functions with values in ~~’.

Example 4 Let be a finite partition of X into clopen subsets, i.e., the set I of indices
is finite, each Si is a clopen set, Si n Sj = 0 for all i and X = ~i~ISi. For each i E I.
let ~;t be the characteristic function of Si and let a~ E V. Consider the function ~ E D(X)
defined bv

03C6(x) - 03A3 03BBi03C6i(x)
iel

for all x E X. Let .4 C D(X) be the collection of all functions ;~ defined as above. Then .4
satisfies all the hypothesis of Theorem 3 and therefore is uniformly dense in D(X).

Definition 4 A non-empty subset A C D(X) is said to be a restricted range polynomial
algebra if for every choice 03C61,...,03C6n E A and q : F a polynomial in n-variables such
that ~,2(x~.....  1 for all x E X. the mapping x -~ 
belongs to A.

Notice that the polynomials (u1, u2} - u1 + u2. (u1, u2) - u1u2 and (u1, u2) ~ u1 - u2
are such that V x V is mapped into V, and therefore any restricted range polynomial algebra
is a subring of and a fortiori a von Neumann subset. Notice that any restricted range
polynomial algebra contains all the constant functions with values in V.

Proposition 1 Let.4 C D(X) be a restricted range polynomial alyebra which is separating
over X. . Then A is strongly separating over X ,

Proof. Let (8, t) be an ordered pair of distinct elements
of X. By hypothesis, there exists ~ E A such that ~(t).
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Let q : F’ --~ F be the linear function

u -’ 03C6(s))-1(u - 03C6(s))

Then = 0 and q((y:(t)) = 1. Since q is continuous; q(;~(X)) is a compact subset
of F. By Kaplansky~s Lemma (see Kaplansky [3] or Lemma 1.23, Prolla [4]) there is a
polynomial p : F --. F such p(l) = 1 and p(0) = 0 and |p(t)|  1 for all t E q(cp(X)). Let
r = p o q then r : F -~ F is a polynomial such that r(~,(X)) c V. Hence r o ;~ = belongs
to A. Now = p(q(03C6(s))) = p(0) = 0 and 03C6(t) = p(q(03C6(t))) = p(1) = 1. Hence A is
strongly separating.

O

Corollary 5 Let A c D(X ) be a restricted range polynomial algebra which is separating
over X. Then A is uniformly dense in D( ..).

Proof. By Proposition 1. A is strongly separating. On the other hand A contains all the
constant functions with values in V. Hence A(x) = V, for every x E .Y. Since A is a von
Neumann set. the result follows from Corollary 3.Or else, notice that A is a subring and then
apply Corollary 4.

O

4. Simultaneous Aproximation and Interpolation

Definition 5 A non-empty subset A c D(X) is called an interpolating family for D(X)
if, for every f E D(X) and every finite subset S C X. there exists 9 E A such that
y(x) = I(x) for 

’

Theorem 4 Let C D(X) be is an interpolating family for D(X ), whose set of multipliers
is strongly separating over .Y. Then, for every f E D(.Y) every ~ > 0 and every finite set
S C X, there exists 9 E A such that ~f - g~  ~, ~g~ = and g(t) = for all t E S.

Proof. Let A = {g E g(t) = J(t) for all t E S}. Since is an interpolating family for
D(X), the set A is non-empty. It is easy to see that every multiplier of L4’ is also a multiplier
of A. Hence the set of multipliers of A is strongly separating over X. Consider the point
it E X given by Theorem 1, applied to A and f. ~.e..

(*) dist ( f A) = dist (f(x); A(x))

Consider the finite set S U {~}. Since V’ is an interpolating family for D(X), there is
some 9x such that 9x (t) = I (t) for all t E S U {x}. In particular. = f(t) for all
t E S and therefore 9x E A. On the other hand 9x(x) = f(r) implies that .f{x} E A(x). By
(*), dist ( f; A) = 0. Choose 0  b such that 6  ~ and 03B4  

’ ’

There is some 9 E A such that gl~  6. From the definition of A it follows that
9 ~ W and = I(t) for all t E S. Moreover, g~  ~ and ~g~ = f + f~ = ~f~,because ~~9 -  6  ~~ f ~~.
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Corollary 6 Let II’ c D(X) be an interpolating family for D(X) wh~ich is a von Neumann
subset and which is strongly separating over X . Then. for every f E D(X), every ~ > 0 and
every finite set S C X , there exists g E W such that ~f - g~  ~, ~g~ = ~f~, and g(t) = f(t)
for all t ~ S.

Proof. The set W is contained in the set M of its multipliers and Corollary 6 follows from
Theorem 4.

©

Remark. If c D(X) is an interpolating family for D(X) which is strongly separating
over X and which is a subring of D(X }, then Corollary 6 applies to it.

Corollary 7 Let W C D(X) be an interpolating family for D(X } which is a restricted range
polynomial algebra and which is separating over X . Then. for every f E D(X ). , every ~ > o,
and every finite set S C X, there exists g E such that - g~  ~, ~g~ = and
g(t) = f(t) fo.r all t E S.

Proof. We know that every restricted range polynomial algebra is a von Neumann subset.
By Proposition 1. is strongly separating. The result now follows from the previous
Corollary.

C7
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