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ORTHONORMAL BASES FOR P-ADIC CONTINUOUS AND

CONTINUOUSLY DIFFERENTIABLE FUNCTIONS

Stany De Smedt

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.275-282

Abstract. In this paper we adapt the well-known Mahler and van der Put base of the
Banach space of continuous functions to the case of the n-times continuously differentiable
functions in one and several variables.

1991 Mathematics subject classification : ,~6510

1. Introduction
Let K be an algebraic extension of Qp, the field of p-adic numbers. As usual, we

write Zp for the ring of p-adic integers and C(Zp --~ K) for the Banach space of continuous
functions from Zp to K. We have the following well-known bases for C(Zp -+ K) : : on

one hand, we have the Mahler base ) (n E N), consisting of polynomials of degree n
and on the other hand we have the van der Put base {en n EN} consisting of locally
constant functions en defined as follows : : eo(x) = 1 and for n > 0, en is the characteristic
function of the ball ~ a E Zp ( (a - n~  l~n }. For every f E C(Zp --~ K) we have the
following uniformly convergent series

f(x) =an () where an = (-1)n-j () f(j)
00

f(x) = 03A3 bnen(x) where bo = f(O) and bn = fen) - f (n_).
n=o

Here n- is defined as follows. For every n E No, we have a Hensel expansion n = no +
nip + ... + nsps with 0. Then n- = no + nip + ... + ns-1ps-1. We further put

’Yo = 1, 7n = n-’n- = nsps,03B40 = 1, 6n = ps and n- = Remark that |03B4n| = |03B3n|.
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00

In the sequel, we will also use the following notation, for m, x E Qp, x = ~ m  x

j=-~
i

if m = 03A3 ajpj for some i E Z. We sometimes refer to the relation a between m and x
j=-oo

as "m is an initial part of x" or "x starts with m".
Let f : : Zp ~ K. The (first) difference quotient : ~2Zp ~ K is defined by

= 
, where ~2Zp = Z P x Zp t {(x, x) [ x E . f is called con-

tinuously differentiable (or strictly differentiable, or uniformly differentiable) at a E Zp if
lim y) exists. We will also say that f is C1 at a. In a similar way, we may define

(x,y)~(a,a)

Cn-functions as follows : for n E N, we define ~n+1ZP = {(x1, ..., E Zn+1p | x; ~ xj
if i ~ j } and the n-th difference quotient by 03C60f = f and

03C6nf(x1,x2,...,xn+1) = 
03C6n- 1 f(x 2 , x 3 ,... , xn+1)-03C6n-1f(x 1 , x3 , ... , xn+ 1) x2 - x1

. A function f is called a C~-function if can be extended to a continuous function

03C6nf on . Recall from [4],[5] that x, ..., x) _ -- n. r -, 
for all x E Zp. The set

of all Cn-functions from Zp to K will be denoted by Cn(Zp --~ h’). For any Cn-function
f, , we define ~f~n = | o  j _ n} where ~ . ~s is the sup norm. (For
f : X ~ K, ~f~s = maxx~X|f(x)|) ~ . ~n is a norm on Cn, making Cn into a Banach
space.

2. Generalization of the Mahler base for Qp)
One can construct other orthonormal bases of C(Zp -+ K) by generalizing the proce-

dure used to define the Mahler base as did Y. Amice. In general, we have the following
characterization of the polynomial sequences en E ~i’~x~, n > 0 such that deg(en) = n and
which are orthonormal bases of the space C(B -~ h’), where 
Theorem : Let be a sequence of polynomials in of degree n. They form
an orthonormal base of C( B -+ K ) if and only if ~en~s = 1 and ~en~G = Icoeff x n | =

~~I-(n-9(n))/(q-1) where ~r is a uniformizing parameter of K, q the cardinality of the residue
class field of K and s(n) the sum of the digits of n in base q. By the way, for a polynomial

n

f(x) = ~f~G = maxi~n|ai|.
==0

Given an orthonormal base, we can construct other orthonormal bases by taking a certain
linear combination of the given base as will be stated in the following theorem.
Theorem : Let en(n E N) be an orthonormal base of C(Zp -+ K) and put pn =
n

03A3 an,jej where an,j E h’ and an,n ~ 0. The pn(n E N) form an orthonormal base for
j=o
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C(Zp ~ K) if and only if |an,j|  1 tor all j ~ n and |an,n| = 1.
We can generalize the Mahler base also by changing the degree of the polynomials as
follows.

Theorem : The polynomials = () (n ~ N) form an orthonormal base for
C(Zp ~ Qp) and every continuous function / : : Zp ~ Qp can be written as a uniformly

convergent series /(a:) =  apn ( j
with 

t=o ~ 

~d ~’=1..,!!’= E 

If we mix the Mahler and van der Put base together, we obtain a new orthonormal base.

Theorem : The sequence gn(.r) = ( J N) forms an orthonormal base for

C(Zp 2014~ Qp). Moreover, every continuous function / : : Zp -~ Qp can be written as a

uniformly convergent series = ai() ei(x)
with ai = ai,jf(j)
and 03B1i,i = 1, 03B1i,j = s. (-1)n () () ... ()j=Jbo~l...~n=’ 

" " " / B /

3. Differentiable functions

For Cn-functions the polynomials () (i N) still remain a base, we only have to

add the factor where ~ = z - z- and [of] denotes the integer part of ~,

to obtain the orthonormal base 7t~[,/2]’"~[t/n] ( 7 )’ The proof is based on the following
lemma in case n = 2.
Lemma Let / be a continuous function with interpolation coefficients an. Then / is a

C2-function if and only if |ai+j+k+2 (k+1)(j+k+2) | ~ 0 as i + j + k approach infinity.
Corollary If f is a C2-function, then ~03C62f~s = supn|an 03B3n03B3[n/2] |
A similar property does not hold for the van der Put base.
In case n = 1, we know that { 7,e.(:r) j t N } U {(~ - x 6 N } is an orthonormal
base for C1(Zp ~ K). Therefore every continuously differentiable function f can be written
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under the form f(x) = 03A3anen(x)+03A3bn(x-n)en(x) where afl = f (0), an = f (n)- f (n_)-
(n - n-). f’(n-), bo = f’(o) and bn = f’(n) - f’{n_). For details we refer to [6].
The case n = 2, can be treated as follows.

Theorem : Let f(x) = anen(x) + bn(x - n)en(x) E C1(Zp - K).
n=0 n=0

f E C2(Zp -+ ~) if and only if lim an and lim bn exist for all a E Zp, and lim bn =n~a 03B32n n~a 03B3n n~a 03B3n
an 03B32n

Theorem : - n)en(x), {x - n is an orthonormal base

for K) and for every f E C2(Zp ~ h’) we have

f(x) =  anen(x) +  bn(x - n)en{x) + cn 
x _ n)z 

en(x) with
n=0 n=0 n=0 "

aa = f(0)

an = f {n_) - (n -- n_). f (n_) - (n - 2 n-)2 f n {n_) for n ~ 0

b0 = f’(0)
bn = f’(n) - f’(n-) -- (n - n_), f"(n_) for n ~ 0
c0 = f"(0)

cn = f"(n) - f"(n_) for n ~ 0
The construction of this orthonormal base, which is very technical, is based on the use
of an antiderivation map Pn : ~ K) ~ Cn(Zp ~ K) defined by Pnf(x) =

f(j)(xm) (j+1)! (xm+1 - xm)j+1 with xm = ajpj if x =  ajpj and on the two

following lemmas.
Lemma : For (tI, ..., tk) E ~kX = {(x1, x2, ..., xk)|xi ~ xj if i ~ j} with tl = = y

and t k = z, we have

03C62f(x,y,z) = j03C62f(tj-1tj,tj+1) with j = {(tj+1 - tj - 1)(tj - tk) (z-x)(y-z) for j ~ i(tj+1 - tj - 1)(tj - t1) (z - x)(y - x) for j ~ i
k-1

Moreover, = 1

j=2

Lemma : Let S be a ball in K and f E C(Zp -; h’).
Suppose that ~2 f (n, n - bn, n + pk6n) E S for all n E No, then ~2 f (x, y, z) E S for’

4. Several variables
We can also construct the Mahler and van der Put base for functions of several vari-

ables. This brings us to the following results.
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Theorem : The family max{03B3n, 03B3m}. x . y (n, m ~ N) forms an orthonormal

base for C1(Zp  Zp ~ K).
The proof is based on

Theorem : : f(x, y) = an,m 
x y is a C1-function if and only if ~ 0

n,m ) ~ -f- ~

and |ai,j+k+1 k+1| ~ 0 as i+ j+k approach infinity or equivalently ~ 0 and ~ 0

as n + m approach infinity.
Starting with the van der Put base en(n E N) of C’(Zp -~ h’), we get
Theorem : The family en(x)em(y), (x - n)en(x)em(y), (y - m)en(x)em(y)

(n, mEN) forms an orthogonal base for Cl(Zp x Zp ~ K ) and every C1-function f can

be written as f (x, y) = ai,jei(x)ej(y) + - -ci,j(y - j)ei(x)ej(y)

with

a0,0 = f(0, 0)

an,0 = f(n,0) - f(n-,0) - 03B3n~f ~x(n_,0) for n ~ 0

a0,m 
= f( 0,m ) - f( 0,m_ ) - 03B3m~f ~y(0,m_) for m ~ 0a0,m = f(0,m) - f(0,m_) - 03B3m~f~y(0,m_) for m ~ 0

an,m = f(n, m) - f(n_, m) - f(n, m_) + f(n_, m_) - 03B3n (~f ~x(n_, m) - ~f ~x(n_,m_))
-03B3m (~f ~y(n, m_) - ~f ~y(n_, m_)) for n ~ 0 and m ~ 0

b0,0 = 
~f ~x

(0,0)

bn,0 = ~f ~x (n,0) - ~f ~x(n_, 0) for n ~ 0

b0,m = ~f ~x(0,m) - ~f ~x(0,m_) for m ~ 0

bn,m = 

~f ~x (
n, m) - ~f ~x

_ m - ~f ~x(n,m_) + afbn,m = ~f ~x(n,m) - ~f ~x n_,m) - ~f ~x(n,m_) + ~f ~x(n_,m_) for n ~ 0 and m # 0

c0,0 = ~f ~y(0,0)
cn,0 

= ~f ~y( n,0) - ~f ~y(n_,0) for n ~ 0
c0,m = ~f ~y( 0, m) - ~f ~y( 0, m_) for m ~ 0

a (n, m} -- -(n_, m) - -(n, m_) + (n_, m_) for n ~ 0 and m ~ 0

Remark : To obtain an orthonormal base, the e,(;r)ej(!/) should be multiplied by
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; the ( x - by max 1 ! 1 ~ y~ } in case i ~ 0 and by ’Y~ in case(p03B3i p03B3i)
i = 0 and analogous for (y -- j)ei(x)ej(y).
Generalization: The sequence (x -- i) k( y - with 0  k + 1  n,i E N
and j E N forms an orthogonal base for Cn(Zp x Zp ~ K) whereby every Cn-function f

can be written as f(x,y) = 0o ak,li,j(x-i)k k! (y-j)l l! ei(x)ej(y) with
k ‘ 
_ 

n-k ‘ 

~k+l+03B1f ~xk+03B1~yl(i_,j)03B303B1i 03B1! - ~k+l+03B2f ~xk~yl+03B2(i,j_)03B303B2j 03B2!+ax ay a=o 
ax ay a. 

~~Q 
ex ay ~ a! .

~k+l+03B1+03B2f ~xk+03B1~yl+03B2 (i_,j_)03B303B1i03B303B2j 03B1!03B2! for i ~ 0 and j ~ 0

k I 
_ 

~k+lf 
n’k ‘ ~k+l+03B1 f 03B303B1i

- - ~ k+a ‘(i_, o) ~ for i ~ 0ax ay a=o 
ax ay a.

ak,l0,j = ~k+lf ~xk~yl(0,j) - 

~k+l+03B2f ~xk~yl+03B2(0,j_)03B303B2j 03B2! 

for j ~ 0

~k+lfand = ax ka y ‘(o, o)
The previous theorems show that Cn(Zp x Zp --> h’) is not the complete tensor product of
Cn(Zp --. h’) with Cn(Zp ~ h’) as one may expect, considering the case x Zp ~ K).
Therefore we define a finer structure for functions of two variables.
Definition:

03C60,0f(x0, y0) = f(x0, yo)

03C61,0f(x0, x1, y0) _ 
f(x0, y0) - f(x1, y0) x0 - x1 f o r x o ~ x I

yo, y ) - 
f(x0, y0) - f(x0, y1) y0 - y1 for y0 ~ yl

03C6i,jf(x0, x1, ..., xi, y0, y1, ..., yj)

= 
03C6i-1,jf(x0, ..., x=i-2, x=i-1 , y0, ..., yj) - 03C6i-1,jf(x0, ..., xj_2, xi, y0, ..., yj) xi-1 - xi

= 
03C6i,j-1 f ..., xp y0, ..., yj-2, yj-1) "’ f (x0, ..., xi, y0, ..., yj-2, yj)

yj - I - yj .

for (x0, x1, ..., yo, yl, ..., yj) E ~i+1Zp x ~j+1Zp is the differencequotient of order i in

the first variable and order j in the second variable of the function f from Z~ x Zp to I~.
Definition: f : Zp x Zp --r K is m times strictly differentiable in his first variable and
n times strictly differentiable in his second variable (for short: a Cm,n-function) if and
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only if can be extended to a continuous function on ZF +~+Z. The set of all
Cm,n-functions f : Zp x Zp ~ K is denoted Cm,n(Zp x Zp --> K). For f : Zp x Zp ~ K,
set 

For these functions, we get the following equivalent of the Mahler base.

Theorem : The family ~=~y[=~2~...~~~=~mj~~~(~/2j...~y(Jlnj (i,j E (V) forms an

orthonormal base for Cm’"(Zp x lp --~ K)
Since it can be easily seen that there is an isometry between the complete tensor product
Cm(Zp ~ K)Cn(Zp ~ K) and Cm,n(Zp x Zp ~ h’), the van der Put base for Cm,n-
functions is given as follows.
Theorem : The family 03B3m-ki(x - i)k03B3n-lj(y - j)lei(x)ej(y) with 0  k  m, 0  t  n,
i E N and j E N forms an orthonormal base for x Zp ~ K) whereby every Cm,n-

function f can be written as = ak,li,j(x-i)k k! (y-j)l l! ei(x)ej(y) with

ak,li,j = ~k+lf ~xk~yl(i,j) -  ~k+l+03B1f ~xk+03B1~yl(i_,j) 03B303B1i 03B1! -  ~k+l+03B2f ~xk~yl+03B2(i,j_ )03B303B2j 03B2!
a=a  ~k+l+03B1+03B2f ~xk+03B1~yl+03B2(i_,j_)03B303B1i03B303B2j 03B1!03B2! for i ~ 0 and j ~ 0 .

ak,li,0 = ~k+lf ~xk~yl(i,0) -  ~k+l+03B1f ~xk+03B1~yl(i_,0)03B303B1i 03B1! for i ~ 0

ak,l0,j = ~k+lf ~xk~yl(0,j) -  ~k+l+03B2f ~xk~yl+03B2(0,j_)03B303B2j 03B2! for j ~ 0
and ak,l0,0 = ~k+lf ~xk~ul(0,0)
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