Annales mathématiques Blaise Pascal

Stany De Smedt
 Orthonormal bases for p-adic continuous and continuously differentiable functions

Annales mathématiques Blaise Pascal, tome 2, no 1 (1995), p. 275-282
http://www.numdam.org/item?id=AMBP_1995__2_1_275_0
© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

ORTHONORMAL BASES FOR P-ADIC CONTINUOUS AND

CONTINUOUSLY DIFFERENTIABLE FUNCTIONS

Stany De Smedt

Abstract. In this paper we adapt the well-known Mahler and van der Put base of the Banach space of continuous functions to the case of the n-times continuously differentiable functions in one and several variables.

1991 Mathematics subject classification : 46 S10

1. Introduction

Let K be an algebraic extension of \mathbb{Q}_{p}, the field of p -adic numbers. As usual, we write \mathbf{Z}_{p} for the ring of p -adic integers and $C\left(\mathbf{Z}_{p} \rightarrow K\right)$ for the Banach space of continuous functions from \mathbf{Z}_{p} to K. We have the following well-known bases for $C\left(\mathbf{Z}_{p} \rightarrow K\right)$: on one hand, we have the Mahler base $\binom{x}{n}(n \in \mathbf{N})$, consisting of polynomials of degree n and on the other hand we have the van der Put base $\left\{e_{n} \mid n \in \mathbf{N}\right\}$ consisting of locally constant functions e_{n} defined as follows : $e_{0}(x)=1$ and for $n>0, e_{n}$ is the characteristic function of the ball $\left\{\alpha \in \mathbf{Z}_{p}| | \alpha-n \mid<1 / n\right\}$. For every $\mathrm{f} \in C\left(\mathbf{Z}_{p} \rightarrow K\right)$ we have the following uniformly convergent series

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n} \text { where } a_{n}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} f(j) \\
& f(x)=\sum_{n=0}^{\infty} b_{n} e_{n}(x) \text { where } b_{0}=f(0) \text { and } b_{n}=f(n)-f\left(n_{-}\right) .
\end{aligned}
$$

Here n_{-}is defined as follows. For every $n \in \mathcal{N}_{0}$, we have a Hensel expansion $n=n_{0}+$ $n_{1} p+\ldots+n_{s} p^{s}$ with $n_{s} \neq 0$. Then $n_{-}=n_{0}+n_{1} p+\ldots+n_{s-1} p^{s-1}$. We further put

$$
\gamma_{0}=1, \gamma_{n}=n-n_{-}=n_{s} p^{s}, \delta_{0}=1, \delta_{n}=p^{s} \text { and } n_{\sim}=n-\delta_{n} . \text { Remark that }\left|\delta_{n}\right|=\left|\gamma_{n}\right|
$$

In the sequel, we will also use the following notation, for $m, x \in \mathbf{Q}_{p}, x=\sum_{j=-\infty}^{\infty} a_{j} p^{j}: m \triangleleft x$ if $m=\sum_{j=-\infty}^{i} a_{j} p^{j}$ for some $i \in \mathbf{Z}$. We sometimes refer to the relation \triangleleft between m and x as " m is an initial part of x " or " x starts with m ".

Let $f: \mathbf{Z}_{p} \rightarrow K$. The (first) difference quotient $\phi_{1} f: \nabla^{2} \mathbf{Z}_{p} \rightarrow K$ is defined by $\phi_{1} f(x, y)=\frac{f(y)-f(x)}{y-x}$, where $\nabla^{2} \mathbf{Z}_{p}=\mathbf{Z}_{p} \times \mathbf{Z}_{p} \backslash\left\{(x, x) \mid x \in \mathbf{Z}_{p}\right\} . \mathrm{f}$ is called continuously differentiable (or strictly differentiable, or uniformly differentiable) at $a \in \mathbf{Z}_{p}$ if $\lim _{(x, y) \rightarrow(a, a)} \phi_{1} f(x, y)$ exists. We will also say that f is C^{1} at a. In a similar way, we may define C^{n}-functions as follows : for $n \in \mathbf{N}$, we define $\nabla^{n+1} \mathbf{Z}_{p}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbf{Z}_{p}^{n+1} \mid x_{i} \neq x_{j}\right.$ if $i \neq j\}$ and the n-th difference quotient $\phi_{n} f: \nabla^{n+1} \mathbf{Z}_{p} \rightarrow K$ by $\phi_{0} f=f$ and

$$
\phi_{n} f\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=\frac{\phi_{n-1} f\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)-\phi_{n-1} f\left(x_{1}, x_{3}, \ldots, x_{n+1}\right)}{x_{2}-x_{1}}
$$

. A function f is called a C^{n}-function if $\phi_{n} f$ can be extended to a continuous function $\overline{\phi_{n} f}$ on \mathbf{Z}_{p}^{n+1}. Recall from [4],[5] that $\overline{\phi_{n} f}(x, x, \ldots, x)=\frac{f^{(n)}(x)}{n!}$, for all $x \in \mathbf{Z}_{p}$. The set of all C^{n}-functions from \mathbf{Z}_{p} to K will be denoted by $C^{n}\left(\mathbf{Z}_{p} \rightarrow K\right)$. For any C^{n}-function f, we define $\|f\|_{n}=\max \left\{\left\|\phi_{j} f\right\|_{s} \mid 0 \leq j \leq n\right\}$ where $\|\cdot\|_{s}$ is the sup norm. (For $\left.f: X \rightarrow K,\|f\|_{s}=\max _{x \in X}|f(x)|\right)\|\cdot\|_{n}$ is a norm on C^{n}, making C^{n} into a Banach space.

2. Generalization of the Mahler base for $C\left(\mathbf{Z}_{p} \rightarrow \mathbb{Q}_{p}\right)$

One can construct other orthonormal bases of $C\left(\mathbf{Z}_{p} \rightarrow K\right)$ by generalizing the procedure used to define the Mahler base as did Y. Amice. In general, we have the following characterization of the polynomial sequences $e_{n} \in K[x], n \geq 0$ such that $\operatorname{deg}\left(e_{n}\right)=n$ and which are orthonormal bases of the space $C(B \rightarrow K)$, where $B=\{x \in K| | x \mid \leq 1\}$.
Theorem : Let $\left(e_{n}\right)_{n \geq 0}$ be a sequence of polynomials in $K[x]$ of degree n . They form an orthonormal base of $\bar{C}(B \rightarrow K)$ if and only if $\left\|e_{n}\right\|_{s}=1$ and $\left\|e_{n}\right\|_{G}=\mid$ coeff $x^{n} \mid=$ $|\pi|^{-(n-s(n)) /(q-1)}$ where π is a uniformizing parameter of K, q the cardinality of the residue class field of K and $s(n)$ the sum of the digits of n in base q. By the way, for a polynomial $f(x)=\sum_{i=0}^{n} a_{i} x^{i},\|f\|_{G}=\max x_{i \leq n}\left|a_{i}\right|$.
Given an orthonormal base, we can construct other orthonormal bases by taking a certain linear combination of the given base as will be stated in the following theorem.
Theorem : Let $e_{n}(n \in \mathbb{N})$ be an orthonormal base of $C\left(\mathbb{Z}_{p} \rightarrow K\right)$ and put $p_{n}=$ $\sum_{j=0}^{n} a_{n, j} e_{j}$ where $a_{n, j} \in K$ and $a_{n, n} \neq 0$. The $p_{n}(n \in \mathbf{N})$ form an orthonormal base for
$C\left(\mathbf{Z}_{p} \rightarrow K\right)$ if and only if $\left|a_{n, j}\right| \leq 1$ for all $j \leq n$ and $\left|a_{n, n}\right|=1$.
We can generalize the Mahler base also by changing the degree of the polynomials as follows.
Theorem : The polynomials $q_{n}(x)=\binom{p x}{p n}(n \in \mathbf{N})$ form an orthonormal base for $C\left(\mathbf{Z}_{p} \rightarrow \mathbb{Q}_{p}\right)$ and every continuous function $f: \mathbf{Z}_{p} \rightarrow \mathbb{Q}_{p}$ can be written as a uniformly convergent series $f(x)=\sum_{n=0}^{\infty} a_{p n}\binom{p x}{p n}$
with $\quad a_{p n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{p n}{p k} \alpha_{n-k}^{(p)} f(k)$
and $\quad \alpha_{0}^{(p)}=1, \alpha_{m}^{(p)}=\sum_{\substack{l_{1} \ldots l_{r} \\ 1 \leq l_{i} \leq m \\ \Sigma l_{i} \leq m}}(-1)^{r+m}\binom{p m}{p l_{1} \ldots p l_{r}}$
If we mix the Mahler and van der Put base together, we obtain a new orthonormal base. Theorem : The sequence $q_{n}(x)=\binom{x}{n} . e_{n}(x)(n \in \mathbf{N})$ forms an orthonormal base for $C\left(\mathbf{Z}_{p} \rightarrow \mathbb{Q}_{p}\right)$. Moreover, every continuous function $f: \mathbf{Z}_{p} \rightarrow \mathbb{Q}_{p}$ can be written as a uniformly convergent series $f(x)=\sum_{i=0}^{\infty} a_{i}\binom{x}{i} e_{i}(x)$
with $\quad a_{i}=\sum_{j \triangleleft i} \alpha_{i, j} f(j)$
and $\quad \alpha_{i, i}=1, \alpha_{i, j}=\sum_{j=k_{0} \triangleleft k_{1} \triangleleft \ldots \triangleleft k_{n}=i}(-1)^{n}\binom{i}{k_{n-1}}\binom{k_{n-1}}{k_{n-2}} \ldots\binom{k_{1}}{j}$

3. Differentiable functions

For C^{n}-functions the polynomials $\binom{x}{i}(i \in \mathbf{N})$ still remain a base, we only have to add the factor $\gamma_{i} \gamma_{[i / 2]} \ldots \gamma_{[i / n]}$ where $\gamma_{i}=i-i_{-}$and $[\alpha]$ denotes the integer part of α, to obtain the orthonormal base $\gamma_{i} \gamma_{[i / 2]} \ldots \gamma_{[i / n]}\binom{x}{i}$. The proof is based on the following lemma in case $n=2$.
Lemma Let f be a continuous function with interpolation coefficients a_{n}. Then f is a C^{2}-function if and only if $\left|\frac{a_{i+j+k+2}}{(k+1)(j+k+2)}\right| \rightarrow 0$ as $i+j+k$ approach infinity.
Corollary If f is a C^{2}-function, then $\left\|\phi_{2} f\right\|_{s}=\sup _{n}\left|\frac{a_{n}}{\gamma_{n} \gamma_{[n / 2]}}\right|$
A similar property does not hold for the van der Put base.
In case $\mathrm{n}=1$, we know that $\left\{\gamma_{i} e_{i}(x) \mid i \in \mathbf{N}\right\} \cup\left\{(x-i) . e_{i}(x) \mid i \in \mathbf{N}\right\}$ is an orthonormal base for $C^{\mathbf{1}}\left(\mathbf{Z}_{p} \rightarrow K\right)$. Therefore every continuously differentiable function f can be written
under the form $f(x)=\sum a_{n} e_{n}(x)+\sum b_{n}(x-n) e_{n}(x)$ where $a_{0}=f(0), a_{n}=f(n)-f\left(n_{-}\right)-$ $\left(n-n_{-}\right) \cdot f^{\prime}\left(n_{-}\right), b_{0}=f^{\prime}(0)$ and $b_{n}=f^{\prime}(n)-f^{\prime}\left(n_{-}\right)$. For details we refer to [6].
The case $\mathrm{n}=2$, can be treated as follows.
Theorem : Let $f(x)=\sum_{n=0}^{\infty} a_{n} e_{n}(x)+\sum_{n=0}^{\infty} b_{n}(x-n) e_{n}(x) \in C^{1}\left(\mathbf{Z}_{p} \rightarrow K\right)$.
$f \in C^{2}\left(\mathbf{Z}_{p} \rightarrow K\right)$ if and only if $\lim _{n \rightarrow a} \frac{a_{n}}{\gamma_{n}^{2}}$ and $\lim _{n \rightarrow a} \frac{b_{n}}{\gamma_{n}}$ exist for all $a \in \mathbf{Z}_{p}$, and $\lim _{n \rightarrow a} \frac{b_{n}}{\gamma_{n}}=$ $2 \lim _{n \rightarrow a} \frac{a_{n}}{\gamma_{n}^{2}}$
Theorem : $\quad\left\{\gamma_{n}^{2} e_{n}(x), \gamma_{n}(x-n) e_{n}(x),(x-n)^{2} e_{n}(x) \mid n \in \mathbf{N}\right\}$ is an orthonormal base for $C^{2}\left(\mathbf{Z}_{p} \rightarrow K\right)$ and for every $f \in C^{2}\left(\mathbf{Z}_{p} \rightarrow K\right)$ we have

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} e_{n}(x)+\sum_{n=0}^{\infty} b_{n}(x-n) e_{n}(x)+\sum_{n=0}^{\infty} c_{n} \frac{(x-n)^{2}}{2} e_{n}(x) \text { with } \\
a_{0} & =f(0) \\
a_{n} & =f(n)-f\left(n_{-}\right)-\left(n-n_{-}\right) \cdot f^{\prime}\left(n_{-}\right)-\frac{\left(n-n_{-}\right)^{2}}{2} f^{\prime \prime}\left(n_{-}\right) \quad \text { for } n \neq 0 \\
b_{0} & =f^{\prime}(0) \\
b_{n} & =f^{\prime}(n)-f^{\prime}\left(n_{-}\right)-\left(n-n_{-}\right) \cdot f^{\prime \prime}\left(n_{-}\right) \quad \text { for } n \neq 0 \\
c_{0} & =f^{\prime \prime}(0) \\
c_{n} & =f^{\prime \prime}(n)-f^{\prime \prime}\left(n_{-}\right) \quad \text { for } n \neq 0
\end{aligned}
$$

The construction of this orthonormal base, which is very technical, is based on the use of an antiderivation map $P_{n}: C^{n-1}\left(\mathbf{Z}_{p} \rightarrow K\right) \rightarrow C^{n}\left(\mathbf{Z}_{p} \rightarrow K\right)$ defined by $P_{n} f(x)=$ $\sum_{m=0}^{\infty} \sum_{j=0}^{n-1} \frac{f^{(j)}\left(x_{m}\right)}{(j+1)!}\left(x_{m+1}-x_{m}\right)^{j+1}$ with $x_{m}=\sum_{j=-\infty}^{m} a_{j} p^{j}$ if $x=\sum_{j=-\infty}^{+\infty} a_{j} p^{j}$ and on the two following lemmas.
Lemma: For $\left(t_{1}, \ldots, t_{k}\right) \in \nabla^{k} X=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mid x_{i} \neq x_{j}\right.$ if $\left.i \neq j\right\}$ with $t_{1}=x, t_{i}=y$ and $t_{k}=z$, we have
$\phi_{2} f(x, y, z)=\sum_{j=2}^{k-1} \mu_{j} \phi_{2} f\left(t_{j-1} t_{j}, t_{j+1}\right)$ with $\mu_{j}= \begin{cases}\frac{\left(t_{j+1}-t_{j}\right)\left(t_{j}-t_{k}\right)}{(z-x)(y-z)} & \text { for } j \geq i \\ \frac{\left(t_{j+1}-t_{j-1}\right)\left(t_{j-1}\right)}{(z-x)(y-x)} & \text { for } j \leq i\end{cases}$
Moreover, $\sum_{j=2}^{k-1} \mu_{j}=1$
Lemma : Let S be a ball in K and $f \in C\left(\mathbf{Z}_{p} \rightarrow K\right)$.
Suppose that $\phi_{2} f\left(n, n-\delta_{n}, n+p^{k} \delta_{n}\right) \in S$ for all $n \in \mathbf{N}_{0}, k \in \mathbf{N}$, then $\phi_{2} f(x, y, z) \in S$ for all $x, y, z \in \mathbf{Z}_{p}, x \neq y, x \neq z, y \neq z$

4. Several variables

We can also construct the Mahler and van der Put base for functions of several variables. This brings us to the following results.

Theorem : The family $\max \left\{\gamma_{n}, \gamma_{m}\right\} \cdot\binom{x}{n} \cdot\binom{y}{m}(n, m \in \mathbf{N})$ forms an orthonormal base for $C^{1}\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K\right)$.
The proof is based on
Theorem : $\quad f(x, y)=\sum_{n, m} a_{n, m}\binom{x}{n}\binom{y}{m}$ is a C^{1}-function if and only if $\left|\frac{a_{i+j+1, k}}{j+1}\right| \rightarrow 0$ and $\left|\frac{a_{i, j+k+1}}{k+1}\right| \rightarrow 0$ as $i+j+k$ approach infinity or equivalently $\left|\frac{a_{n, m}}{\gamma_{n}}\right| \rightarrow 0$ and $\left|\frac{a_{n, m}}{\gamma_{m}}\right| \rightarrow 0$ as $n+m$ approach infinity.
Starting with the van der Put base $e_{n}(n \in \mathbf{N})$ of $C\left(\mathbf{Z}_{p} \rightarrow K\right)$, we get
Theorem : The family $e_{n}(x) e_{m}(y),(x-n) e_{n}(x) e_{m}(y),(y-m) e_{n}(x) e_{m}(y)$
($n, m \in \mathbf{N}$) forms an orthogonal base for $C^{1}\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K\right)$ and every C^{1}-function f can be written as $f(x, y)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i, j} e_{i}(x) e_{j}(y)+b_{i, j}(x-i) e_{i}(x) e_{j}(y)+c_{i, j}(y-j) e_{i}(x) e_{j}(y)$ with

$$
\begin{aligned}
& a_{0,0}= f(0,0) \\
& a_{n, 0}= f(n, 0)-f\left(n_{-}, 0\right)-\gamma_{n} \frac{\partial f}{\partial x}\left(n_{-}, 0\right) \quad \text { for } n \neq 0 \\
& a_{0, m}= f(0, m)-f\left(0, m_{-}\right)-\gamma_{m} \frac{\partial f}{\partial y}\left(0, m_{-}\right) \quad \text { for } m \neq 0 \\
& a_{n, m}=f(n, m)-f\left(n_{-}, m\right)-f\left(n, m_{-}\right)+f\left(n_{-}, m_{-}\right)-\gamma_{n}\left(\frac{\partial f}{\partial x}\left(n_{-}, m\right)-\frac{\partial f}{\partial x}\left(n_{-}, m_{-}\right)\right) \\
&-\gamma_{m}\left(\frac{\partial f}{\partial y}\left(n, m_{-}\right)-\frac{\partial f}{\partial y}\left(n_{-}, m_{-}\right)\right) \quad \text { for } n \neq 0 \text { and } m \neq 0 \\
& b_{0,0}= \frac{\partial f}{\partial x}(0,0) \\
& b_{n, 0}= \frac{\partial f}{\partial x}(n, 0)-\frac{\partial f}{\partial x}\left(n_{-}, 0\right) \quad \text { for } n \neq 0 \\
& b_{0, m}= \frac{\partial f}{\partial x}(0, m)-\frac{\partial f}{\partial x}\left(0, m_{-}\right) \quad \text { for } m \neq 0 \\
& b_{n, m}=\frac{\partial f}{\partial x}(n, m)-\frac{\partial f}{\partial x}\left(n_{-}, m\right)-\frac{\partial f}{\partial x}\left(n, m_{-}\right)+\frac{\partial f}{\partial x}\left(n_{-}, m_{-}\right) \quad \text { for } n \neq 0 \text { and } m \neq 0 \\
& c_{0,0}= \frac{\partial f}{\partial y}(0,0) \quad \text { for } n \neq 0 \\
& c_{n, 0}=\frac{\partial f}{\partial y}(n, 0)-\frac{\partial f}{\partial y}\left(n_{-}, 0\right) \quad \text { for } m \neq 0 \quad \\
& c_{0, m}= \frac{\partial f}{\partial y}(0, m)-\frac{\partial f}{\partial y}\left(0, m_{-}\right) \quad \\
& c_{n, m}=\frac{\partial f}{\partial y}(n, m)-\frac{\partial f}{\partial y}\left(n_{-}, m\right)-\frac{\partial f}{\partial y}\left(n, m_{-}\right)+\frac{\partial f}{\partial y}\left(n_{-}, m_{-}\right) \quad \text { for } n \neq 0 \text { and } m \neq 0
\end{aligned}
$$

Remark : To obtain an orthonormal base, the $e_{i}(x) e_{j}(y)$ should be multiplied by
$\max \left\{\gamma_{i}, \gamma_{j}\right\}$; the $(x-i) e_{i}(x) e_{j}(y)$ by $\max \left\{\frac{1}{p \gamma_{i}}, 1, \frac{\gamma_{j}}{p \gamma_{i}}\right\}$ in case $i \neq 0$ and by γ_{j} in case $i=0$ and analogous for $(y-j) e_{i}(x) e_{j}(y)$.
Generalization : The sequence $(x-i)^{k}(y-j)^{l} e_{i}(x) e_{j}(y)$ with $0 \leq k+l \leq n, i \in \mathbf{N}$ and $j \in \mathbf{N}$ forms an orthogonal base for $C^{n}\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K\right)$ whereby every C^{n}-function f can be written as $f(x, y)=\sum_{i, j=0}^{\infty} \sum_{k+l=0}^{n} a_{i, j}^{k, l} \frac{(x-i)^{k}}{k!} \frac{(y-j)^{l}}{l!} e_{i}(x) e_{j}(y)$ with

$$
\begin{aligned}
a_{i, j}^{k, l}= & \frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(i, j)-\sum_{\alpha=0}^{n-k-l} \frac{\partial^{k+l+\alpha} f}{\partial x^{k+\alpha} \partial y^{l}}\left(i_{-}, j\right) \frac{\gamma_{i}^{\alpha}}{\alpha!}-\sum_{\beta=0}^{n-k-l} \frac{\partial^{k+l+\beta} f}{\partial x^{k} \partial y^{l+\beta}}(i, j-) \frac{\gamma_{j}^{\beta}}{\beta!}+ \\
& \sum_{\alpha+\beta=0}^{n-k-l} \frac{\partial^{k+l+\alpha+\beta} f}{\partial x^{k+\alpha} \partial y^{l+\beta}}\left(i_{-}, j-\right) \frac{\gamma_{i}^{\alpha} \gamma_{j}^{\beta}}{\alpha!\beta!} \quad \text { for } i \neq 0 \text { and } j \neq 0 \\
a_{i, 0}^{k, l}= & \frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(i, 0)-\sum_{\alpha=0}^{n-k-l} \frac{\partial^{k+l+\alpha} f}{\partial x^{k+\alpha} \partial y^{l}}\left(i_{-}, 0\right) \frac{\gamma_{i}^{\alpha}}{\alpha!} \quad \text { for } i \neq 0 \\
a_{0, j}^{k, l}= & \frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(0, j)-\sum_{\beta=0}^{n-k-l} \frac{\partial^{k+l+\beta} f}{\partial x^{k} \partial y^{l+\beta}}(0, j-) \frac{\gamma_{j}^{\beta}}{\beta!} \quad \text { for } j \neq 0
\end{aligned}
$$

and $a_{0,0}^{k, l}=\frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(0,0)$
The previous theorems show that $C^{n}\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K\right)$ is not the complete tensor product of $C^{n}\left(\mathbf{Z}_{p} \rightarrow K\right)$ with $C^{n}\left(\mathbf{Z}_{p} \rightarrow K\right)$ as one may expect, considering the case $C\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K\right)$. Therefore we define a finer structure for functions of two variables.

Definition :

$$
\begin{aligned}
& \phi_{0,0} f\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right) \\
& \phi_{1,0} f\left(x_{0}, x_{1}, y_{0}\right)=\frac{f\left(x_{0}, y_{0}\right)-f\left(x_{1}, y_{0}\right)}{x_{0}-x_{1}} \quad \text { for } x_{0} \neq x_{1} \\
& \phi_{0,1} f\left(x_{0}, y_{0}, y_{1}\right)=\frac{f\left(x_{0}, y_{0}\right)-f\left(x_{0}, y_{1}\right)}{y_{0}-y_{1}} \quad \text { for } y_{0} \neq y_{1} \\
& \vdots \\
& \phi_{i, j} f\left(x_{0}, x_{1}, \ldots, x_{i}, y_{0}, y_{1}, \ldots, y_{j}\right) \\
& \quad=\frac{\phi_{i-1, j} f\left(x_{0}, \ldots, x_{i-2}, x_{i-1}, y_{0}, \ldots, y_{j}\right)-\phi_{i-1, j} f\left(x_{0}, \ldots, x_{i-2}, x_{i}, y_{0}, \ldots, y_{j}\right)}{x_{i-1}-x_{i}} \\
& \quad=\frac{\phi_{i, j-1} f\left(x_{0}, \ldots, x_{i}, y_{0}, \ldots, y_{j-2}, y_{j-1}\right)-\phi_{i, j-1} f\left(x_{0}, \ldots, x_{i}, y_{0}, \ldots, y_{j-2}, y_{j}\right)}{y_{j-1}-y_{j}}
\end{aligned}
$$

for $\left(x_{0}, x_{1}, \ldots, x_{i}, y_{0}, y_{1}, \ldots, y_{j}\right) \in \nabla^{i+1} \mathbf{Z}_{p} \times \nabla^{j+1} \mathbf{Z}_{p}$ is the differencequotient of order i in the first variable and order j in the second variable of the function f from $\mathbf{Z}_{p} \times \mathbf{Z}_{p}$ to K. Definition : $\quad f: \mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K$ is m times strictly differentiable in his first variable and n times strictly differentiable in his second variable (for short : a $C^{m, n}$-function) if and
only if $\phi_{m, n} f$ can be extended to a continuous function $\overline{\phi_{m, n} f}$ on \mathbf{Z}_{p}^{m+n+2}. The set of all $C^{m, n}$-functions $f: \mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K$ is denoted $C^{m, n}\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K\right)$. For $f: \mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K$, set $\|f\|_{m, n}=\max \underset{\substack{0 \leq i \leq m \\ 0 \leq j \leq n}}{ }\left\|\phi_{i, j} f\right\|_{s}$.
For these functions, we get the following equivalent of the Mahler base.
Theorem : The family $\gamma_{i} \gamma_{[i / 2]} \ldots \gamma_{[i / m]} \gamma_{j} \gamma_{[j / 2]} \ldots \gamma_{[j / n]}\binom{x}{i}\binom{y}{j}(i, j \in \mathbb{N})$ forms an orthonormal base for $C^{m, n}\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K\right)$
Since it can be easily seen that there is an isometry between the complete tensor product $C^{m}\left(\mathbf{Z}_{p} \rightarrow K\right) \hat{\otimes} C^{n}\left(\mathbf{Z}_{p} \rightarrow K\right)$ and $C^{m, n}\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K\right)$, the van der Put base for $C^{m, n_{-}}$ functions is given as follows.
Theorem : The family $\gamma_{i}^{m-k}(x-i)^{k} \gamma_{j}^{n-l}(y-j)^{l} e_{i}(x) e_{j}(y)$ with $0 \leq k \leq m, 0 \leq l \leq n$, $i \in \mathbf{N}$ and $j \in \mathbf{N}$ forms an orthonormal base for $C^{i n, n}\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p} \rightarrow K\right)$ whereby every $C^{m, n_{-}}$ function f can be written as $f(x, y)=\sum_{i, j=0}^{\infty} \sum_{k=0}^{m} \sum_{l=0}^{n} a_{i, j}^{k, l} \frac{(x-i)^{k}}{k!} \frac{(y-j)^{l}}{l!} e_{i}(x) e_{j}(y)$ with

$$
\begin{aligned}
a_{i, j}^{k, l}= & \frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(i, j)-\sum_{\alpha=0}^{m-k} \frac{\partial^{k+l+\alpha} f}{\partial x^{k+\alpha} \partial y^{l}}\left(i_{-}, j\right) \frac{\gamma_{i}^{\alpha}}{\alpha!}-\sum_{\beta=0}^{n-l} \frac{\partial^{k+l+\beta} f}{\partial x^{k} \partial y^{l+\beta}}(i, j-) \frac{\gamma_{j}^{\beta}}{\beta!} \\
& +\sum_{\alpha=0}^{m-k} \sum_{\beta=0}^{n-l} \frac{\partial^{k+l+\alpha+\beta} f}{\partial x^{k+\alpha} \partial y^{l+\beta}}\left(i_{-}, j_{-}\right) \frac{\gamma_{i}^{\alpha} \gamma_{j}^{\beta}}{\alpha!\beta!} \quad \text { for } i \neq 0 \text { and } j \neq 0 \\
a_{i, 0}^{k, l}= & \frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(i, 0)-\sum_{\alpha=0}^{m-k} \frac{\partial^{k+l+\alpha} f}{\partial x^{k+\alpha} \partial y^{l}}\left(i_{-}, 0\right) \frac{\gamma_{i}^{\alpha}}{\alpha!} \quad \text { for } i \neq 0 \\
a_{0, j}^{k, l}= & \frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(0, j)-\sum_{\beta=0}^{n-l} \frac{\partial^{k+l+\beta} f}{\partial x^{k} \partial y^{l+\beta}}\left(0, j_{-}\right) \frac{\gamma_{j}^{\beta}}{\beta!} \quad \text { for } j \neq 0
\end{aligned}
$$

and $a_{0,0}^{k, l}=\frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(0,0)$

REFERENCES

[1] Y. AMICE, Les nombres p-adiques, Presses Universitaires de France, 1975.
[2] S. DE SMEDT, Some new bases for p-adic continuous functions, Indagationes Mathematicae N.S. 4(1), 1993, p.91-98.
[3] S. DE SMEDT, The van der Put base for C^{n}-functions, Bulletin of the Belgian Mathematical Society $1(1)$, 1994, p.85-98.
[4] S. DE SMEDT, p-adic continuously differentiable functions of several variables, Collectanea Mathematica, To appear.
[5] W.H. SCHIKHOF, Non-Archimedean calculus (Lecture notes), Report 7812, Katholieke Universiteit Nijmegen, 1978.
[6] W.H. SCHIKHOF, Ultrametric Calculus : an introduction to p-adic analysis, Cambridge University Press, 1984.
[7] M. VAN DER PUT, Algèbres de functions continues p-adiques, Thèse Université d'Utrecht, 1967.

Vrije Universiteit Brussel,
Faculteit Toegepaste Wetenschappen,
Pleinlaan 2
B 1050 BRUSSEL,
Belgium

