
ANNALES MATHÉMATIQUES BLAISE PASCAL

JESUS ARAUJO

ALAIN ESCASSUT
p-adic analytic interpolation
Annales mathématiques Blaise Pascal, tome 2, no 1 (1995), p. 29-41
<http://www.numdam.org/item?id=AMBP_1995__2_1_29_0>

© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http:
//math.univ-bpclermont.fr/ambp/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commer-
ciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AMBP_1995__2_1_29_0
http://math.univ-bpclermont.fr/ambp/
http://math.univ-bpclermont.fr/ambp/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


p-ADIC ANALYTIC INTERPOLATION

Jesus Araujo and Alain Escassut *

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.29-41

Abstract. Let K be a complete ultrametric algebraically closed field. We study the
Kernel of infinite van der Monde Matrices and show close connections with the zeroes of
analytic functions. We study when such a matrix is invertible. Finally we use these results
to obtain interpolation processes for analytic functions. They are more accurate if K is
spherically complete.

1991 Mathematics subject classification: : 46S10

1. NOTATIONS, DEFINITIONS AND THEOREMS
K denotes an algebraically closed field complete for an ultrametric absolute value.

Given a E K, r > 0, we denote by d(a, r) (resp. d(a, r-)) the disk {x E K : r~
(resp. {x E K : a~  r~). Given r > 0 we denote by C(0,r) the circle d(0, r)~d(0, r’).
Given ri, r2 E IR+ such that 0  ri  T2, we denote by r(0, ri, r2) the set d(0, r-2)Bd(0, r1).

00

Given r > 0, we denote by A(d(0, r")) the algebra of the power series ~ bnxn
n=o

converging for |x|  r.

Given K-vector spaces E, F, ,C(E, F) will denote the space of the K-linear mappings
from E into F.

£ will denote the K-vector space of the sequences in K, and So will denote the subspace
of the bounded sequences. The identically zero sequence will be denoted by (0).

~1 will denote the set of the sequences (an) such that limsup |03B1n|  1. So ~1 is seen
n~~

to be a subspace of £ isomorphic to the space A(d(0, I ")), and obviously contains So.
Let Moo be the set of the infinite matrices ( a; ~ j ) with coefficients in K.
03B4i,j will denote the Kronecker symbol. I~ will denote the infinite identical matrix

defined as A,j = 03B4i,j.

* Research partially supported by the Spanish Direccion General de Investigacion Ci-
entifica y Technica (DGICYT, PS90-100)
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In this paper, (an) will denote an injective sequence in d(o,1’ ) such that an fl 0 for
every n > o. and we will denote by M(an) the infinite matrix M = (at,~ ) defined as
03BBi,j = (ai)j, (i,j) ~ IN x N.

A matrix M = (a~~’) E M~, will be said to be bounded if there exists A E R+ such
that  A whenever (i, j ) E IN x IN.

M will be said to be line-vanishing if for each i E IN, we have lim a=,J = 0.
A line-vanishing matrix M is seen to define a K-linear mapping 03C8M from So into £.

So the matrix M = M(an) clearly defines a K-linear mapping ~M from £i into £,
m

because given a sequence (bn) E ~1, the series ‘ is obviously convergent.
n=0

Lemmas 1 and 2 are immediate :

Lemma 1 : Let M E M~ be line vanishing.
The three following statements are equivalent :

is continuous

03C8M is an endomorphism of £o
M is bounded .

In particular, Lemma 1 applies to matrices of the form M(an).

Lemma 2 : : Let M = M(an) and let (bn) E ~1. Then (bn) belongs to Ker03C6M if and only
o

if the analytic function f(t) = 03A3 bntn admits each point aJ for zero.
n=o

Theorem 1 : : Let M = M(an). Then Ker03C6M ~ {(0)} if and only if lim |an| = I.
n~~

00 

~~°

Besides Ker03C8M ~ {(0)} if and only if 03A0 |an| > 0.
n~o

Theorem 2 : : Let b = (bn) E £o. There ezists an injective sequence (an) in d(o,1-) such
that b E Ker03C8M(03B1n) > if and only if b satisfies |bj|  sup |bn| for all j E IN.

n~IN

Definitions and notations : An injective sequence (an) in will be called a

regular sequence if inf |an - am| > 0 and lim |an| = l. °

n~~

Let (an) be a regular sequence and let p = inf |an - am|. For every r ~]0, 1[, we will denote
n~m

by r) the set d(0,1‘)~( U d(an, r’)), and by the set d(o,1")~( U 
n~IN n~IN
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Let a = (an) and b = (bn) be two sequences in K. We will denote by a * b the
n

convolution product (cn) defined as cn = 03A3 ajbn-j.
~=o

Theorem 3 : : Let (an) be a regular sequence of d(0,1’) such that there exists g E

A(d(0,1 ")) satis f ying
(i) an is a zero of order 1 of g for all n E IN.
(ii ) ~ 0 whenever x E d(0,1-’)~{an ; n E IN}.
(iii) lim |g(x)| = +~.

|x|~1-
x~03A9(03B1n)

Let M = M(03B1n). Then 03C8M is injective but its image does not contain ~0. Also there

exists P = (03BBi,j) ~ M~ (not unique ) satis fying
( I ) P is line-vanishing.
(2) lim 03BBn,j03B1nh = 0 for all (j, h) E IN x IN.

n~~

00

(3) 03A3 03BBn,j03B1nh = 03B4j,h for all (j, h) E N x N.
n=o 

~ 

(4) 
(5) P(b) E £1 for all b E So.
(6) MP(b) = b for all b E So.
(7) 03C8P is injective.

Let (vn) be a sequence in K such that |03BD0| ~ |03BDn| for every n > 0. For every j E N, let

( n,j)n~IN denote the se q uence (1 m)((03BBn,j) * (vn)). . Then the matrix Q = ( i,j)’ 

vma §° 
’ ’

also satisfies properties (1) - (7) and is not equal to P for infinitely many sequences (vn).

Remarks. 1. Mainly, the proof of Theorem 3 takes inspiration from that of Lemma 3 in
[7]. However, in this lemma, the considered matrix, roughly, was P. Here the matrix we
consider is a van der Monde matrix M and we look for P.

2. Given ~1~I the matrix P depends on g and therefore is not unique satisfying ( 1 ) - ( 7).
Indeed is not a ring because the multiplication of matrices is not always defined and
even when it is defined, is not always associative. As a consequence, if P, P’ satisfy
MP = MP’ = PM = P’M = I~, we cannot conclude P’ = P.

Actually we can consider 03C6M o E £(So, £) and then this is the identity in ~0. Next
we can consider 03C8 P’ o03C8M E £( So , ~1) and this is the identity in ~0. But we cannot consider
03C8 P’ o (03C6M o 03C8 p) because 03C8P’ is not defined in ~1. In the same way, we cannot consider

(~ p~ o o ~ p because 9 p~ o is only defined in So.
We consider the matrix P and look for "inverses" M such that MP = PM = I~.

Suppose that there exists a bounded matrix M’ ~ M such that PM’ = M’P = h. Now
we can consider o o E £(So, £). Since 03C8P o is the identity in So, then
~M~ o (~ p o is equal to Next we can consider (~~~ o ~ p) o ~M E ,C(£o, £). Since
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o 03C8P is the identity on So, we have (03C6M’ o o 03C8M = and therefore = 03C8M’
hence M = M’.

3. Let P, Q E M~ satisfy (1) - (7). Let £’ = let £" = Then the
restriction of 03C6M to £’ (resp. £") is just the reciprocal of (resp. 03C8Q).

Conjecture. Under the hypothesis of Theorem 1, every matrix satisfying properties
(1) - (7) is of the form

n,j=(1 03A3~m=003BDm03B1mj)
((03BBn,j) 

* (03BDn)).

Theorem 4 : : Let K be spherically complete, and let (an) be a sequence in d(0, 1-)
00

satisfying |03B1n - am ( > min(|03B1n|, |03B1m f ) whenever n ~ m, lim |03B1n| = 1, and 03A0 |03B1n| = 0.
n-oo

n~0

Then admits inverses P such that, for every bounded sequence b := (bn) in K,
oo

the sequence a := (an) = P(b) defines a function f(x) = 03A3 anxn E A(d(o,1")) satisfying
n=0

f(an) = bn~

Theorem 5 : Let (an) be a regular sequence in d(o,1-). There exists a regular sequence
in d(o,1-) such that (an) is a subsequence of (1’n) satisfying : for every inverse matrix

P of M(03B3n) and for every bounded sequence b = (bn) of K, the sequence a = P(b) := (an)
o

defines an analytic function f(x) = 03A3 anxn such that f(03B3j) = bJ whenever j E N.
. n=o

2. PROVING THEOREMS 1 AND 2.

For each set D in K, we denote by H(D) the set of the analytic elements in D (i. e.,

the completion of the set of the rational functions with no pole in D).
oo

Given J(t) = ~ bntn E A(d(0,1-)}, one defines the valuation function v( f, ~c) in the
n=o

interval ]0, +~[ as 03BD(f, ) = inf (v(bn) + np,). ,

E

Lemma 3 and 4 gather the main properties of the function v(f,p.) (~1~,(4~). .
oo

Lemma 3 Let f(t) = ~ bntn E A(d(o,1-)). For every ~c > 0, f satisfies
n=o

v( f , ~c) -- 
u ~ 

lim 
t 

v( f (t)). For every ~ E d(o,1 ~) , , f satisfies >. v( f , v(~)).

For every r E~O,1(, f satisfies - log = v( f , - log r).
Besides f is bounded in d(0,1") if and only if the sequence (bn) belongs to So. If f is

bounded in d(0,1-), then = sup |bn| and - log = lim v( f , ).
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Lemma 4 : : Let J(t) E A(d(0,1-)) and let E (o,1) satisfy r1  r2. . If f admits

q zeros in d(0, rl) (taking multiplicities into account) and t distinct zeros at,..., , at, of
multiplicity order ~’j (1  j  t) respectively in r(O, rl, , r2), then f satisfies

t

03BD(f, - log r2) - 03BD(f, - log r1) = - 03A303B6j(03BD(aj) + log r2 ) - q(log r2 - log r1).
j=i

00

Proof of Theorem 1. Let b = (bn) E £11~(0)} and let I(t) = ~ bntn E A(d(o,1")).
n=0

First we suppose Ker03C6M ~ {(o)} and therefore we can assume b E Ker03C6M. Then, by
Lemma 2, f satisfies f(aj) = 0 for every j E N. But for every r ~]0, 1[, we know that f
belongs to H(d(U, r)) and has finitely many zeros in d(0, r). Hence we have lim |an| =1.

n~~

Reciprocally, let the sequence (an) satisfy lim |an| = 1. By Proposition 5 in [4], we
n~~

00

know that there exists a not identically zero analytic function f (t) = ~ bntn E A(d(o,1~’))
n=o

00

which admits each aj as a zero. Hence we have 03A3 bnanj = 0, and of course the sequence
n=o

(bn) belongs to ~1, hence to Ker03C6M.
Now we suppose that Ker03C8M ~ (0) and we assume that the sequence (bn) belongs to

Ker03C8M. In particular Ker03C6M ~ (0) and therefore lim |an| = 1. Without loss of generality
n~~

we may clearly assume |an+1| for all n E IN. Besides, by definition we have |a1| > 0.
By Lemma 3 we know that inf v(bn) = lim lim 

n~IN |x|~1,x~D
Now for each ~ > 0, let be the unique integer such that v(an) > ~ for every n  q(p,)
and v(an)  ~c for every n > q(~c). By Lemma 4, we check

q( )

v(.~~ ~) - ~ - + 2(~ " v(al )).
j=2

o0

Since v(f, p) is bounded when p approaches 0, by (1) it is seen that ~ v( aj) must be
j=1

00

bounded and therefore we have TI |an| > 0.
n==i

00

Reciprocally we suppose 03A0 |an| > 0. We can easily check that lim |an| = 1, and
n~~

then we can assume |an+1| for all n E IN without loss of generality. For each
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j

j E IN we put Pj(x) = II (1 - x/am). By Theorem 1 in [2], we can check that there exists
m=1

f E A(d(0,1")) ( f not identically zero) satisfying
(3) f (am) = 0 for all m E N, and
(4) v( f , ~) > for all J1. > 0.
Now we notice that if 1 > 2 > 0 then we have = and then

00 00

we see that lim 03BD(Pq( ), ) = 03A3 v(aj). But by (2) we have v(aj)  +oo and therefore

00

by (4), v( f, is bounded in ]0, +oo~. Let f(t) = ~ bnt". By Lemma 3 the sequence (bn)
n==o

is bounded and by (3) it clearly belongs to Ker.03C8M. This finishes the proof of Theorem 1.

00

Lemma 5 : : Let f(t) = ~ bntn E A(d(0,1~)) and let r E (o,1). . Then f admits at least
n=o

one zero in C(0, r) if and only if there exist k,1 E IN (k  I) such that |bk| rk = rl.

00

Proof of Theorem 2. As a consequence of Lemma 5, a function f(t) = 03A3 bntn E 
n=o

admits infinitely many zeros in cf(0,1") if and only if  sup |bn| for every j E IN. Then
nEIN

the conclusion comes from Lemma 2.

3. PROVING THEOREM 3.

As an application of Corollary (of Theorem 5) in [8], we have this lemma.
Lemma 6 : : Let f E A(d(0, 1-)) have a regular sequence of zeros (bn) and satisfy
lim = +00. Then 1/f belongs to H(03A9(bn)).

|x|~1-
x~03A9(bn)

Proof of Theorem 3. We may obviously assume and therefore 0

whenever n > 0. Since g is not bounded in d(o,1-), by Lemma 3 we have lim v(g, ) = -oo,
~0+

and by Lemma 4 the sequence of the zeros (an) satisfies N |03B1n| = 0, hence 4 M is injective.
Tt=l

Now we look for P. Since g admits each 03B1j as a simple zero, it factorizes in A(d(0, 1-1))

in the form 03C8j(x)(1 - x /03B1j) and we have 03C8j(03B1j) ~ 0. We put x = 03C8j(x) 03C8j(03B1j) . Then gj

belongs to A(d(0,1")) and may be written as L 03BBn,jxn. We denote by P the matrix
n=o
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and we will show this satisfies Properties (1) - (7).
For convenience, we put D = Q( an). Since lim |g(x)| = +~, by Lemma 6, we know

|xl~1-
xED

that 1/g belongs to H(D). For each n E IN, we put un = Then in H(D), un has a

Mittag-Leffler series ([3], [5]) of the form f 1 . Now we put 8j and we

have g(x) = 8jgj(x)(1-x jaj). We will compute the 03B2j,n. Let 03BDj,n = Then we

have 03BDj,n(03B1i) = 03B1nj gj(03B1j)03B8j. But since gj(aj) = I whenever j E N, we see that 03B2j,n = an j8j,

hence _ n -~’ n We notice that II = ~ 
n+1 1 

and then we
;=o .. P

have lim |03B8j| _ +~, because the sequence of the terms xn jg(x) must tend to 0. Now

we h ave x" _ £ () . 

, while . gj(x) _ 8 ( 
9(x) 

. Since gj(x) _ 03A3 03BBn,jxn, we
obtain .

o o

(8) x’~ = ~ 
j~a h~o

In particular, (8) holds in every disk d(0, r) with r ~]0, 1[. But then we know that

sup  . Now, we have (I~jI~~(4~r)  ~~911d(o,r) as soon as

|03B1i| > r because then ~1/(1 - x/03B1j)~d(0,r) = 1 and therefore the sequence 

is bounded. Then the family tends to zero when j tends to +~, uni-
formly with respect to h. In particular, P is line-vanishing. For each h E IN, we put
Sh = sup j~IN |03BBh,j|. We will show

(9) lim sup s1/hh  1.

Indeed this is equivalent to show that for every r E~O,1(, we have

(10) lim shrh = 0.
h~~
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Let r ~]0, 1[ and let e > 0. Since the family rh)j,h~IN tends to zero uniformly with
respect to h when j tends to +00, there clearly exists N such that |03BBh,j|rh  E whenever

j > N, whenever h E IN, hence for every h E IN, we have shrh  max |03BBh,j|rh. But for

each fixed i E 1N, we know that lim =0, hence lim ( max = 0. This

finishes showing (10). Therefore (9) is proven and so is (2).
Now, we can apply the limits inversion theorem and, then, by (8), we have

00 00

(1~,) x" _" 

h-0 j =0

whenever x E d(0, r). Actually this is true for all r ~]0, 1[ and therefore (11) holds for all
00 00

x E d( o,1- ) . Hence we have = 0 whenever n ~ h and = I’ So (3) is
j=0 ~7~0

satisfied.
Thus we have proven that PM = Now we check that MP = 100. For every h ~ j,

00

we have = g(ah) = 0, hence = 0. Besides, it is seen that gj(aJ) = l,
h=o

00

hence L =1. So we conclude that MP = I~ and this finishing proving (4).
n=0

Now, we will check that P(b) E ~~ for all b E Eo. Let b := (bn) E Eo, let a :=
00 j

(an) = P(b) and let J(t) = L antn. For each j e IN we put = L bmgm(t). Then
n=0 m=0

f j belongs to A(d(o,1’)) for all j ~ IN. Let r 6JO, 1{. Like the family |03BBn,j| rn, the family
tends to zero uniformly with respect to n when j tends to +00. That way, in
we have ~f - = 0 and therefore f belongs to H(d(O,r). This is

true for all r ~]0, 1[ and therefore f belongs to A(d(o,1’)). Hence P(b) E ~1. This shows
(5).

Let us show (6). Let b := (bo,..., bn, ...) be a bounded sequence. Let a = Pb, and
let a = (ao , ... , an, ...), We will show

(12) lim sup |an|1/n  1.
n--~oo

Without loss of generality, we may assume |bj| (  1, whenever j E IN. Then we have

sup |03BBn,j| = sn, therefore limsup |an|1/n ~ lim sup sn1/n  l. Now, by (12), it is

00

seen that for all j e N, the series 03A3 an03B1nj is convergent and therefore we may consider
n=0
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00

Ma = M(Pb). By definition, for each i we have a= = L Let Ma = 

j=o
00 00 00

For each h E N we have xh = 03A3 Qram = 03A3 03B1mh(03A3 03BBm,jbj). Let r = |03B1h|. As we saw,
m=0 m=0 j=0 

the family |03BBm,jbj| rm tends to 0 when m tends to +00, uniformly with respect to j. Hence
by the Limits Inversion Theorem, we have

03B1mh(03BBm,jbj) = bj(03BBm,j03B1mh).
m=0 j=0 j=0 m=0

Hence by (3), we see that 2’~ = bj and this finishes proving (6). Then by (6) ~~ is clearly
injetive.

Finally we will prove the last statement of the theorem. Let 03C6(x) = 03A3 vnxn. The
n=0

function § belongs to A(d(o,1’ )) and is invertible in A(d(o,1 ~’)) thanks to the inequality
|03BD0| > |03BDn| whenever n > 0. Hence the function G(x) = is easily seen to satisfy i),
ii), iii), iv) like g. Then G factorizes in A(d(o, 1-)) and can be written as x/03B1j)
with = Hence we put Gj(x) = 03C6j(x) 03C6j(03B1j) = gj(x)03C6(x) 03C6(03B1j). Now it is clearly

seen that the power series of Gj is E By definition, the matrix Q satisfies the
n==o

same properties as P. But when § is not a constant function, for each fixed j E N, we do
not have = 03BBn,j for all n E N. Hence Q is different from P. As a consequence we see
that 03C8M is not surjective, it would be an automorphism of £o and therefore 03C8P would also
be an automorphism of So and it would be unique. This ends the proof of Theorem 3.

4. PROVING THEOREMS 4 AND 5

Notation. For each integer q E IN*, we will denote by the group of the q-roots of 1.

Lemma 7 : : Let (an) be a sequence in d(o, I") such that lim |an| = I. . For each s E N,

there exists a prime integer q > p and ( E such that aj| =. max(|as|,|aj|) for
every j E IN, for every h =1, ... , q -1. .
Proof. Let r = |as|. Since limn~~ |an| ---.1, the circle r) contains finitely many
terms of the sequence (an). Without loss of generality we may assume r whenever
n  d, lanl ~ > r whenever n > t and janj = r, whenever n = t, ... , t (with obviously
I  s  t). Whatever q E 1N, ( E Q(q) are, it is seen that we have a; | = lasl for
all j  t and |03B6has - a; | = for all j > t. In the residue class field k of K, for every
j = I, ... , t. let y; be the class of aj/as. There does exist a prime integer q > p such that
the polynomial p(x) = xq -1 admits none of the 1j (1  j  t) as a zero. Hence, for
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every q-root v of 1 in k, we have 03BDh ~ 03B3j whenever j = I, ... , t, whenever h =1, ... , q -1.
Now let ( be a q-th root of 1 in K. Then by classical properties of the polynomials, we

have |03B6h - aj as| = 1, hence |03B6has - aj| = |as| = r whenever h = 1, ... , q - 1, whenever
j = l,..., t. This completes the proof of Lemma 7.

Lemma 8 : Let (an) be a regular sequence and let p = inf |an - am|. There exists a
n:;ém

sequence (bn) in d(o,1") satisfying :
(1) lim |bn| = 1.

n~~

(2) |bn - bm| ~ p whenever n ~ m.
(3) (an) is a subsequence of (bn),
(4) There exists a sequence (qn) of prime integers different from p satisfying lim qn = +~,

n~~

such that for every m E IN, ( E g(qn), (bn is another term of the sequence (bn),
(5) There exists f E admitting each bn as a simple zero and having no

other zero in d(0,1"), satisfying
lim |f(x)| = +~.

|x|~1-x~03A9(bn)
Proof. First we will construct a sequence (bn) satisfying (1), (2), (3), (4). Let (qj) be a
strictly increasing sequence of prime integers strictly bigger than p and, for each j E IN,
let Sj = E{=o qt, let (j E and let = 03B6hjaj (o  h  qJ -1). We will show
that a good choice of the sequence (qj) enables us to obtain

(6) 

for every couple (n, m) satisfying m and (s=, s j ) whenever (i, j ) E N x IN.
In other words b’m| = max(|b’n|,|b’m|) must be true all time except when n = m and
when ( bn, is equal to some couple (a9; , a S; ). For each t E N, let Ft = (so, s 1, ... , s t }
and let Et be ~0,1, ... , st . Assume that q4, q~, ... , qt-i have been chosen to satisfy
the following properties (at) and (03B2t)

(at) |b’n - asj = max(|b’n|, |asj |) for all j E IN, for all n 6 Et.
(03B2t) |b’n - b’m| = for all (n, m) E Et x Et such that n # m. We

will choose qt such that both (at+i), (,8t+1) are satisfied. Indeed, by Lemma 7 we can
take a prime integer u such that, given 03B6t E G(u), we have aj| ( = max(|at|, |aj|)
for all j E N, for all h =1, ... , u -1, bnl ] = max(|at|, |b’n|) for all n  st, for all
h = 1,... , u -1. Thus we can take qt = u and we see that both (~t+1 ) are satisfied.
Hence we can construct the sequence (qt) by induction and, therefore, the sequence (b~)
satisfying (6) is now constructed. Then it is easily checked that the sequence (bn) so
obtained satisfies (1), (2), (3), (4).



39

Now let {ro, ... , rn, ...? = E 1N~ and let D = The infinite product
00

g( x) = ~(1- converges in A(d(o,1")) and has no zero in d(o, r) n D because,
j=o

by construction of the sequence (bn), each zero of g is one of the points bm for some m ~ IN.
00

Hence it is seen that we have |g(x)| ~ 1 for every x E d(0, 1-) B ( U C(0, rn)). For each
n=0

n E IN, let En = D n C(o, rn), let Tn = inf let 03C3n E |K|, let Cn E

C 0, 03C3n), and let un > min(p, n) be a prime integer such that Tn( )un > n + 1. Since
Un

00

lim un = +~, it is seen that the infinite product h(x) = 03A0(1 - (x/cn)un) converges in

00

A(d(o,1")). Let D’ = and let D" = D’ n D. Let h(x) = 03A3 03BBnxn and, for each
n=0

r ~ (0, 1), let M(r) = supn~IN |03BBn| rn. Each pole of h is simple and is of the form 03B6cn with
( E Hence it is seen that h satisfies ~h(x)) > M ~x~ /p for all x E D’. Hence if

00

( U En), then we have
n=0

= M(rn)Tn > > n and fmally we have
rn_1

(7) lim = +~.
|x|~1

Now let (bn) be the sequence of the zeros of g. Clearly satisfies (1) and (4) and also
satifies |b"n - b’m [ = max(|b"n|, |b’m|) whenever n, m E N and b"m| = max(|b"n|,|bnm|)
whenever n ~ m. Now we put b2n = bn and b2n+1 = b"n. The sequence clearly satisfies

(1), (2), (3), (4) and also satisfies (5) because the zeros of h are the bn while those of g are
the bn. Thus the zeros of f are just the bn, and then, by (7), we have lim |f(x)| = +00.

|x|~1
x~03A9(bn)

This ends the proof of Lemma 8.

Proof of Theorem 4. Without loss of generality we may obviously assume |03B1n+1|
whenever n E IN. Let p = |03B10|. Hence by hypothesis each disk d(03B1q,03C1-) contains no point
an for each n ~ q. Let D = 

For each n E IN, let Tn be the hole d(an, p!) of D. Since |03B1n| = 0, it is shortly
checked that the sequence (Tn, 1) is a T-sequence of D ([8]). Then, since K is spherically
complete, by [4], Theorem 4, there exists g E admitting each an as a simple

00

zero and having no zero else in d( o,1 "). Therefore, as 03A0 |03B1n| = 0, is is seen that g
n=0
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satisfies lim |g(x)| = +~. Now we can apply Theorem 3, which shows that the matrix

00

M = M(an) admits inverses P. Then the sequence (an) satisfies 03A3 an03B1nj = bj for every
n=0

j E IN and this clearly ends the proof of Theorem 4.

Proof of Theorem 5. By Lemma 8, there exists a regular sequence (In) of d(0,l")
such that (an) is a subsequence of (in ) together with an analytic function g E 
admitting each 1m as a simple zero and having no other zero in d(0,l"), satisfying

lim |g(x)| = + oo with p = inf |03B3n - 03B3m|. Then, by Theorem 3, the matrix M = M(03B3n)

admits line-vanishing inverses M’ satisfying M(M’(b)) = b for all bounded sequence
00

b = (bn). Let a := (an) = M’(b). Thus we have M(a) = b and therefore L an03B3nj = b;
n=0

whenever j E IN. This ends the proof of Theorem 5.
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