# G. RANGAN *p*-adic almost periodicity and representations

Annales mathématiques Blaise Pascal, tome 2, nº 1 (1995), p. 237-243 <a href="http://www.numdam.org/item?id=AMBP\_1995\_2\_1237\_0">http://www.numdam.org/item?id=AMBP\_1995\_2\_1237\_0</a>>

© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## $\mathcal{N}$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.237-243

#### P-ADIC ALMOST PERIODICITY

#### AND REPRESENTATIONS

#### G. Rangan

Abstract- In the first international conference on *p*-adic functional analysis, the question whether it is possible to get the structure of the Banach Algebra  $A_c(G)$  of *p*-adic valued continuous almost periodic functions on a totally disconnected topological IB-group G through the structure of its non-archimedean Bohr compactification  $\hat{G}$  was raised. We affirmatively answer this question here. This structure of  $A_c(G)$  helps one to study the *p*-adic regular representation of G using the known theory of representations for compact groups.

1991 Mathematics subject classification: 46S10

## **1** Introduction

Let G be a group and K a complete ultra-metric valued field. When G carries a topology under which G is a topological group, we have studied in earlier papers Rangan [5], [6], [7] and [8] continuous almost periodic functions on G with values in K. In Rangan [8] we conjectured that a structure theory for the Banach algebra  $A = A_c(G)$  of continuous almost periodic functions on G can be obtained using the known structure theory of the group algebra of a compact group by going to the Bohr compactification  $\hat{G}$  of G. In this paper we give an affirmative answer to the conjecture. The observation that G is an IB-group if and only if the Bohr compactification  $\hat{G}$  is an IB-group or equivalently a p-free group, where p is the characteristic of the residue class field of K, which is implicitly contained in the results proved in Rangan [7], helps us to establish the conjecture.

When G is an arbitrary group and K is a locally compact field we consider the subgroup topology on G defined by the normal subgroups of finite index in G under which

#### G. Rangan

G becomes a O-dimensional group. The space of continuous almost periodic functions on G described above coincides with the space of almost periodic functions  $AP(G \to K)$  defined by Schikof [10] using compactoid. This enables us to prove that there exists an invariant mean on  $AP(G \to K)$  or equivalently the pair (G, K) is a.p.i.m. in the sense of Diarra [2](p.23, N.B.(i)) if and only if G is a IB-group or equivalently a p-free group (see Rangan [7]). Thus in the case when the base field is locally-compact, the problem of characterising (G, K) pairs which are a.p.i.m posed by Diarra is solved. The problem still remains open for non-locally compact fields. This also gives rise to the structure theory for  $AP(G \to K)$  which is got by going to its Bohr compactification.

The structure theory so arrived at for the algebra of almost periodic functions gives rise to a study of representations of G taking the base space for representation to be the space of almost periodic functions on G. This may give rise to an alternative approach to representation theory developed by Diarra [1] using Hopf algebras. We intend discussing the details in another paper. Using the structure theory of  $AP(G \rightarrow K)$ , we prove that the regular representation decomposes as a direct sum of finite-dimensional representations.

## 2 Notations and Definitions

G is a group and K is a complete ultra metric rank one valued field, p denotes the characteristic of the residue class field. For  $f : G \rightarrow K, x, s \in G$  we put  $f_s(x) := f(s^{-1}x), f^s(x) := f(xs), f^{\vee}(x) := f(x^{-1}), f_G = \{f_s : s \in G\}$  and  $f^G := \{f^s : s \in G\}$ . A function f defined on G is called almost periodic if  $f_G$  is precompact or equivalently if for every  $\epsilon > 0$  there exists a covering of G by a finite collection of subsets  $A_1, A_2, \dots, A_n$  such that for  $x, y \in A_i$  for  $i = 1, 2, \dots, n |f(cxd) - f(cyd)| < \epsilon$ for all  $c, d \in G$  (See Maak [4]). Interestingly it turns out that for a given  $\epsilon > 0$  and an almost periodic function f on G, the covering consisting of minimum number of subsets  $A_1, A_2, \dots, A_n$  such that for  $x, y \in A_i, |f(cxd) - f(cyd)| < \epsilon$  for  $i = 1, 2, \dots, n$  is the covering by cosets of a suitable normal subgroup  $H(f, \epsilon)$  called the  $\epsilon$ -kernel of finite index n in G. If f is a continuous almost periodic function on a topological group  $G, H(f, \epsilon)$  is also an open and closed subgroup of finite index in G. A (topological) group is called an IB-group (Index Bounded group) if  $\ln |n| > 0$ , as n varies over all the indices of (closed) subgroups of finite index of G. We take  $c = \inf |n|$ . G is p-free if only if c = 1 or equivalently |n| = 1 for each index n. There exists a Mean M with ||M|| = 1 (sup norm) on  $A_c(G)$  if and only if G is a p-free group.

Schikhof [10] calls a function  $f: G \to K$  almost periodic if  $f_G$  is a compactoid in B(G, K), the space of bounded functions on G with the supremum norm. The set of all almost periodic functions from G to K is denoted by  $AP(G \to K)$ . The almost periodic functions which are analogous of the classical case discussed earlier are called strictly almost periodic and the space of such functions is denoted by  $SAP(G \to K)$ . When G is a topological group the space of continuous strictly almost periodic functions is the space  $A_c(G)$  of

the earlier papers of the author. In general  $SAP(G \to K) \subset AP(G \to K)$ ; however when the base field is locally compact  $SAP(G \to K) = AP(G \to K)$ . Diarra [1] has shown that  $\chi_N$  the characteristic function of a normal subgroup N belongs to  $AP(G \to K)$  if and only if N is of finite index in G.

### **3** Existence of Mean

**Theorem 3.1** If G is a topological O-dimensional group then G is an IB-group if and only if its Bohr compactification  $\hat{G}$  is an IB-group or equivalently a p-free group.

**Proof:** Let G be an IB-group. Then Theorem 3.3. [5] implies that there exists a Mean M on  $A_c(G)$ . Again by Theorem 3.8. [7] M defines an invariant integral for continuous functions on  $\hat{G}$  and so  $\hat{G}$  is a *p*-free group or equivalently an IB-group.

Conversely if  $\hat{G}$  is an IB-group or equivalently a *p*-free group, the integral on  $\hat{G}$  induces an invariant mean on  $A_c(G)$ . and so G is a *p*-free group or an IB-group with c = 1.

**Remark 1:** When G is compact the collection of open and closed subgroups coincides with the collection of closed subgroups of finite index in G and so the *p*-free condition in the usual sense coincides with the IB-condition on G.

**Remark 2:** When the base field K is locally-compact Diarra has given (corollary 2, p.13, [1]) several equivalent criteria for the existence of mean on  $AP(G \to K)$  in terms of almost periodic representations, existence of Haar measure on the Bohr compactification etc. The above theorem which gives a criterion for the existence of mean in  $AP(G \to K)$  enables one to conclude that Diarra's equivalent formulations holds when and only when the group is *p*-free.

If G is an arbitrary group. Let  $\tau_B$  be the subgroup topology on G for which the collection of all normal subgroups of finite index is a fundamental system of neighbourhoods at the identity of G. With this topology, G is a topological group.

**Proposition 3.2** When K is locally compact and G is an arbitrary group,  $AP(G \rightarrow K) = SAP(G \rightarrow K) = A_c(G)$ , where  $A_c(G)$  is the space of all continuous (in the subgroup topology defined above) of almost periodic functions in the sense of Maak.

**Proof:** When K is locally compact every closed bounded subset of K is compact and so  $SAP(G \to K) = AP(G \to K)$  (See Schikhof [10], p.3); clearly  $A_c(G) \subset AP(G \to K)$ . If  $f \in AP(G \to K), f \in SAP(G \to K)$ . Hence for  $\epsilon > 0$ , there exists a normal subgroup of finite index  $H = H(f, \epsilon)$  such that

(i)  $G = \bigcup_{i=1}^{n} Hx_i, x_i \in G$ 

(ii) for  $x, y \in Hx_i, i = 1, 2, \dots, n$ 

 $|f(cxd) - f(cyd)| < \epsilon$  for all  $c, d \in G$ .

In particular for  $x, y \in H$ ,  $|f(x) - f(y)| < \epsilon$ , i.e. f is uniformly continuous with respect to the subgroup topology  $\tau_B$  on G and so  $f \in A_c(G)$ . This proves the proposition.

The next theorem gives a necessary and sufficient condition for the existence of Mean on  $AP(G \rightarrow K)$  in tune with the earlier conditions for the existence of Haar measure etc. (see van Rooij [8]) where G is an arbitrary group which solves the problem posed by Schikhof [10] in the case of the locally compact base field K. See also Diarra [1] theorem 4 and Schikhof [10], Theorem 8.2.

**Theorem 3.3** Let K be a locally compact field. An invariant Mean M on  $AP(G \rightarrow K)$  exists if and only if G is p-free.

**Proof:** We consider the subgroup topology  $\tau_B$  on G given by the normal subgroups of finite index as a neighbourhood base at the identity. By the earlier proposition 3.2,  $AP(G \rightarrow K) = SAP(G \rightarrow K) = A_c(G)$ . Now the Theorem follows from Theorem 3.3 of Rangan [5].

**Example:** Let G be any free-group. Then for every  $x \in G$ , x different from the identity of G, there exists a normal subgroup of finite index  $N, x \notin N$ . (See Hewitt and Ross [3]). Hence the subgroup topology on G given by the family of normal subgroups of finite index as a neighbourhood base is a Hausdorff topology on G. Hence  $AP(G \to K) = SAP(G \to K) = A_c(G)$ . G is a maximally almost periodic group. An invariant Mean exists on  $AP(G \to K)$  if and only if G is p-free.

**Remark:** When K is locally compact for the study of continuous almost periodic functions on a totally disconnected topological group, only the topology  $\tau_B$  on G matters. For if  $(G, \tau)$ be a totally-disconnected topological group. G is a totally disconnected topological group also with respect to the topology  $\tau_B$  defined by closed (in  $\tau$ ) normal subgroups of finite index in  $(G, \tau)$ . The topology  $\tau_B$  is weaker than  $\tau$ . By Theorem 4.1 Rangan [6], and proposition 3.2 above it follows that  $A_c(G, \tau) = A_c(G, \tau_B) = AP(G \to K)$ .

## 4 Structure of $A = A_c(G)$

Throughout this section we assume that K is locally compact and G is either a totally disconnected topological group or an arbitrary group G considered as a topological

group with respect to the subgroup topology  $\tau_B$  defined by the normal subgroups of finite index in G. So  $A_c(G, \tau) = A_c(G, \tau_B) = AP(G \to K)$ . We assume G to be a p-free group.

**Theorem 4.1** The algebra  $A = A_c(G)$  is isometrically isomorphic to the group algebra  $L(\hat{G})$  of the Bohr compactification  $\hat{G}$  of G.

**Proof:** The map  $\theta: A \to L(\hat{G})$  given by  $f \to \hat{f}$  where  $\hat{f}$  is the associated continuous function on the compact group  $\hat{G}$  to f (see Rangan [6], Theorem 4.4). If  $\rho$  is the homomorphism which imbeds G in  $\hat{G}$ , for  $x \in G$ ,  $f(x) = f(\rho(x))$ .  $\theta$  is one-to-one: For  $\theta(f) = \theta(g) \Rightarrow \hat{f} =$  $\hat{g} \Rightarrow f(x) = g(x)$  for all  $x \in G \Rightarrow f = g$ .  $\theta$  is onto: if  $h \in L(\hat{G})$ , h is a continuous function on  $\hat{G}$ . Define  $f(x) = h(\rho(x))$  for  $x \in G$  then  $\hat{f} = h$ .  $\theta$  is an algebra homomorphism: For

$$f * g(x) = M_y(f(y)g(y^{-1}x)) = \int_G f(y)g(y^{-1}x)dy = \hat{f} * \hat{g}(x)$$

where the integral is the Haar integral and it exists since  $\hat{G}$  is p-free, G being so.

 $\theta$  is an isometry: When G is p-free |n| = 1 for every normal subgroup of finite index and so c = 1. Hence for  $f \in A$ ,

$$\parallel f \parallel = \sup_{x \in G} |f(x)| = \sup_{x \in G} |\hat{f}(\rho(x))| = \sup_{x \in \hat{G}} |f(t)|$$

since  $\rho(G)$  is dense in  $\hat{G}$ .

**Proposition 4.2** A is the closure of the K-linear span of the idempotents of A.

**Proof:** Since  $A = A_c(G) = A_c(G, \tau_B) = AP(G \to K) = SAP(G \to K)$  the proposition follows from Lemma 4.4, Schikhof [10], which is now easily seen to be a restatement of the approximation Theorem 7.4 of Rangan [5].

**Theorem 4.3** For a p-free group  $G, A = \bigoplus A_e$  where  $A_e = e * A$  is a finite-dimensional two sided ideal of A and for every  $f \in A$ ,

$$f = \sum_{e \in E} e * f \text{ and } \parallel f \parallel = \sup_{e \in E} \parallel e * f \parallel$$

and every non-zero minimal two sided ideal in A is an  $A_e$  for a suitable  $e \in E$ . If I is a closed two sided ideal in A then

J

$$I = cl \sum_{e \in I} A_e$$

where E is the set of all minimal non-zero central idempotents of A.

**Proof:** Follows from 8.14 Theorem van Rooij [9] since by the earlier theorem A and  $L(\hat{G})$  are isometrically isomorphic.

It is not difficult to prove, using the existence of the approximate identity  $(U_H)$ , (H varying over the collection  $\Gamma'_G$  of normal subgroups of finite index in G) that the closed ideals in A are same as closed invariant subspaces. For  $f \in A$ , defining  $(L_a f)(x) = f(a^{-1}x)$  for  $x \in G$ , we get the (left) regular representation  $a \to L_a$  on G.  $A_e$  being invariant subspaces in view of Theorem 4.3,  $L_a$  decomposes as a direct sum of finite-dimensional representations. Thus we get the following result.

**Theorem 4.4** The regular Representation decomposes as a direct sum of finite-dimensional representations.

## References

- [1] Diarra, B. : Ultrametric almost periodic Linear representations (Preprint).
- [2] Diarra, B. : On reducibility of ultrametric almost periodic linear representation, (Preprint)
- [3] Hewitt, E. and K.A. Ross. : Abstract Harmonic Analysis Vol.1 (Springer-Verlag, Berlin, 1963)
- [4] Maak, W.: Fast periodische Funktionen, Berlin Göttingen Heidelberg, Springer 1950.
- [5] Rangan, G. : Non-archimedean valued almost periodic functions, Indag. Math., 31 (1969), 345-353.
- [6] Rangan, G. : Non-archimedean Bohr Compactification of a topological group, Indag.Math., 31 (1969), 354-360.
- [7] Rangan, G.: On the existence of non-archimedean valued invariant Mean Publ. Math. (Debrecen)29 (1982), 57-63.
- [8] Rangan, G. and M.S.Saleemullah. : Banach algebra of p-adic valued almost periodic functions: p-adic Functional Analysis, (Eds. J.M. Bayod, N.De Grade-De Kimpe and J. Martinez-Maurica), Marcel Dekker, New York 1991, 141 - 150.

- [9] Rooij van, A.C.M. : Non-archimedean Functional Analysis, Marcel-Dekker-New York, 1978.
- [10] Schikhof, W.H. : An approach to p-adic almost periodicity by Means of Compactoids, *Report*8809, Department of Mathematics, Catholic University, Nijmegen, 1988.

RANGAN, G. University Building Chepauk, Triplicane P.O. MADRAS, 600005 INDIA, INDE