Annales mathématiques Blaise Pascal

Jesus Araujo
 Alain Escassut
 p-adic analytic interpolation

Annales mathématiques Blaise Pascal, tome 2, n ${ }^{0} 1$ (1995), p. 29-41
http://www.numdam.org/item?id=AMBP_1995__2_1_29_0
© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

p-ADIC ANALYTIC INTERPOLATION

Jesus Araujo and Alain Escassut *

Abstract

Let K be a complete ultrametric algebraically closed field. We study the Kernel of infinite van der Monde Matrices and show close connections with the zeroes of analytic functions. We study when such a matrix is invertible. Finally we use these results to obtain interpolation processes for analytic functions. They are more accurate if K is spherically complete.

1991 Mathematics subject classification : 46 S10

1. NOTATIONS, DEFINITIONS AND THEOREMS

\mathbf{K} denotes an algebraically closed field complete for an ultrametric absolute value. Given $a \in \mathbf{K}, r>0$, we denote by $d(a, r)$ (resp. $d\left(a, r^{-}\right)$) the disk $\{x \in \mathbf{K}:|x-a| \leq r\}$ (resp. $\{x \in \mathbf{K}:|x-a|<r\}$). Given $r>0$ we denote by $C(0, r)$ the circle $d(0, r) \backslash d\left(0, r^{-}\right)$. Given $r_{1}, r_{2} \in \mathbb{R}_{+}$such that $0<r_{1}<r_{2}$, we denote by $\Gamma\left(0, r_{1}, r_{2}\right)$ the set $d\left(0, r_{2}^{-}\right) \backslash d\left(0, r_{1}\right)$.

Given $r>0$, we denote by $A\left(d\left(0, r^{-}\right)\right)$the algebra of the power series $\sum_{n=0}^{\infty} b_{n} x^{n}$ converging for $|x|<r$.

Given K-vector spaces $E, F, \mathcal{L}(E, F)$ will denote the space of the K-linear mappings from E into F.
\mathcal{E} will denote the K-vector space of the sequences in K, and \mathcal{E}_{0} will denote the subspace of the bounded sequences. The identically zero sequence will be denoted by (0).
\mathcal{E}_{1} will denote the set of the sequences $\left(a_{n}\right)$ such that $\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \leq 1$. So \mathcal{E}_{1} is seen to be a subspace of \mathcal{E} isomorphic to the space $A\left(d\left(0,1^{-}\right)\right)$, and obviously contains \mathcal{E}_{0}.

Let \mathbf{M}_{∞} be the set of the infinite matrices ($\lambda_{i, j}$) with coefficients in K.
$\delta_{i, j}$ will denote the Kronecker symbol. I_{∞} will denote the infinite identical matrix defined as $\lambda_{i, j}=\delta_{i, j}$.

[^0]In this paper, $\left(a_{n}\right)$ will denote an injective sequence in $d\left(0,1^{-}\right)$such that $a_{n} \neq 0$ for every $n>0$. and we will denote by $\mathcal{M}\left(a_{n}\right)$ the infinite matrix $M=\left(\lambda_{i, j}\right)$ defined as $\lambda_{i, j}=\left(a_{i}\right)^{j},(i, j) \in \mathbb{N} \times \mathbb{N}$.

A matrix $M=\left(\lambda_{i, j}\right) \in \mathbf{M}_{\infty}$ will be said to be bounded if there exists $A \in \mathbf{R}_{+}$such that $\left|\lambda_{i, j}\right| \leq A$ whenever $(i, j) \in \mathbb{N} \times \mathbb{N}$.
M will be said to be line-vanishing if for each $i \in \mathbb{N}$, we have $\lim _{j \rightarrow \infty} \lambda_{i, j}=0$.
A line-vanishing matrix M is seen to define a K-linear mapping ψ_{M} from \mathcal{E}_{0} into \mathcal{E}.
So the matrix $M=\mathcal{M}\left(a_{n}\right)$ clearly defines a K-linear mapping ϕ_{M} from \mathcal{E}_{1} into \mathcal{E}, because given a sequence $\left(b_{n}\right) \in \mathcal{E}_{1}$, the series $\sum_{n=0}^{\infty} b_{n}\left(a_{j}\right)^{n}$ is obviously convergent.

Lemmas 1 and 2 are immediate :
Lemma 1 : Let $M \in \mathbf{M}_{\infty}$ be line vanishing.
The three following statements are equivalent :
ψ_{M} is continuous
ψ_{M} is an endomorphism of \mathcal{E}_{0}
M is bounded.
In particular, Lemma 1 applies to matrices of the form $\mathcal{M}\left(a_{n}\right)$.
Lemma 2: Let $M=\mathcal{M}\left(a_{n}\right)$ and let $\left(b_{n}\right) \in \mathcal{E}_{1}$. Then $\left(b_{n}\right)$ belongs to $\operatorname{Ker} \phi_{M}$ if and only if the analytic function $f(t)=\sum_{n=0}^{\infty} b_{n} t^{n}$ admits each point a_{j} for zero.

Theorem 1 : Let $M=\mathcal{M}\left(a_{n}\right)$. Then $\operatorname{Ker} \phi_{M} \neq\{(0)\}$ if and only if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$. Besides $\operatorname{Ker} \psi_{M} \neq\{(0)\}$ if and only if $\prod_{n=0}^{\infty}\left|a_{n}\right|>0$.

Theorem 2: Let $b=\left(b_{n}\right) \in \mathcal{E}_{0}$. There exists an injective sequence $\left(\alpha_{n}\right)$ in $d\left(0,1^{-}\right)$such that $b \in \operatorname{Ker} \psi_{\mathcal{M}\left(\alpha_{n}\right)}$ if and only if b satisfies $\left|b_{j}\right|<\sup _{n \in \mathbb{N}}\left|b_{n}\right|$ for all $j \in \mathbb{N}$.

Definitions and notations : An injective sequence $\left(a_{n}\right)$ in $d\left(0,1^{-}\right)$will be called a regular sequence if $\inf _{n \neq m}\left|a_{n}-a_{m}\right|>0$ and $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$.
Let $\left(a_{n}\right)$ be a regular sequence and let $\rho=\inf _{n \neq m}\left|a_{n}-a_{m}\right|$. For every $\left.r \in\right] 0,1[$, we will denote by $\Omega\left(\left(a_{n}\right), r\right)$ the set $d\left(0,1^{-}\right) \backslash\left(\bigcup_{n \in \mathbb{N}} d\left(a_{n}, r^{-}\right)\right)$, and by $\Omega\left(a_{n}\right)$ the set $d\left(0,1^{-}\right) \backslash\left(\bigcup_{n \in \mathbb{N}} d\left(a_{n}, \rho^{-}\right)\right)$.

Let $\mathbf{a}=\left(a_{n}\right)$ and $\mathbf{b}=\left(b_{n}\right)$ be two sequences in K. We will denote by $\mathbf{a} * \mathbf{b}$ the convolution product (c_{n}) defined as $c_{n}=\sum_{j=0}^{n} a_{j} b_{n-j}$.

Theorem 3 : Let $\left(\alpha_{n}\right)$ be a regular sequence of $d\left(0,1^{-}\right)$such that there exists $g \in$ $A\left(d\left(0,1^{-}\right)\right)$satisfying
(i) α_{n} is a zero of order 1 of g for all $n \in \mathbb{N}$.
(ii) $g(x) \neq 0$ whenever $x \in d\left(0,1^{-}\right) \backslash\left\{\alpha_{n}: n \in \mathbb{N}\right\}$.
(iii) $\lim _{\substack{|x| \rightarrow 1^{-} \\ x \in \Omega\left(\alpha_{n}\right)}}|g(x)|=+\infty$.

Let $M=\mathcal{M}\left(\alpha_{n}\right)$. Then ψ_{M} is injective but its image does not contain \mathcal{E}_{0}. Also there exists $P=\left(\lambda_{i, j}\right) \in \mathcal{M}_{\infty}$ (not unique) satisfying
(1) P is line-vanishing.
(2) $\lim _{n \rightarrow \infty} \lambda_{n, j} \alpha_{h}^{n}=0$ for all $(j, h) \in \mathbb{N} \times \mathbb{N}$.
(3) $\sum_{n=0}^{\infty} \lambda_{n, j} \alpha_{h}^{n}=\delta_{j, h}$ for all $(j, h) \in \mathbb{N} \times \mathbb{N}$.
(4) $M P=P M=I_{\infty}$.
(5) $P(b) \in \mathcal{E}_{1}$ for all $\mathbf{b} \in \mathcal{E}_{0}$.
(6) $M P(\mathbf{b})=\mathbf{b}$ for all $\mathbf{b} \in \mathcal{E}_{0}$.
(7) ψ_{P} is injective.

Let $\left(\nu_{n}\right)$ be a sequence in \mathbf{K} such that $\left|\nu_{0}\right| \geq\left|\nu_{n}\right|$ for every $n>0$. For every $j \in \mathbb{N}$, let $\left(\mu_{n, j}\right)_{n \in \mathbb{N}}$ denote the sequence $\left(\frac{1}{\sum_{m=0}^{\infty} \nu_{m} \alpha_{j}^{m}}\right)\left(\left(\lambda_{n, j}\right) *\left(\nu_{n}\right)\right)$. Then the matrix $Q=\left(\mu_{i, j}\right)$ also satisfies properties (1)-(7) and is not equal to P for infinitely many sequences $\left(\nu_{n}\right)$.

Remarks. 1. Mainly, the proof of Theorem 3 takes inspiration from that of Lemma 3 in [7]. However, in this lemma, the considered matrix, roughly, was P. Here the matrix we consider is a van der Monde matrix M and we look for P.
2. Given M, the matrix P depends on g and therefore is not unique satisfying (1)-(7). Indeed \mathcal{M}_{∞} is not a ring because the multiplication of matrices is not always defined and even when it is defined, is not always associative. As a consequence, if P, P^{\prime} satisfy $M P=M P^{\prime}=P M=P^{\prime} M=I_{\infty}$, we cannot conclude $P^{\prime}=P$.

Actually we can consider $\phi_{M} \circ \psi_{P} \in \mathcal{L}\left(\mathcal{E}_{0}, \mathcal{E}\right)$ and then this is the identity in \mathcal{E}_{0}. Next we can consider $\psi_{P^{\prime}} \circ \psi_{M} \in \mathcal{L}\left(\mathcal{E}_{0}, \mathcal{E}_{1}\right)$ and this is the identity in \mathcal{E}_{0}. But we cannot consider $\psi_{P^{\prime}} \circ\left(\phi_{M} \circ \psi_{P}\right)$ because $\psi_{P^{\prime}}$ is not defined in \mathcal{E}_{1}. In the same way, we cannot consider $\left(\psi_{P^{\prime}} \circ \psi_{M}\right) \circ \psi_{P}$ because $\psi_{P^{\prime}} \circ \psi_{M}$ is only defined in \mathcal{E}_{0}.

We consider the matrix P and look for "inverses" M such that $M P=P M=I_{\infty}$. Suppose that there exists a bounded matrix $M^{\prime} \neq M$ such that $P M^{\prime}=M^{\prime} P=I_{\infty}$. Now we can consider $\phi_{M^{\prime}} \circ\left(\psi_{P} \circ \psi_{M}\right) \in \mathcal{L}\left(\mathcal{E}_{0}, \mathcal{E}\right)$. Since $\psi_{P} \circ \psi_{M}$ is the identity in \mathcal{E}_{0}, then $\phi_{M^{\prime}} \circ\left(\psi_{P} \circ \psi_{M}\right)$ is equal to $\psi_{M^{\prime}}$. Next we can consider $\left(\phi_{M^{\prime}} \circ \psi_{P}\right) \circ \psi_{M} \in \mathcal{L}\left(\mathcal{E}_{0}, \mathcal{E}\right)$. Since
$\phi_{M^{\prime}} \circ \psi_{P}$ is the identity on \mathcal{E}_{0}, we have $\left(\phi_{M^{\prime}} \circ \psi_{P}\right) \circ \psi_{M}=\psi_{M}$ and therefore $\psi_{M}=\psi_{M^{\prime}}$ hence $M=M^{\prime}$.
3. Let $P, Q \in \mathcal{M}_{\infty}$ satisfy (1)-(7). Let $\mathcal{E}^{\prime}=\psi_{P}\left(\mathcal{E}_{0}\right)$, let $\mathcal{E}^{\prime \prime}=\psi_{Q}\left(\mathcal{E}_{0}\right)$. Then the restriction of ϕ_{M} to \mathcal{E}^{\prime} (resp. $\mathcal{E}^{\prime \prime}$) is just the reciprocal of ψ_{P} (resp. ψ_{Q}).

Conjecture. Under the hypothesis of Theorem 1, every matrix satisfying properties (1) - (7) is of the form

$$
\mu_{n, j}=\left(\frac{1}{\sum_{m=0}^{\infty} \nu_{m} \alpha_{j}^{m}}\right)\left(\left(\lambda_{n, j}\right) *\left(\nu_{n}\right)\right)
$$

Theorem 4 : Let K be spherically complete, and let $\left(\alpha_{n}\right)$ be a sequence in $d\left(0,1^{-}\right)$ satisfying $\left|\alpha_{n}-\alpha_{m}\right| \geq \min \left(\left|\alpha_{n}\right|,\left|\alpha_{m}\right|\right)$ whenever $n \neq m, \lim _{n \rightarrow \infty}\left|\alpha_{n}\right|=1$, and $\prod_{n=0}^{\infty}\left|\alpha_{n}\right|=0$.

Then $\mathcal{M}\left(\alpha_{n}\right)$ admits inverses P such that, for every bounded sequence $\mathbf{b}:=\left(b_{n}\right)$ in \mathbf{K}, the sequence $\mathbf{a}:=\left(a_{n}\right)=P(\mathbf{b})$ defines a function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in A\left(d\left(0,1^{-}\right)\right)$satisfying $f\left(\alpha_{n}\right)=b_{n}$.

Theorem 5: Let $\left(\alpha_{n}\right)$ be a regular sequence in $d\left(0,1^{-}\right)$. There exists a regular sequence $\left(\gamma_{n}\right)$ in $d\left(0,1^{-}\right)$such that $\left(\alpha_{n}\right)$ is a subsequence of $\left(\gamma_{n}\right)$ satisfying : for every inverse matrix P of $\mathcal{M}\left(\gamma_{n}\right)$ and for every bounded sequence $\mathbf{b}=\left(b_{n}\right)$ of \mathbf{K}, the sequence $\mathbf{a}=P(\mathbf{b}):=\left(a_{n}\right)$ defines an analytic function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ such that $f\left(\gamma_{j}\right)=b_{j}$ whenever $j \in \mathbb{N}$.

2. PROVING THEOREMS 1 AND 2.

For each set D in K, we denote by $H(D)$ the set of the analytic elements in D (i. e., the completion of the set of the rational functions with no pole in D).

Given $f(t)=\sum_{n=0}^{\infty} b_{n} t^{n} \in A\left(d\left(0,1^{-}\right)\right)$, one defines the valuation function $v(f, \mu)$ in the interval $] 0,+\infty\left[\right.$ as $v(f, \mu)=\inf _{n \in \mathbb{N}}\left(v\left(b_{n}\right)+n \mu\right)$.

Lemma 3 and 4 gather the main properties of the function $v(f, \mu)([1],[4])$.
Lemma 3 Let $f(t)=\sum_{n=0}^{\infty} b_{n} t^{n} \in A\left(d\left(0,1^{-}\right)\right)$. For every $\mu>0, f$ satisfies
$v(f, \mu)=\lim _{v(t) \rightarrow \mu, v(t) \neq \mu} v(f(t))$. For every $x \in d\left(0,1^{-}\right), f$ satisfies $v(f(x)) \geq v(f, v(x))$.
For every $r \in] 0,1\left[, f\right.$ satisfies $-\log \|f\|_{d(0, r)}=v(f,-\log r)$.
Besides f is bounded in $d\left(0,1^{-}\right)$if and only if the sequence $\left(b_{n}\right)$ belongs to \mathcal{E}_{0}. If f is bounded in $d\left(0,1^{-}\right)$, then $\|f\|_{d\left(0,1^{-}\right)}=\sup _{n \in \mathbb{N}}\left|b_{n}\right|$ and $-\log \|f\|_{d\left(0,1^{-}\right)}=\lim _{\mu \rightarrow 0} v(f, \mu)$.

Lemma 4 : Let $f(t) \in A\left(d\left(0,1^{-}\right)\right)$and let $r_{1}, r_{2} \in(0,1)$ satisfy $r_{1}<r_{2}$. If f admits q zeros in $d\left(0, r_{1}\right)$ (taking multiplicities into account) and t distinct zeros $\alpha_{1}, \ldots, \alpha_{t}$, of multiplicity order $\zeta_{j}(1 \leq j \leq t)$ respectively in $\Gamma\left(0, r_{1}, r_{2}\right)$, then f satisfies

$$
v\left(f,-\log r_{2}\right)-v\left(f,-\log r_{1}\right)=-\sum_{j=1}^{t} \zeta_{j}\left(v\left(a_{j}\right)+\log r_{2}\right)-q\left(\log r_{2}-\log r_{1}\right)
$$

Proof of Theorem 1. Let $\mathbf{b}=\left(b_{n}\right) \in \mathcal{E}_{1} \backslash\{(0)\}$ and let $f(t)=\sum_{n=0}^{\infty} b_{n} t^{n} \in A\left(d\left(0,1^{-}\right)\right)$.
First we suppose $\operatorname{Ker} \phi_{M} \neq\{(0)\}$ and therefore we can assume $\mathbf{b} \in \operatorname{Ker} \phi_{M}$. Then, by Lemma 2, f satisfies $f\left(a_{j}\right)=0$ for every $j \in N$. But for every $\left.r \in\right] 0,1[$, we know that f belongs to $H(d(0, r))$ and has finitely many zeros in $d(0, r)$. Hence we have $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$.

Reciprocally, let the sequence $\left(a_{n}\right)$ satisfy $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$. By Proposition 5 in [4], we know that there exists a not identically zero analytic function $f(t)=\sum_{n=0}^{\infty} b_{n} t^{n} \in A\left(d\left(0,1^{-}\right)\right)$ which admits each a_{j} as a zero. Hence we have $\sum_{n=0}^{\infty} b_{n} a_{j}^{n}=0$, and of course the sequence (b_{n}) belongs to \mathcal{E}_{1}, hence to $\operatorname{Ker} \phi_{M}$.

Now we suppose that $\operatorname{Ker} \psi_{M} \neq(0)$ and we assume that the sequence $\left(b_{n}\right)$ belongs to $\operatorname{Ker} \psi_{M}$. In particular $\operatorname{Ker} \phi_{M} \neq(0)$ and therefore $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$. Without loss of generality we may clearly assume $\left|a_{n}\right| \leq\left|a_{n+1}\right|$ for all $n \in \mathbb{N}$. Besides, by definition we have $\left|a_{1}\right|>0$. By Lemma 3 we know that $\inf _{n \in \mathbb{N}} v\left(b_{n}\right)=\lim _{\mu \rightarrow 0^{+}} v(f, \mu)=\lim _{|x| \rightarrow 1, x \in D} v(f(x))=-\log \|f\|_{d\left(0,1^{-}\right)}$. Now for each $\mu>0$, let $q(\mu)$ be the unique integer such that $v\left(a_{n}\right) \geq \mu$ for every $n \leq q(\mu)$ and $v\left(a_{n}\right)<\mu$ for every $n>q(\mu)$. By Lemma 4, we check

$$
v(f, \mu)-v\left(f, v\left(a_{1}\right)\right) \leq \sum_{j=2}^{q(\mu)} \mu-v\left(a_{j}\right)+2\left(\mu-v\left(a_{1}\right)\right) .
$$

Since $v(f, \mu)$ is bounded when μ approaches 0 , by (1) it is seen that $\sum_{j=1}^{\infty} v\left(a_{j}\right)$ must be bounded and therefore we have $\prod_{n=1}^{\infty}\left|a_{n}\right|>0$.

Reciprocally we suppose $\prod_{n=1}^{\infty}\left|a_{n}\right|>0$. We can easily check that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$, and then we can assume $\left|a_{n}\right| \leq\left|a_{n+1}\right|$ for all $n \in \mathbb{N}$ without loss of generality. For each
$j \in \mathbb{N}$ we put $P_{j}(x)=\prod_{m=1}^{j}\left(1-x / a_{m}\right)$. By Theorem 1 in [2], we can check that there exists $f \in A\left(d\left(0,1^{-}\right)\right)$(f not identically zero) satisfying
(3) $f\left(a_{m}\right)=0$ for all $m \in \mathbb{N}$, and
(4) $v(f, \mu) \geq v\left(P_{q(\mu)}, \mu\right)-1$ for all $\mu>0$.

Now we notice that if $\mu_{1}>\mu_{2}>0$ then we have $v\left(P_{q\left(\mu_{1}\right)}, \mu_{1}\right)=v\left(P_{q\left(\mu_{2}\right)}, \mu_{1}\right)$ and then we see that $\lim _{\mu \rightarrow 0^{+}} v\left(P_{q(\mu)}, \mu\right)=\sum_{j=1}^{\infty} v\left(a_{j}\right)$. But by (2) we have $\sum_{j=1}^{\infty} v\left(a_{j}\right)<+\infty$ and therefore by (4), $v(f, \mu)$ is bounded in $] 0,+\infty\left[\right.$. Let $f(t)=\sum_{n=0}^{\infty} b_{n} t^{n}$. By Lemma 3 the sequence $\left(b_{n}\right)$ is bounded and by (3) it clearly belongs to Ker. ψ_{M}. This finishes the proof of Theorem 1.

Lemma 5 : Let $f(t)=\sum_{n=0}^{\infty} b_{n} t^{n} \in A\left(d\left(0,1^{-}\right)\right)$and let $r \in(0,1)$. Then f admits at least one zero in $C(0, r)$ if and only if there exist $k, l \in \mathbb{N}(k<l)$ such that $\left|b_{k}\right| r^{k}=\left|b_{l}\right| r^{l}$.

Proof of Theorem 2. As a consequence of Lemma 5, a function $f(t)=\sum_{n=0}^{\infty} b_{n} t^{n} \in A\left(d\left(0,1^{-}\right)\right)$ admits infinitely many zeros in $d\left(0,1^{-}\right)$if and only if $\left|b_{j}\right|<\sup _{n \in \mathbb{N}}\left|b_{n}\right|$ for every $j \in \mathbb{N}$. Then the conclusion comes from Lemma 2.

3. PROVING THEOREM 3.

As an application of Corollary (of Theorem 5) in [8], we have this lemma.
Lemma 6 : Let $f \in A\left(d\left(0,1^{-}\right)\right)$have a regular sequence of zeros $\left(b_{n}\right)$ and satisfy $\lim _{\substack{|x| \rightarrow 1^{-} \\ x \in \Omega^{-}}}|f(x)|=+\infty$. Then $1 / f$ belongs to $H\left(\Omega\left(b_{n}\right)\right)$. $x \in \Omega\left(b_{n}\right)$

Proof of Theorem 3. We may obviously assume $\left|\alpha_{n}\right| \leq\left|\alpha_{n+1}\right|$ and therefore $\alpha_{n} \neq 0$ whenever $n>0$. Since g is not bounded in $d\left(0,1^{-}\right)$, by Lemma 3 we have $\lim _{\mu \rightarrow 0^{+}} v(g, \mu)=-\infty$, and by Lemma 4 the sequence of the zeros $\left(\alpha_{n}\right)$ satisfies $\prod_{n=1}^{\infty}\left|\alpha_{n}\right|=0$, hence ψ_{M} is injective. Now we look for P. Since g admits each α_{j} as a simple zero, it factorizes in $A\left(d\left(0,1^{-}\right)\right)$ in the form $\psi_{j}(x)\left(1-x / \alpha_{j}\right)$ and we have $\psi_{j}\left(\alpha_{j}\right) \neq 0$. We put $g_{j}(x)=\frac{\psi_{j}(x)}{\psi_{j}\left(\alpha_{j}\right)}$. Then g_{j} belongs to $A\left(d\left(0,1^{-}\right)\right)$and may be written as $\sum_{n=0}^{\infty} \lambda_{n, j} x^{n}$. We denote by P the matrix

$$
\left(\begin{array}{ccccc}
\lambda_{00} & \lambda_{01} & \ldots & \lambda_{0 n} & \ldots \\
\lambda_{10} & \lambda_{11} & \ldots & \lambda_{1 n} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \ddots \\
\lambda_{j 0} & \lambda_{j 1} & \ldots & \lambda_{j n} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \ddots
\end{array}\right)
$$

and we will show this satisfies Properties (1) - (7).
For convenience, we put $D=\Omega\left(\alpha_{n}\right)$. Since $\lim _{\substack{|x| \rightarrow 1^{-} \\ x \in D}}|g(x)|=+\infty$, by Lemma 6 , we know that $1 / g$ belongs to $H(D)$. For each $n \in \mathbb{N}$, we put $u_{n}=x^{n} / g$. Then in $H(D), u_{n}$ has a Mittag-Leffler series ([3], [5]) of the form $\sum_{j=0}^{\infty} \frac{\beta_{j, n}}{1-x / \alpha_{j}}$. Now we put $\theta_{j}=\psi_{j}\left(\alpha_{j}\right)$ and we have $g(x)=\theta_{j} g_{j}(x)\left(1-x / \alpha_{j}\right)$. We will compute the $\beta_{j, n}$. Let $v_{j, n}=\left(1-x / \alpha_{j}\right) u_{n}$. Then we have $v_{j, n}\left(\alpha_{i}\right)=\frac{\alpha_{j}^{n}}{g_{j}\left(\alpha_{j}\right) \theta_{j}}$. But since $g_{j}\left(\alpha_{j}\right)=1$ whenever $j \in \mathbb{N}$, we see that $\beta_{j, n}=\alpha_{j}^{n} / \theta_{j}$, hence $x^{n} g(x)=\sum_{i=0}^{n} \frac{\alpha_{j}^{n}}{\theta_{j}\left(1-x / \alpha_{j}\right)}$. We notice that $\left\|\frac{\alpha_{j}^{n}}{1-x / \alpha_{j}}\right\|_{D}=\frac{\left|\alpha_{j}\right|^{n+1}}{\rho}$ and then we have $\lim _{j \rightarrow \infty}\left|\theta_{j}\right|=+\infty$, because the sequence of the terms $x^{n} / g(x)$ must tend to 0 . Now we have $x^{n}=\sum_{j=0}^{n} \frac{\alpha_{j}^{n} g(x)}{\theta_{j}\left(1-x / \alpha_{j}\right)}$, while $g_{j}(x)=\frac{g(x)}{\theta_{j}\left(1-x / \alpha_{j}\right)}$. Since $g_{j}(x)=\sum_{n=0}^{\infty} \lambda_{n, j} x^{n}$, we obtain

$$
\text { (8) } x^{n}=\sum_{j=0}^{\infty} \alpha_{j}^{n}\left(\sum_{h=0}^{\infty} \lambda_{h, j} x^{h}\right) \text {. }
$$

In particular, (8) holds in every disk $d(0, r)$ with $r \in] 0,1[$. But then we know that $\left\|g_{j}\right\|_{d(0, r)}=\sup _{h \in \mathbb{N}}\left|\lambda_{j, h}\right| r^{h} \leq \frac{\left\|\psi_{j}\right\|_{d(0, r)}}{\left|\theta_{j}\right|}$. Now, we have $\left\|\phi_{j}\right\|_{d(0, r)} \leq\|g\|_{d(0, r)}$ as soon as $\left|\alpha_{i}\right|>r$ because then $\left\|1 /\left(1-x / \alpha_{j}\right)\right\|_{d(0, r)}=1$ and therefore the sequence $\left(\left\|\phi_{j}\right\|_{d(0, r)}\right)_{j \in \mathbb{N}}$ is bounded. Then the family $\left(\left|\lambda_{h, j}\right| r^{h}\right)_{j, h \in \mathbb{N}}$ tends to zero when j tends to $+\infty$, uniformly with respect to h. In particular, P is line-vanishing. For each $h \in \mathbb{N}$, we put $s_{h}=\sup _{j \in \mathbb{N}}\left|\lambda_{h, j}\right|$. We will show
(9) $\limsup _{h \rightarrow+\infty} s_{h}^{1 / h} \leq 1$.

Indeed this is equivalent to show that for every $r \in] 0,1[$, we have

$$
\begin{equation*}
\lim _{h \rightarrow \infty} s_{h} r^{h}=0 \tag{10}
\end{equation*}
$$

Let $r \in] 0,1\left[\right.$ and let $\epsilon>0$. Since the family $\left(\left|\lambda_{h, j}\right| r^{h}\right)_{j, h \in \mathbb{N}}$ tends to zero uniformly with respect to h when j tends to $+\infty$, there clearly exists N such that $\left|\lambda_{h, j}\right| r^{h}<\epsilon$ whenever $j>N$, whenever $h \in \mathbb{N}$, hence for every $h \in \mathbb{N}$, we have $s_{h} r^{h} \leq \max _{1 \leq j \leq N}\left|\lambda_{h, j}\right| r^{h}$. But for each fixed $i \in \mathbb{N}$, we know that $\lim _{h \rightarrow \infty}\left|\lambda_{h, j}\right| r^{h}=0$, hence $\lim _{h \rightarrow \infty}\left(\max _{1 \leq j \leq N}\left|\lambda_{h, j}\right| r^{h}\right)=0$. This finishes showing (10). Therefore (9) is proven and so is (2).

Now, we can apply the limits inversion theorem and, then, by (8), we have

$$
\begin{equation*}
x^{n}=\sum_{h=0}^{\infty}\left(\sum_{j=0}^{\infty} \alpha_{j}^{n} \lambda_{h, j}\right) x^{h} \tag{11}
\end{equation*}
$$

whenever $x \in d(0, r)$. Actually this is true for all $r \in] 0,1[$ and therefore (11) holds for all $x \in d\left(0,1^{-}\right)$. Hence we have $\sum_{j=0}^{\infty} \alpha_{j}^{n} \lambda_{h, j}=0$ whenever $n \neq h$ and $\sum_{j=0}^{\infty} \alpha_{j}^{n} \lambda_{n, j}=1$. So (3) is satisfied.

Thus we have proven that $P M=I_{\infty}$. Now we check that $M P=I_{\infty}$. For every $h \neq j$, we have $g_{j}\left(\alpha_{h}\right)=g\left(\alpha_{h}\right)=0$, hence $\sum_{h=0}^{\infty} \alpha_{h}^{n} \lambda_{h, j}=0$. Besides, it is seen that $g_{j}\left(\alpha_{j}\right)=1$, hence $\sum_{n=0}^{\infty} \alpha_{j}^{n} \lambda_{n, j}=1$. So we conclude that $M P=I_{\infty}$ and this finishing proving (4).

Now, we will check that $P(\mathbf{b}) \in \mathcal{E}_{1}$ for all $\mathbf{b} \in \mathcal{E}_{0}$. Let $\mathbf{b}:=\left(b_{n}\right) \in \mathcal{E}_{0}$, let $\mathbf{a}:=$ $\left(a_{n}\right)=P(\mathbf{b})$ and let $f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$. For each $j \in \mathbb{N}$ we put $f_{j}(t)=\sum_{m=0}^{j} b_{m} g_{m}(t)$. Then f_{j} belongs to $A\left(d\left(0,1^{-}\right)\right)$for all $j \in \mathbb{N}$. Let $\left.r \in\right] 0,1\left[\right.$. Like the family $\left|\lambda_{n, j}\right| r^{n}$, the family $\left|\lambda_{n, j} b_{j}\right| r^{n}$ tends to zero uniformly with respect to n when j tends to $+\infty$. That way, in $H(d(0, r))$ we have $\lim _{j \rightarrow \infty}\left\|f-f_{j}\right\|_{d(0, r)}=0$ and therefore f belongs to $H(d(0, r))$. This is true for all $r \in] 0,1\left[\right.$ and therefore f belongs to $A\left(d\left(0,1^{-}\right)\right)$. Hence $P(b) \in \mathcal{E}_{1}$. This shows (5).

Let us show (6). Let $\mathbf{b}:=\left(b_{0}, \ldots, b_{n}, \ldots\right)$ be a bounded sequence. Let $\mathbf{a}=P \mathbf{b}$, and let $\mathbf{a}=\left(a_{0}, \ldots, a_{n}, \ldots\right)$. We will show
(12) $\underset{n \rightarrow \infty}{\limsup }\left|a_{n}\right|^{1 / n} \leq 1$.

Without loss of generality, we may assume $\left|b_{j}\right| \leq 1$, whenever $j \in \mathbb{N}$. Then we have $\left|a_{n}\right| \leq \sup _{j \in \mathbb{N}}\left|\lambda_{n, j}\right|=s_{n}$, therefore $\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \leq \limsup _{n \rightarrow \infty} s_{n}^{1 / n} \leq 1$. Now, by (12), it is seen that for all $j \in \mathbb{N}$, the series $\sum_{n=0}^{\infty} a_{n} \alpha_{j}^{n}$ is convergent and therefore we may consider
$M \mathbf{a}=M(P \mathbf{b})$. By definition, for each $i \in \mathbb{N}$, we have $a_{i}=\sum_{j=0}^{\infty} \lambda_{i, j} b_{j}$. Let $M \mathbf{a}=\left(x_{h}\right)_{h \in \mathbb{N}}$. For each $h \in \mathbb{N}$ we have $x_{h}=\sum_{m=0}^{\infty} \alpha_{h}^{m} a_{m}=\sum_{m=0}^{\infty} \alpha_{h}^{m}\left(\sum_{j=0}^{\infty} \lambda_{m, j} b_{j}\right)$. Let $r=\left|\alpha_{h}\right|$. As we saw, the family $\left|\lambda_{m, j} b_{j}\right| r^{m}$ tends to 0 when m tends to $+\infty$, uniformly with respect to j. Hence by the Limits Inversion Theorem, we have

$$
\sum_{m=0}^{\infty} \alpha_{h}^{m}\left(\sum_{j=0}^{\infty} \lambda_{m, j} b_{j}\right)=\sum_{j=0}^{\infty} b_{j}\left(\sum_{m=0}^{\infty} \lambda_{m, j} \alpha_{h}^{m}\right) .
$$

Hence by (3), we see that $x_{j}=b_{j}$ and this finishes proving (6). Then by (6) ψ_{P} is clearly injetive.

Finally we will prove the last statement of the theorem. Let $\phi(x)=\sum_{n=0}^{\infty} \nu_{n} x^{n}$. The function ϕ belongs to $A\left(d\left(0,1^{-}\right)\right)$and is invertible in $A\left(d\left(0,1^{-}\right)\right)$thanks to the inequality $\left|\nu_{0}\right|>\left|\nu_{n}\right|$ whenever $n>0$. Hence the function $G(x)=g(x) \phi(x)$ is easily seen to satisfy i$)$, ii), iii), iv) like g. Then G factorizes in $A\left(d\left(0,1^{-}\right)\right)$and can be written as $\phi_{j}(x)\left(1-x / \alpha_{j}\right)$ with $\phi_{j}(x)=\psi_{j}(x) \phi(x)$. Hence we put $G_{j}(x)=\frac{\phi_{j}(x)}{\phi_{j}\left(\alpha_{j}\right)}=\frac{g_{j}(x) \phi(x)}{\phi\left(\alpha_{j}\right)}$. Now it is clearly seen that the power series of G_{j} is $\sum_{n=0}^{\infty} \mu_{n, j} x^{n}$. By definition, the matrix Q satisfies the same properties as P. But when ϕ is not a constant function, for each fixed $j \in \mathbb{N}$, we do not have $\mu_{n, j}=\lambda_{n, j}$ for all $n \in \mathbb{N}$. Hence Q is different from P. As a consequence we see that ψ_{M} is not surjective, it would be an automorphism of \mathcal{E}_{0} and therefore ψ_{P} would also be an automorphism of \mathcal{E}_{0} and it would be unique. This ends the proof of Theorem 3.

4. PROVING THEOREMS 4 AND 5

Notation. For each integer $q \in \mathbb{N}^{*}$, we will denote by $\mathcal{G}(q)$ the group of the q-roots of 1 .
Lemma $7: L$ Let $\left(a_{n}\right)$ be a sequence in $d\left(0,1^{-}\right)$such that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$. For each $s \in \mathbb{N}$, there exists a prime integer $q>p$ and $\zeta \in \mathcal{G}(q)$ such that $\left|\zeta^{h} a_{s}-a_{j}\right|=\max \left(\left|a_{s}\right|,\left|a_{j}\right|\right)$ for every $j \in \mathbb{N}$, for every $h=1, \ldots, q-1$.
Proof. Let $r=\left|a_{s}\right|$. Since $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$, the circle $C(0, r)$ contains finitely many terms of the sequence $\left(a_{n}\right)$. Without loss of generality we may assume $\left|a_{n}\right|<r$ whenever $n<l,\left|a_{n}\right|>r$ whenever $n>t$ and $\left|a_{n}\right|=r$, whenever $n=l, \ldots, t$ (with obviously $l \leq s \leq t$). Wuatever $q \in \mathbb{N}, \zeta \in \mathcal{G}(q)$ are, it is seen that we have $\left|\zeta^{h} a_{s}-a_{j}\right|=\left|a_{s}\right|$ for all $j<l$ and $\left|\zeta^{h} a_{s}-a_{j}\right|=\left|a_{j}\right|$ for all $j>t$. In the residue class field k of \mathbf{K}, for every $j=l, \ldots, t$. let γ_{j} be the class of a_{j} / a_{s}. There does exist a prime integer $q>p$ such that the polynomial $p(x)=x^{q}-1$ admits none of the $\gamma_{j}(l \leq j \leq t)$ as a zero. Hence, for
every q-root ν of 1 in k, we have $\nu^{h} \neq \gamma_{j}$ whenever $j=l, \ldots, t$, whenever $h=1, \ldots, q-1$. Now let ζ be a q-th root of 1 in K. Then by classical properties of the polynomials, we have $\left|\frac{\zeta^{h}-a_{j}}{a_{s}}\right|=1$, hence $\left|\zeta^{h} a_{s}-a_{j}\right|=\left|a_{s}\right|=r$ whenever $h=1, \ldots, q-1$, whenever $j=l, \ldots, t$. This completes the proof of Lemma 7 .

Lemma 8 : Let $\left(a_{n}\right)$ be a regular sequence and let $\rho=\inf _{n \neq m}\left|a_{n}-a_{m}\right|$. There exists a sequence $\left(b_{n}\right)$ in $d\left(0,1^{-}\right)$satisfying :
(1) $\lim _{n \rightarrow \infty}\left|b_{n}\right|=1$.
(2) $\left|b_{n}-b_{m}\right| \geq \rho$ whenever $n \neq m$.
(3) $\left(a_{n}\right)$ is a subsequence of $\left(b_{n}\right)$,
(4) There exists a sequence $\left(q_{n}\right)$ of prime integers different from p satisfying $\lim _{n \rightarrow \infty} q_{n}=+\infty$, such that for every $m \in \mathbb{N}, \zeta \in \mathcal{G}\left(q_{n}\right), \zeta b_{n}$ is another term of the sequence $\left(b_{n}\right)$,
(5) There exists $f \in A\left(d\left(0,1^{-}\right)\right)$admitting each b_{n} as a simple zero and having no other zero in $d\left(0,1^{-}\right)$, satisfying

$$
\lim _{\substack{|x| \rightarrow 1^{-} \\ x \in \Omega\left(b_{n}\right)}}|f(x)|=+\infty .
$$

Proof. First we will construct a sequence (b_{n}^{\prime}) satisfying (1), (2), (3), (4). Let (q_{j}) be a strictly increasing sequence of prime integers strictly bigger than p and, for each $j \in \mathbb{N}$, let $s_{j}=\sum_{i=0}^{j} q_{i}$, let $\zeta_{j} \in \mathcal{G}\left(q_{j}\right) \backslash\{1\}$ and let $b_{\zeta_{j}+h}^{\prime}=\zeta_{j}^{h} a_{j}\left(0 \leq h \leq q_{j}-1\right)$. We will show that a good choice of the sequence $\left(q_{j}\right)$ enables us to obtain

$$
\text { (6) }\left|b_{n}^{\prime}-b_{m}^{\prime}\right|=\max \left(\left|b_{n}^{\prime}\right|,\left|b_{m}^{\prime}\right|\right)
$$

for every couple (n, m) satisfying $n \neq m$ and $(n, m) \neq\left(s_{i}, s_{j}\right)$ whenever $(i, j) \in \mathbb{N} \times \mathbb{N}$. In other words $\left|b_{n}^{\prime}-b_{m}^{\prime}\right|=\max \left(\left|b_{n}^{\prime}\right|,\left|b_{m}^{\prime}\right|\right)$ must be true all time except when $n=m$ and when $\left(b_{n}^{\prime}, b_{m}^{\prime}\right)$ is equal to some couple ($a_{s_{i}}, a_{s_{j}}$). For each $t \in \mathbb{N}$, let $F_{t}=\left\{s_{0}, s_{1}, \ldots, s_{t}\right\}$ and let E_{t} be $\left\{0,1, \ldots, s_{t}-1\right\} \backslash F_{t}$. Assume that $q_{0}, q_{1}, \ldots, q_{t-1}$ have been chosen to satisfy the following properties $\left(\alpha_{t}\right)$ and $\left(\beta_{t}\right)$
(α_{t}) $\quad\left|b_{n}^{\prime}-a_{s_{j}}\right|=\max \left(\left|b_{n}^{\prime}\right|,\left|a_{s_{j}}\right|\right)$ for all $j \in \mathbb{N}$, for all $n \in E_{t}$.
(β_{t}) $\quad\left|b_{n}^{\prime}-b_{m}^{\prime}\right|=\max \left(\left|b_{n}^{\prime}\right|,\left|b_{m}^{\prime}\right|\right)$ for all $(n, m) \in E_{t} \times E_{t}$ such that $n \neq m$. We will choose q_{t} such that both $\left(\alpha_{t+1}\right),\left(\beta_{t+1}\right)$ are satisfied. Indeed, by Lemma 7 we can take a prime integer u such that, given $\zeta_{t} \in \mathcal{G}(u)$, we have $\left|\zeta_{t}^{h} a_{t}-a_{j}\right|=\max \left(\left|a_{t}\right|,\left|a_{j}\right|\right)$ for all $j \in \mathbb{N}$, for all $h=1, \ldots, u-1,\left|\zeta_{t}^{h} a_{t}-b_{n}^{\prime}\right|=\max \left(\left|a_{t}\right|,\left|b_{n}^{\prime}\right|\right)$ for all $n<s_{t}$, for all $h=1, \ldots, u-1$. Thus we can take $q_{t}=u$ and we see that both $\left(\alpha_{t+1}\right),\left(\beta_{t+1}\right)$ are satisfied. Hence we can construct the sequence $\left(q_{t}\right)$ by induction and, therefore, the sequence (b_{n}^{\prime}) satisfying (6) is now constructed. Then it is easily checked that the sequence (b_{n}^{\prime}) so obtained satisfies (1), (2), (3), (4).

Now let $\left\{r_{0}, \ldots, r_{n}, \ldots\right\}=\left\{\left|a_{j}\right|: j \in \mathbb{N}\right\}$ and let $D=\Omega\left(b_{n}\right)$. The infinite product $g(x)=\prod_{j=0}^{\infty}\left(1-\left(x / a_{j}\right)^{q_{j}}\right)$ converges in $A\left(d\left(0,1^{-}\right)\right)$and has no zero in $d(0, r) \cap D$ because, by construction of the sequence $\left(b_{n}^{\prime}\right)$, each zero of g is one of the points b_{m}^{\prime} for some $m \in \mathbb{N}$. Hence it is seen that we have $|g(x)| \geq 1$ for every $x \in d\left(0,1^{-}\right) \backslash\left(\bigcup_{n=0}^{\infty} C\left(0, r_{n}\right)\right)$. For each $n \in \mathbb{N}$, let $\Sigma_{n}=D \cap C\left(0, r_{n}\right)$, let $\tau_{n}=\inf _{x \in \Sigma_{n}}|g(x)|$, let $\sigma_{n} \in\left(r_{n}, r_{n+1}\right) \cap|\mathbf{K}|$, let $c_{n} \in$ $C\left(0, \sigma_{n}\right)$, and let $u_{n}>\min (p, n)$ be a prime integer such that $\tau_{n}\left(\frac{r_{n+1}}{\sigma_{n}}\right)^{u_{n}}>n+1$. Since $\lim _{n \rightarrow \infty} u_{n}=+\infty$, it is seen that the infinite product $h(x)=\prod_{n=0}^{\infty}\left(1-\left(x / c_{n}\right)^{u_{n}}\right)$ converges in $A\left(d\left(0,1^{-}\right)\right)$. Let $D^{\prime}=\Omega\left(\left(c_{n}\right), \rho\right)$ and let $D^{\prime \prime}=D^{\prime} \cap D$. Let $h(x)=\sum_{n=0}^{\infty} \lambda_{n} x^{n}$ and, for each $r \in(0,1)$, let $M(r)=\sup _{n \in \mathbb{N}}\left|\lambda_{n}\right| r^{n}$. Each pole of h is simple and is of the form ζc_{n} with $\zeta \in \mathcal{G}\left(u_{n}\right)$. Hence it is seen that h satisfies $|h(x)| \geq M|x| / \rho$ for all $x \in D^{\prime}$. Hence if $x \in D^{\prime \prime} \backslash\left(\bigcup_{n=0}^{\infty} \Sigma_{n}\right)$, then we have $|g(x) h(x)|=M\left(r_{n}\right) \tau_{n} \geq\left(\frac{r_{n}}{r_{n-1}}\right)^{u_{n-1}} \tau_{n}>n$ and finally we have

$$
\begin{equation*}
\lim _{\substack{|x| \rightarrow 1 \\ x \in D^{\prime \prime}}}|g(x) h(x)|=+\infty \tag{7}
\end{equation*}
$$

Now let ($b_{n}^{\prime \prime}$) be the sequence of the zeros of g. Clearly $\left(b_{n}^{\prime \prime}\right)$ satisfies (1) and (4) and also satisfies $\left|b_{n}^{\prime \prime}-b_{m}^{\prime}\right|=\max \left(\left|b_{n}^{\prime \prime}\right|,\left|b_{m}^{\prime}\right|\right)$ whenever $n, m \in \mathbb{N}$ and $\left|b_{n}^{\prime \prime}-b_{m}^{\prime \prime}\right|=\max \left(\left|b_{n}^{\prime \prime}\right|,\left|b_{m}^{\prime \prime}\right|\right)$ whenever $n \neq m$. Now we put $b_{2 n}=b_{n}^{\prime}$ and $b_{2 n+1}=b_{n}^{\prime \prime}$. The sequence $\left(b_{n}\right)$ clearly satisfies (1), (2), (3), (4) and also satisfies (5) because the zeros of h are the $b_{n}^{\prime \prime}$ while those of g are the b_{n}^{\prime}. Thus the zeros of f are just the b_{n}, and then, by (7), we have $\lim _{\substack{|x| \rightarrow 1 \\ x \in \Omega\left(b_{n}\right)}}|f(x)|=+\infty$.
This ends the proof of Lemma 8.
Proof of Theorem 4. Without loss of generality we may obviously assume $\left|\alpha_{n}\right| \leq\left|\alpha_{n+1}\right|$ whenever $n \in \mathbb{N}$. Let $\rho=\left|\alpha_{0}\right|$. Hence by hypothesis each disk $d\left(\alpha_{q}, \rho^{-}\right)$contains no point α_{n} for each $n \neq q$. Let $D=\Omega\left(\left(\alpha_{n}\right), \rho^{-}\right)$.

For each $n \in \mathbb{N}$, let T_{n} be the hole $d\left(\alpha_{n}, \rho^{-}\right)$of D. Since $\left|\alpha_{n}\right|=0$, it is shortly checked that the sequence $\left(T_{n}, 1\right)$ is a T-sequence of $D([8])$. Then, since K is spherically complete, by [4], Theorem 4, there exists $g \in A\left(d\left(0,1^{-}\right)\right)$admitting each α_{n} as a simple zero and having no zero else in $d\left(0,1^{-}\right)$. Therefore, as $\prod_{n=0}^{\infty}\left|\alpha_{n}\right|=0$, is is seen that g
satisfies $\lim _{\substack{|x| \rightarrow 1^{-} \\ x \in D}}|g(x)|=+\infty$. Now we can apply Theorem 3 , which shows that the matrix $M=\mathcal{M}\left(a_{n}\right)$ admits inverses P. Then the sequence $\left(a_{n}\right)$ satisfies $\sum_{n=0}^{\infty} a_{n} \alpha_{j}^{n}=b_{j}$ for every $j \in \mathbb{N}$ and this clearly ends the proof of Theorem 4.

Proof of Theorem 5. By Lemma 8, there exists a regular sequence $\left(\gamma_{n}\right)$ of $d\left(0,1^{-}\right)$ such that $\left(\alpha_{n}\right)$ is a subsequence of $\left(\gamma_{n}\right)$ together with an analytic function $g \in A\left(d\left(0,1^{-}\right)\right)$ admitting each γ_{m} as a simple zero and having no other zero in $d\left(0,1^{-}\right)$, satisfying $\lim _{\substack{1 x \mid 1-1 \\ x \in \Omega\left(\gamma_{n}\right)}}|g(x)|=+\infty$ with $\rho=\inf _{n \neq m}\left|\gamma_{n}-\gamma_{m}\right|$. Then, by Theorem 3 , the matrix $M=\mathcal{M}\left(\gamma_{n}\right)$ admits line-vanishing inverses M^{\prime} satisfying $M\left(M^{\prime}(\mathbf{b})\right)=\mathbf{b}$ for all bounded sequence $\mathbf{b}=\left(b_{n}\right)$. Let $\mathbf{a}:=\left(a_{n}\right)=M^{\prime}(\mathbf{b})$. Thus we have $M(\mathbf{a})=\mathbf{b}$ and therefore $\sum_{n=0}^{\infty} a_{n} \gamma_{j}^{n}=b_{j}$ whenever $j \in \mathbb{N}$. This ends the proof of Theorem 5 .

Acknowledgement : We are very grateful to Labib Haddad whose remarks contributed to suggest Theorems 1 and 2.

REFERENCES

[1] AMICE, Yvette, Les nombres p-adiques, P.U.F. 1975.
[2] FRESNEL, Jean, DE MATHAN, Bernard, L'image de la transformation de Fourier p-adique, C.R.A.S. Paris, Série A, 278 (1974), 653-656.
[3] KRASNER, Marc, Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendences géométriques en algèbre et théorie de nombres. ClermontFerrand 1964, pp 97-141. Centre Nationale de la Recherche Scientifique (1966) (Colloques internationaux du C.N.R.S., Paris, 143).
[4] LAZARD, Michel, Les zéros d'une fonction analytique sur un corps valué complet, Publications Mathématiques, 14 (1962), 47-75, IHES (PUF).
[5] ROBBA, Philippe, Fonctions analytiques sur les corps valués ultramétriques complets. Prolongement analytique et algèbres de Banach ultramétriques, Astérisque, 10 (1973), 109-220.
[6] SARMANT, Marie-Claude, Produits méromorphes, Bulletin des Sciences Mathématique: 109 (1985), 155-178.
[7] SARMANT, Marie-Claude, ESCASSUT, Alain, Prolongement analytique à travers un T-filtre, Studia Scientiarum Mathematicarum Hungarica, 22 (1987), 407-444.
[8] SARMANT, Marie-Claude, ESCASSUT, Alain, Fonctions analytiques et produits croulants, Collectanea Mathematica, 36 (1985), 199-218.
[9] SERRE, Jean Pierre, Endomorphismes completement continus d'espaces de Banach p-adiques, Publications Mathématiques n 12, IHES (1962), 69-85.

Jesus Araujo
Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias,
Universidad de Cantabría,
Avda. de los Castros,
39071 Santander,
Spain
e-mail address : araujo@ccucvx.unican.es

Alain Escassut
Laboratoire de Mathématiques Pures, Université Blaise Pascal, (Clermont-Ferrand),
Les Cézeaux,
63177 Aubière,
France
e-mail address : escassut@ucfma.univ-bpclermont.fr

[^0]: * Research partially supported by the Spanish Dirección General de Investigación Cientifíca y Téchnica (DGICYT, PS90-100)

