Annales mathématiques Blaise Pascal

Ann Verdoodt
 The construction of normal bases for the space of continuous functions on V_{q}, with the aid of operators

Annales mathématiques Blaise Pascal, tome 2, $\mathrm{n}^{\circ} 1$ (1995), p. 299-305
http://www.numdam.org/item?id=AMBP_1995__2_1_299_0
© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

THE CONSTRUCTION OF NORMAL BASES FOR THE SPACE OF

CONTINUOUS FUNCTIONS ON V_{q}, WITH THE AID OF OPERATORS

Ann Verdoodt

Abstract

Let a and q be two units of \mathbf{Z}_{p}, q not a root of unity, and let V_{q} be the closure of the set $\left\{a q^{n} \mid n=0,1,2, \ldots\right\}$. K is a non-archimedean valued field, K contains \mathbb{Q}_{p}, and K is complete for the valuation $|\cdot|$, which extends the p-adic valuation. $C\left(V_{q} \rightarrow K\right)$ is the Banach space of continuous functions from V_{q} to K, equipped with the supremum norm. Let \mathcal{E} and D_{q} be the operators on $C\left(V_{q} \rightarrow K\right)$ defined by $(\mathcal{E} f)(x)=f(q x)$ and $\left(D_{q} f\right)(x)=(f(q x)-f(x)) /(x(q-1))$. We will find all linear and continuous operators that commute with \mathcal{E} (resp. with D_{q}), and we use these operators to find normal bases $\left(r_{n}(x)\right)$ for $C\left(V_{q} \rightarrow K\right)$. If f is an element of $C\left(V_{q} \rightarrow K\right)$, then there exist elements α_{n} of K such that $f(x)=\sum_{n=0}^{\infty} \alpha_{n} r_{n}(x)$ where the series on the right-hand-side is uniformly

 convergent. In some cases it is possible to give an expression for the coefficients α_{n}.1991 Mathematics subject classification : $46 S 10$

1. Introduction

Let p be a prime, \mathbf{Z}_{p} the ring of the p-adic integers, \mathbb{Q}_{p} the field of the p-adic numbers. K is a non-archimedean valued field, $K \supset \mathbb{Q}_{p}$, and we suppose that K is complete for the valuation $|\cdot|$, which extends the p-adic valuation. Let a and q be two units of \mathbf{Z}_{p} (i.e. $|a|=|q|=1$), q not a root of unity. Let V_{q} be the closure of the set $\left\{a q^{n} \mid n=0,1,2, \ldots\right\}$. We denote by $C\left(V_{q} \rightarrow K\right)$ (resp. $C\left(\mathbf{Z}_{p} \rightarrow K\right)$) the set of all continuous functions $f: V_{q} \rightarrow K$ (resp. $f: \mathbf{Z}_{p} \rightarrow K$) equipped with the supremum norm. If f is an element of $C\left(V_{q} \rightarrow K\right)$ then we define the operators \mathcal{E} and D_{q} as follows :

$$
(\mathcal{E} f)(x)=f(q x)
$$

$$
\left(D_{q} f\right)(x)=\frac{f(q x)-f(x)}{x(q-1)}
$$

We remark that the operator \mathcal{E} does not commute with D_{q}. Furthermore, the operator D_{q} lowers the degree of a polynomial with one, whereas the operator \mathcal{E} does not.

If \mathcal{L} is a non-archimedean Banach space over a non-archimedean valued field L, and e_{1}, e_{2}, \ldots is a finite or infinite sequence of elements of \mathcal{L}, then we say that this sequence is orthogonal if $\left\|\epsilon_{1} e_{1}+\cdots+\epsilon_{k} e_{k}\right\|=\max \left\{\left\|\epsilon_{i} e_{i}\right\|: i=1, \ldots, k\right\}$ for all k in \mathbf{N} (or for all k that do not exceed the length of the sequence) and for all $\epsilon_{1}, \ldots, \epsilon_{k}$ in L. An orthogonal sequence e_{1}, e_{2}, \cdots is called orthonormal if $\left\|e_{i}\right\|=1$ for all i. A family $\left(e_{i}\right)$ of elements of \mathcal{L} forms a(n) (ortho)normal basis of \mathcal{L} if the family $\left(e_{i}\right)$ is orthonormal and also a basis. We will call a sequence of polynomials $\left(p_{n}(x)\right)$ a polynomial sequence if p_{n} is exactly of degree n for all natural numbers n.

The aim here is to find normal bases for $C\left(V_{q} \rightarrow K\right)$, which consist of polynomial sequences. Therefore we will use linear, continuous operators which commute with D_{q} or with \mathcal{E}. If $\left(r_{n}(x)\right)$ is such a polynomial sequence, and if f is an element of $C\left(V_{q} \rightarrow K\right)$, there exist coefficients α_{n} in K such that $f(x)=\sum_{n=0}^{\infty} \alpha_{n} r_{n}(x)$ where the series on the right-hand-side is uniformly convergent. In some cases it is possible to give an expression for the coefficients α_{n}.

We remark that all the results (with proofs) in this paper can be found in [5] , except for theorem 5 .

2. Notations.

Let V_{q}, K and $C\left(V_{q} \rightarrow K\right)$ be as in the introduction. The supremum norm on $C\left(V_{q} \rightarrow K\right)$ will be denoted by $\|\cdot\|$. We introduce the following :

$$
\begin{aligned}
& A_{0}(x)=1, A_{n}(x)=\left(x-a q^{n-1}\right) A_{n-1}(x)(n \geq 1) \\
& B_{n}(x)=A_{n}(x) / A_{n}\left(a q^{n}\right), C_{n}(x)=a^{n} q^{n(n-1) / 2}(q-1)^{n} B_{n}(x)
\end{aligned}
$$

It is clear that $\left(A_{n}(x)\right),\left(B_{n}(x)\right)$ and $\left(C_{n}(x)\right)$ are polynomial sequences. The sequence ($C_{n}(x)$) forms a basis for $C\left(V_{q} \rightarrow K\right)$ and the sequence $\left(B_{n}(x)\right)$ forms a normal basis for $C\left(V_{q} \rightarrow K\right)$. From this it follows that $\left\|B_{n}\right\|=1$ and $\left\|C_{n}\right\|=\left|(q-1)^{n}\right|$. Let \mathcal{E} and D_{q} be as in the introduction. Then we introduce the following :
Definition. Let f be a function from V_{q} to K. We define the following operators :

$$
\begin{aligned}
& \left(D_{q}^{n} f\right)(x)=\left(D_{q}\left(D_{q}^{n-1} f\right)\right)(x) \\
& \left(\mathcal{E}^{n} f\right)(x)=f\left(q^{n} x\right) \\
& \mathcal{D} f(x)=\mathcal{D}^{(1)} f(x)=f(q x)-f(x)=((\mathcal{E}-1) f)(x) \\
& \mathcal{D}^{(n)} f(x)=\left((\mathcal{E}-1) . .\left(\mathcal{E}-q^{n-1}\right) f\right)(x), \mathcal{D}^{(0)} f(x)=f(x)
\end{aligned}
$$

The operator D_{q} does not commute with \mathcal{D}. The following properties are easily verified :
$D_{q}^{j} C_{k}(x)=C_{k-j}(x)$ ifk $\geq j, D_{q}^{j} C_{k}(x)=0$ if $j>k$. So D_{q}^{j} lowers the degree of a polynomial with j
$\mathcal{D}^{(j)} B_{k}(x)=(x / a)^{j} q^{j(j-k)} B_{k-j}(x)$ if $j \leq k, \mathcal{D}^{(j)} B_{k}(x)=0$ if $j>k$
If $p(x)$ is a polynomial of degree n , then $\left(\mathcal{D}^{(j)} p\right)(x)$ is a polynomial of degree n if n is at least j , and $\left(\mathcal{D}^{(j)} p\right)(x)$ is the zero-polynomial if n is strictly smaller than j .
If f is an element of $C\left(V_{q} \rightarrow K\right)$, then we also have
i) $\left(\mathcal{D}^{(n)} f\right)(x)=x^{n} q^{n(n-1) / 2}(q-1)^{n}\left(D_{q}^{n} f\right)(x)$
ii) $(q-1)^{n} D_{q}^{n} f(x) \rightarrow 0$ uniformly
iii) $\mathcal{D}^{(n)} f(x) \rightarrow 0$ uniformly
(i) can be found in [1] , p. 60 , ii) can be found in [3], p. 124-125, iii) follows from i) and ii)).

3. Linear Continuous Operators which Commute with \mathcal{E} or with D_{q}

Let us start this section with the following known result :
If f is an element of $C\left(\mathbf{Z}_{p} \rightarrow K\right)$, then the translation operator E on $C\left(\mathbf{Z}_{p} \rightarrow K\right)$ is the operator defined by $E f(x)=f(x+1)$.
If we put $G_{n}(x)=\binom{x}{n}$ (the binomial polynomials), then L. Van Hamme ([4]) proved the following theorem :
A linear, continuous operator Q on $C\left(\mathbf{Z}_{p} \rightarrow K\right)$ commutes with the translation operator E if and only if the sequence $\left(g_{n}\right)$ is bounded, where $g_{n}=Q G_{n}(0)$.
Such an operator Q can be written in the following way : $Q=\sum_{i=0}^{\infty} g_{i} \Delta^{i}$, where Δ is the operator defined as follows : $(\Delta f)(x)=f(x+1)-f(x)$

We can prove analogous theorems for the operators \mathcal{E} and D_{q} on $C\left(V_{q} \rightarrow K\right)$:
Theorem 1 An operator Q on $C\left(V_{q} \rightarrow K\right)$ is continuous, linear and commutes with \mathcal{E} if and only if the sequence $\left(b_{n}\right)$ is bounded, where $b_{n}=\left(Q B_{n}\right)(a)$.

From the proof of the theorem it follows that Q can be written in the form $Q=\sum_{i=0}^{\infty} b_{i} \mathcal{D}^{(i)}$.
If f is an element of $C\left(V_{q} \rightarrow K\right)$, then $(Q f)(x)=\sum_{i=0}^{\infty} b_{i}\left(\mathcal{D}^{(i)} f\right)(x)$ and the series on the right-hand-side is uniformly convergent (since $\mathcal{D}^{(n)} f(x) \rightarrow 0$ uniformly). Clearly we have $b_{n}=\left(Q B_{n}\right)(a)$, since $\left(Q B_{n}\right)(a)=\left(\sum_{i=0}^{\infty} b_{i} D^{(i)} B_{n}\right)(a)=\left(\sum_{i=0}^{n} b_{i}(x / a)^{i} q^{i(i-n)} B_{n-i}\right)(a)=b_{n}$. Furthermore, $Q x^{n}$ is a K-multiple of x^{n}. If $b_{0}=\ldots=b_{N-1}=0, b_{N} \neq 0$, and if $\mathrm{p}(\mathrm{x})$ is a polynomial, then x^{N} divides $(Q p)(x)$.

Some examples

1) For the operator \mathcal{E} we have : $\left(\mathcal{E} B_{n}\right)(x)=B_{n}(q x)$, so $\left(\mathcal{E} B_{0}\right)(a)=1,\left(\mathcal{E} B_{1}\right)(a)=1$, and $\left(\mathcal{E} B_{n}\right)(a)=0$ if $n \geq 2$. This gives us $\mathcal{E}=\mathcal{D}^{(0)}+\mathcal{D}^{(1)}$.
2) The operator \mathcal{E} o $\mathcal{D}=\mathcal{E D}$ clearly commutes with \mathcal{E}. We have $\left((\mathcal{E D}) B_{0}\right)(a)=0$, and since $(n \geq 1)\left((\mathcal{E D}) B_{n}\right)(x)=\left(\mathcal{E}\left(\frac{x}{a} q^{1-n} B_{n-1}\right)\right)(x)=\frac{q x}{a} q^{1-n} B_{n-1}(q x)$, we find $\left((\mathcal{E D}) B_{1}\right)(a)=q,\left((\mathcal{E D}) B_{2}\right)(a)=1$ and $\left((\mathcal{E D}) B_{n}\right)(a)=0$ if $n \geq 3$. We conclude that $\mathcal{E D}=q \mathcal{D}^{(1)}+D^{(2)}$.

Analogous to theorem 1 wr have :
Theorem 2 An nquator Q on $C\left(V_{q} \rightarrow K\right)$ is continuous, linear and commutes with D_{q} if and moly if the sequence $\left(c_{n} /(q-1)^{n}\right)$ is bounded, where $c_{n}=\left(Q C_{n}\right)(a)$.

Such an operator Q can be written in the form $Q=\sum_{i=0}^{\infty} c_{i} D_{q}^{i}$, and if f is an element of $C\left(V_{q} \rightarrow K\right)$ it follows that $(Q f)(x)=\sum_{i=0}^{\infty} c_{i}\left(D_{q}^{i} f\right)(x)$, where the series on the right-handside converges uniformly (since $(q-1)^{n} D_{q}^{n} f(x) \rightarrow 0$ uniformly). Furthermore, we have $c_{n}=\left(Q C_{n}\right)(a)$ since

$$
\left(Q C_{n}\right)(a)=\left(\sum_{i=0}^{\infty} c_{i} D_{q}^{i} C_{n}\right)(a)=\sum_{i=0}^{n} c_{i} C_{n-i}(a)=c_{n}
$$

Remarks

1) Let R and Q be linear, continuous perators on $C\left(V_{q} \rightarrow K\right)$, with R of the form $R=\sum_{i=1}^{\infty} b_{i} D^{(i)}$ (i.e. R commutes wrish $\mathcal{E}, b_{0}=0$), and Q of the form $Q=\sum_{i=1}^{\infty} c_{i} D_{q}^{i}$ (i.e. Q commutes with $D_{q}, c_{n}-v$). The main difference between the operators Q and R is that Q lowers the descee of each polynomial with at least one, where R does not necessarily lowers the icgree of a polynomial.
2) If Q_{1} and Q_{2} both commute with D_{q} and if $Q_{1}=\sum_{i=0}^{\infty} c_{1 ; i} D_{q}^{i}$,

$$
Q_{2}=\sum_{i=0}^{\infty} c_{2 ; i} D_{q}^{i}, \text { then }\left(Q_{1} \circ Q_{2}\right)(f)=\left(Q_{2} \circ Q_{1}\right)(f)=\sum_{k=0}^{\infty} D_{q}^{k} f\left(\sum_{j=0}^{k} c_{1 ; j} c_{2 ; k-j}\right)
$$

If we take two formal power series $q_{1}(t)=\sum_{i=0}^{\infty} c_{1 ; i} t^{i}, q_{2}(t)=\sum_{i=0}^{\infty} c_{2 ; i} t^{i}$, then $q_{1}(t) \cdot q_{2}(t)=\sum_{k=0}^{\infty} t^{k}\left(\sum_{j=0}^{k} c_{1 ; j} c_{2 ; k-j}\right)$, so the composition of two operators which commute with D_{q}, corresponds with multiplication of power series .

This is not the case if we take two operators which commute with \mathcal{E} : Take e.g. $\mathcal{E}=\mathcal{D}^{(0)}+\mathcal{D}^{(1)}$ and $\mathcal{D}^{(1)}$, then $\mathcal{E} o \mathcal{D}^{(1)}=\mathcal{E} \mathcal{D}^{(1)}=q \mathcal{D}^{(1)}+\mathcal{D}^{(2)}$, whereas for power series this gives $q_{1}(t)=1+t, q_{2}(t)=t$ and $q_{1}(t) \cdot q_{2}(t)=t+t^{2}$.

4. Normal bases for $C\left(V_{q} \rightarrow K\right)$

We use the operators of theorems 1 and 2 to make polynomials sequences $\left(p_{n}(x)\right)$ which form normal bases for $C\left(V_{q} \rightarrow K\right)$. If Q is an operator as found in theorem 1 , with b_{0} equal to zero, we associate a (unique) polynomial sequence $\left(p_{n}(x)\right)$ with Q. We remark that the operator $R=\sum_{i=0}^{\infty} b_{i} \mathcal{D}^{(i)}$ does not necessarily lowers the degree of a polynomial.
Proposition 1 Let $Q=\sum_{i=N}^{\infty} b_{i} \mathcal{D}^{(i)}(N \geq 1)$ with $\left|b_{N}\right|>\left|b_{n}\right|$ if $n>N$. There exists a unique polynomial sequence $\left(p_{n}(x)\right)$ such that $\left(Q p_{n}\right)(x)=x^{N} p_{n-N}(x)$ if $n \geq N, p_{n}\left(a q^{i}\right)=$ 0 if $n \geq N, 0 \leq i<N$ and $p_{n}(x)=B_{n}(x)$ if $n<N$.

In the same way as in proposition 1 we have.
Proposition 2 Let $Q=\sum_{i=N}^{\infty} c_{i} D_{q}^{i}(N \geq 1), c_{N} \neq 0,\left(c_{n} /(q-1)^{n}\right)$ bounded.
Then there exists a unique polynomial sequence $\left(p_{n}(x)\right)$ such that $\left(Q p_{n}\right)(x)=p_{n-N}(x)$ if $n \geq N, p_{n}\left(a q^{i}\right)=0$ if $n \geq N, 0 \leq i<N$ and $p_{n}(x)=B_{n}(x)$ if $n<N$.

We use the operators of theorems 1 and 2 to make polynomials sequences $\left(p_{n}(x)\right)$ which form normal bases for $C\left(V_{q} \rightarrow K\right)$. If f is an element of $C\left(V_{q} \rightarrow K\right)$, there exist coefficients α_{n} such that $f(x)=\sum_{n=0}^{\infty} \alpha_{n} p_{n}(x)$ where the series on the right-hand-side is uniformly convergent. In some cases, it is also possible to give an expression for the coefficients α_{n}.

Theorem 3 Let $Q=\sum_{i=N}^{\infty} b_{i} D^{(i)}(N \geq 1)$ with $\left|b_{n}\right|<\left|b_{N}\right|=1$ if $n>N$

1) There exists a unique polynomial sequence $\left(p_{n}(x)\right)$ such that $\left(Q p_{n}\right)(x)=x^{N} p_{n-N}(x)$ if $n \geq N, p_{n}\left(a q^{i}\right)=0$ if $n \geq N, 0 \leq i<N$ and $p_{n}(x)=B_{n}(x)$ if $n<N$. This sequence forms a normal basis for $C\left(V_{q} \rightarrow K\right)$ and the norm of Q equals one.
2) If f is an element of $C\left(V_{q} \rightarrow K\right)$, then f can be written as a uniformly convergent series $f(x)=\sum_{n=0}^{\infty} \beta_{n} p_{n}(x), \beta_{n}=\left(\left(D^{(i)}\left(x^{-N} Q\right)^{k}\right) f\right)(a)$ if $n=i+k N(0 \leq i<N)$, with $\|f\|=\max _{0 \leq k ; 0 \leq i<N}\left|\left(\left(D^{(i)}\left(x^{-N} Q\right)^{k}\right) f\right)(a)\right|$, where $x^{-N} Q$ is a linear continuous operator with norm equal to one.

And analogous to theorem 3 we have
Theorem 4 Let $Q=\sum_{i=N}^{\infty} c_{i} D_{q}^{i}(N \geq 1)$ with $\left|c_{N}\right|=\left|(q-1)^{N}\right|,\left|c_{n}\right| \leq\left|(q-1)^{n}\right|$ if $n>N$.

1) There exists a unique polynomial sequence $\left(p_{n}(x)\right)$ such that $\left(Q p_{n}\right)(x)=p_{n-N}(x)$
if $n \geq N, p_{n}\left(a q^{i}\right)=0$ if $n \geq N, 0 \leq i<N$ and $p_{n}(x)=B_{n}(x)$ if $n<N$. This sequence forms a normal basis for $C\left(V_{q} \rightarrow K\right)$ and the norm of Q equals one.
2) If f is an element of $C\left(V_{q} \rightarrow K\right)$, there exists a unique, uniformly convergent expansion of the form $f(x)=\sum_{n=0}^{\infty} \gamma_{n} p_{n}(x)$, where $\gamma_{n}=a^{i}(q-1)^{i} q^{i(i-1) / 2}\left(D_{q}^{i} Q^{k} f\right)(a)$ if $n=i+k N$ $(0 \leq i<N)$, with $\|f\|=\max _{0 \leq k ; 0 \leq i<N}\left\{\left|(q-1)^{i}\left(D_{q}^{i} Q^{k} f\right)(a)\right|\right\}$.

Remark. Here we have $\left|c_{n}\right| \leq\left|c_{N}\right|$, in contrast with theorem 3, where we need $\left|b_{n}\right|<\left|b_{N}\right|$ $(n>N)$.

An example

Let us consider the following operator $Q=(q-1) D_{q}$. Then $c_{1}=(q-1)$ and $c_{k}=0$ if $k \neq 1$. The polynomials $p_{k}(x)$ are given by $p_{k}(x)=C_{k}(x) /(q-1)^{k}$, and they form a normal basis for $C\left(V_{q} \rightarrow K\right)$. The expansion $f(x)=\sum_{k=0}^{\infty}\left((q-1)^{k} D_{q}^{k} f\right)(a) p_{k}(x)=\sum_{k=0}^{\infty}\left(D_{q}^{k} f\right)(a) C_{k}(x)$ is known as Jackson's interpolation formula ([2],[3]) .

If Q is an operator as found in theorem 4 , with N equal to one, then we can prove a theorem analogous to theorem 2 :
Theorem 5 Let Q be an operator such that $Q=\sum_{i=1}^{\infty} c_{i} D_{q}^{i}$, with $\left|c_{1}\right|=|(q-1)|$, $\left|c_{n}\right| \leq\left|(q-1)^{n}\right|$ if $n>1$, and let $p_{n}(x)$ be the polynomial sequence as found in theorem 4. An operator T on $C\left(V_{q} \rightarrow K\right)$ is continuous, linear and commutes with D_{q} if and only if T is of the form $T=\sum_{i=0}^{\infty} d_{i} Q^{i}$, where the sequence $\left(d_{n}\right)$ is bounded, where $d_{n}=\left(T p_{n}\right)(a)$.

Remark. In theorem 2 the sequence $\left(c_{n} /(q-1)^{n}\right)$ must be bounded, whereas here the sequence (d_{n}) must be bounded. This follows from the fact that the norm of the operator D_{q} equals $|q-1|^{-1}$, whereas the norm of the operator Q equals 1 .

5. More Normal Bases

We want to make more normal bases, using the ones we found in theorems 3 and 4 . For operators which commute with \mathcal{E} we can prove the following theorem :

Theorem 6 Let $\left(p_{n}(x)\right)$ be a polynomial sequence which forms a normal basis for $C\left(V_{q} \rightarrow K\right)$, and let $Q=\sum_{i=N}^{\infty} b_{i} \mathcal{D}^{(i)}(N \geq 0)$ with $1=\left|b_{N}\right|>\left|b_{k}\right|$ if $k>N$. If $Q p_{n}(x)=x^{N} r_{n-N}(x)$ ($n \geq N$), then the polynomial sequence $\left(r_{k}(x)\right.$) forms a normal basis for $C\left(V_{q} \rightarrow K\right)$.

And analogous for operators which commute with the operator D_{q} we have :
Theorem 7 Let $\left(p_{n}(x)\right)$ be a polynomial sequence which forms a normal basis for $C\left(V_{q} \rightarrow K\right)$, and let $Q=\sum_{i=N}^{\infty} c_{i} D_{q}^{i}(N \geq 0)$ with $\left|c_{N}\right|=\left|(q-1)^{N}\right|,\left|c_{n}\right| \leq\left|(q-1)^{n}\right|$ if $n>N$.
If $\left(Q p_{n}\right)(x)=r_{n-N}(x)(n \geq N)$, then the polynomial sequence $\left(r_{k}(x)\right)$ forms a normal basis for $C\left(V_{q} \rightarrow K\right)$.

We remark that analogous results can be found on the space $C\left(\mathbf{Z}_{p} \rightarrow K\right)$ for linear continuous operators which commute with the translation operator E. The result analogous to theorems 3 and 4 for the case N equal to one, was found by L. Van Hamme (see [4]), and the extensive version of theorems 3 and 4, and the analogons of theorems 5, 6 and 7 can be found with proofs similar to the proofs of the theorems in this paper .

REFERENCES

[1] F.H. Jackson, Generalization of the Differential Operative Symbol with an Extended Form of Boole's Equation, Messenger of Mathematics, vol. 38, 1909, p. 57-61.
[2] F.H. Jackson , q-form of Taylor's Theorem, Messenger of Mathematics, vol 38 , (1909) p. 62-64.
[3] L. Van Hamme, Jackson's Interpolation Formula in p-adic Analysis Proceedings of the Conference on p-adic Analysis, report nr . 7806 , Nijmegen, June 1978, p. 119-125.
[4] L. Van Hamme, Continuous Operators which commute with Translations, on the Space of Continuous Functions on \mathbf{Z}_{p}, in " p-adic Functional Analysis", Bayod / MartinezMaurica / De Grande - De Kimpe (Editors), p. 75-88, Marcel Dekker, 1992.
[5] A. Verdoodt, The Use of Operators for the Construction of Normal Bases for the Space of Continuous Functions on V_{q}, Bulletin of the Belgian Mathematical Society Simon Stevin, vol 1, 1994, p.685-699.

Vrije Universiteit Brussel, Faculty of Applied Sciences, Pleinlaan 2, B 1050 Brussels, Belgium

