# E. BECKENSTEIN L. NARICI W. SCHIKHOF Compactification and compactoidification

Annales mathématiques Blaise Pascal, tome 2, nº 1 (1995), p. 43-50 <a href="http://www.numdam.org/item?id=AMBP">http://www.numdam.org/item?id=AMBP</a> 1995 2 1 43 0>

© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

# $\mathcal{N}$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.43-50

### COMPACTIFICATION AND COMPACTOIDIFICATION

#### E. Beckenstein, L. Narici, and W. Schikhof

Abstract. After discussing some of the many ways to get the Banaschewski compactification  $\beta_0 T$  of an arbitrary ultraregular space T, we develop another construction of  $\beta_0 T$  in Th. 2.1. Using those ideas, we develop an analog of  $\beta_0 T$ —what we call a *compactoidification*  $\kappa T$  of an ultraregular space T in Sec. 3;  $\kappa T$  is, in essence, a complete absolutely convex compactoid 'superset' of T to which continuous maps of T with precompact range into any complete absolutely convex compactoid subset may be 'continuously extended.'

1991 Mathematics subject classification: 46S10, 54D35, 54C45

# 1 The Many Faces

For any topological spaces X and Y, C (X, Y) and  $C^*(X, Y)$  denote the spaces of continuous maps of X into Y and the continuous maps of X into Y with relatively compact range, respectively. To say that a topological space X is ultraregular or ultranormal means, respectively, that the clopen sets are a basis or disjoint closed subsets of X may be separated by clopen sets. A synonym for ultraregular is 0-dimensional. We have a slight preference for the former in order to avoid confusion with other notions of dimension. Throughout the discussion, T denotes at least a Hausdorff space. For an ultraregular space E containing at least two points and ultraregular T, B. Banaschewski [2] discovered a compactification  $\beta_0 T$  of T in which every  $x \in C^*(T, E)$  may be continuously extended to  $\beta_0 x \in C(\beta_0 T, E)$ .  $\beta_0 T$  is nowadays usually called the Banaschewski compactification of T. It functions as the natural analog of the Stone-Čech compactification ( $\beta_0 T$  is  $\beta T$  for ultranormal T) in non-Archimedean analysis. Like the Stone-Čech compactification, the Banaschewski compactification is a protean entity, assuming many different guises. We discuss some of them in this section and then develop a new one in Sec. 2.

### 1.1 As a completion

Let E be an ultraregular space containing at least two points and let T be ultraregular. Let  $C^{*}(T, E)$  denote the weakest uniform structure on T making each  $x \in C^{*}(T, E)$  uniformly continuous into the compact space cl x(T) equipped with its unique compatible uniform

structure. By [1], pp. 92-93, since T is ultraregular, C\* (T, E) is compatible with the topology on T and C\* (T, E) is a precompact uniform structure on T. Since C\* (T, E) is precompact, its completion  $\beta_0 T$  is compact and is called the Banaschewski compactification of T.  $\beta_0 T$ is ultranormal ([2], p. 131, Satz 2 or [1], p. 93, Theorem 1)—hence ultraregular—and, by the usual process of extension by continuity function from a dense subspace to the whole space, each  $x \in C^*(T, E)$  may be continuously extended to a unique continuous function  $\beta_0 x$  $\in C^*(\beta_0 T, E)$ .  $\beta_0 T$  is unique in a sense we discuss in the context of E-compactifications (Th. 1.6). At this point the reader may find the notation  $\beta_0 T$  curious. Why  $\beta_0 T$  and not  $\beta_E T$ ? As long as E is ultraregular and contains at least two points ([1], p. 93, [8], pp. 240-243), the uniformity C\* (T, E) does not depend on E! A fundamental system of entourages for C\* (T, E), no matter what E is, is defined by the sets

$$\mathsf{V}_{\mathcal{P}} = \bigcup \{ V \times V : V \in \mathcal{P} \}$$

where  $\mathcal{P}$  is any finite open (therefore clopen) cover of T by pairwise disjoint sets. The completion of T with respect to this uniformity is the way Banaschewski obtained  $\beta_0 T$ . The definition of  $\beta_0 T$  as the completion of  $C^*(T, E)$  where E is the discrete space of integers was first given in [7], though the idea of treating compactifications as completions is due to Nachbin. The connection with the Stone-Čech compactification is the following.

**Definition 1.1** Let  $\mathcal{P}$  be a finite clopen cover of a topological space S by pairwise disjoint sets and let V denote the uniformity generated by  $V_{\mathcal{P}}$ . We say that S is strongly ultraregular if  $V = C^*(T, \mathbf{R})$ .

**Theorem 1.2** ([8], pp. 251-2) (a) Every ultranormal  $T_1$ -space S is strongly ultraregular. (b) If a topological space S is strongly ultraregular then  $\beta_0 S = \beta S$ .

### **1.2** As an E-Compactification

Tihonov proved that a completely regular space T may be characterized as one that is homeomorphic to a subspace of a product  $[0,1]^m$  of unit intervals. Even though his name is not associated with it, he created the first version of the Stone-Čech compactification  $\beta T$  of T by then taking the closure of T in  $[0,1]^m$ . Engelking and Mrówka [5] developed analogous notions of *E*-completely regular space T and *E*-compactification  $\beta_E T$ . Let S and E be two topological spaces. S is called *E*-completely regular if it is homeomorphic to a subspace of the m-fold topological product  $E^m$  for some cardinal m. If  $E = \mathbf{R}$  or [0,1], this is the familiar notion of complete regularity. With 2 denoting the discrete space  $\{0,1\}$ , it happens that

**Theorem 1.3** ([16], p. 17) A topological space S is 2-completely regular if and only if it is an ultraregular  $T_0$ -space.

An *E*-compact space is one which is homeomorphic to a closed subspace of a topological product  $E^m$  for some cardinal *m*. The 2-compact spaces are characterized as follows:

**Theorem 1.4** ([5]. p.430, Example (iii)) A topological space S is 2-compact if and only if it is compact and ultraregular.

An E-compactification  $\beta_E T$  of an E-completely regular space T is

(1) an E-compact space which contains T as a dense subset and

(2) ('the *E*-extension property') each  $x \in C(T, E)$  may be extended to  $\beta_E x \in C(\beta_E T, E)$ .

The following analogs of properties of the Stone-Čech compactification obtain for *E*-compactifications.

**Theorem 1.5** ([5], p. 433, Theorem 4, [16], pp. 25-27, 4.3 and 4.4). An E-completely regular (Hausdorff) space T has a Hausdorff E-compactification  $\beta_E T$  with the following properties:.

(a) If S is an E-compact space then every continuous function  $x: T \to S$  has a continuous extension  $\bar{x}: \beta_E T \to S$ .

(b) The space  $\beta_E T$  is unique in the sense that if S is an E-compact space containing T as a dense subset and such that every continuous  $x: T \to E$  has a continuous extension to S, then S is homeomorphic to  $\beta_E T$  under a homeomorphism that is the identity on T.

(c) T is E-compact if and only if  $T = \beta_E T$ .

How does this apply to  $\beta_0 T$ ? Ultraregular spaces T are 2-completely regular by Th. 1.3. Since  $\beta_0 T$  is compact and ultranormal, it follows that  $\beta_0 T$  is 2-compact by Th. 1.4. Therefore, by Th. 1.5(b) it follows that

**Theorem 1.6** UNIQUENESS OF  $\beta_0 T$ .  $\beta_0 T$  is homeomorphic to  $\beta_2 T$  under a homeomorphism that is the identity on T, as would be any ultraregular compactification of an ultraregular T with the E-extension property.

## **1.3** As a Space of Characters

Let F be an ultraregular Hausdorff topological field so that  $X = C^*(T, F)$  may be considered as an F-algebra. A character of X is a nonzero algebra homomorphism from X into F. Let the set H of characters of X be equipped with the weakest topology for which the maps  $H \to F, h \longmapsto h(x)$ , are continuous for each  $x \in C^*(T, F)$ . For each  $p \in \beta_0 T$ , let  $p^{-1}$  denote the evaluation map at p, the map  $C^*(T, F) \to F, x \longmapsto \beta_0 x(p)$ . It is trivial to verify that each  $p^{-1}$  is a character of  $C^*(T, F)$ . But more is true: You get all the characters of  $C^*(T, F)$ this way. In fact, the map

$$\begin{array}{cccc} A: & \beta_0 T & \longrightarrow & H \\ & p & \longmapsto & p^{\uparrow} \end{array}$$

establishes a homeomorphism between  $\beta_0 T$  and H. The details may be found in [1], Theorem 3 and [8], Theorem 8.15.

#### 1.4 Characters Again

Once again  $\beta_0 T$  is realized as a space of nonzero homomorphisms—ring homomorphisms this time—into the very simple (discrete) field 2 with 2 elements.

A commutative ring X with identity in which each element is idempotent is called a *Boolean ring.* A subcollection X of the set of subsets of a given set T which is closed under union, intersection and set difference of any two of its members is called a *ring* of sets. Such a collection forms a ring in the usual algebraic sense if addition and multiplication are taken to be symmetric difference and intersection, respectively. If the sets in X cover T then X is called a *covering ring.* Since X must have a multiplicative identity (i.e., with respect to intersection) any covering ring must contain T as an element. Any covering ring X generates (in the sense that it is a subbase for) a ultraregular topology on T; the topology is ultraregular since the complement T - A of any open set (member of X) must belong to X. In the converse direction, the class Cl(T) of clopen subsets obviously constitutes a covering ring of any topological space T.

Let X be a Boolean ring and endow  $2^X$  with the product topology. The *Stone space* S(X) of the Boolean ring X is the subspace of  $2^X$  of all nonzero ring homomorphisms of X into 2. S(X) is called the Stone space because of Stone's use of it in his remarkable characterization of compact ultraregular spaces.

THE STONE REPRESENTATION THEOREM ([12], Theorem 4, [12], [4] p.227 or [6], pp. 77-80) If T is a compact ultraregular space, then T is homeomorphic to the Stone space of the Boolean ring CI(T) of clopen subsets of T. Conversely, the Stone space S(X) of any Boolean ring X is a compact ultraregular Hausdorff space and X is ring-isomorphic to the Boolean ring CI(T) of clopen subsets of S(X).

If T is ultraregular then  $\beta_0 T$  is the Stone space of Cl(T). Indeed, the map  $\beta : T \to S(Cl(T)), t \longmapsto \beta t$ , defined for  $t \in T$  and  $K \in Cl(T)$  by

$$(\beta t)(K) = \begin{cases} 1 \in \mathbf{2} & t \in K \\ 0 \in \mathbf{2} & t \notin K \end{cases}$$

is a homeomorphism of T onto a dense subset of the compact ultraregular Hausdorff space S(CI(T)).

#### 1.5 As a Space of Measures

Let T be ultraregular and let Cl(T) be the ring (algebra, actually, since  $T \in Cl(T)$ ) of clopen subsets of T, and let F be an ultraregular Hausdorff topological field. A 0-1 measure on T is a finitely additive set function  $m : Cl(T) \rightarrow \{0,1\} \subset F$  satisfying the condition:

$$m(U) = 0$$
 and  $U \supset V \in Cl(T) \Longrightarrow m(V) = 0$ 

in other words, that clopen subsets of sets of measure 0 also have measure 0. Measures  $m_t$  'concentrated at points  $t \in T$ ' (also called 'purely atomic' or 'the point mass at t')) which

are 1 on a clopen set U if  $t \in U$  and 0 otherwise are 0-1 measures on T. The weak clopen topology for the collection M of all 0-1 measures on T has as a neighborhood base  $m_0 \in M$ sets of the form

$$V(m_0; S_1, \ldots, S_n) = \{m \in M : m(S_j) = m_0(S_j), j = 1, \ldots n\}$$

where the  $S_j$  are clopen sets and  $n \in \mathbb{N}$ . It is trivial to verify that the map  $t \to m_t$  is a homeomorphism of T into M. Using the techniques of [1] one can demonstrate that M is a compact ultranormal Hausdorff space to which any  $x \in C^{*}(T, F)$  may be continuously extended. It follows that  $\beta_0 T = M$  in the sense of Th. 1.6.

Last, let us mention that  $\beta_0 T$  may also be realized as a Wallman compactification utilizing the lattice of clopen subsets of T.

## 2 A New Approach

A construction of  $\beta_0 T$  using the methods of non-Archimedean functional analysis is presented in Theorem 2.1. The proof hinges on the fact that, for a local field F, if U is a neighborhood of 0 in a locally F-convex space X then its polar  $U^{\circ}$  is  $\sigma(X', X)$ -compact ([15], Th. 4.11). Note that  $\sigma(X', X)$  is ultraregular since the seminorms  $p_x(f) = |f(x)|, x \in X, f \in X'$ , are non-Archimedean.

**Theorem 2.1** Let F be a local field, let T be ultraregular and let  $C^{\bullet}(T, F)$  denote the supnormed space of all continuous F-valued functions on T with relatively compact range. There is an ultranormal compactification  $\beta_0 T$  of T such that any  $x \in C^{\bullet}(T, F)$  may be continuously extended to a function  $\beta_0 x \in C(\beta_0 T, F)$ .

**Proof.** For  $t \in T$ , let t denote the evaluation map  $x \mapsto x(t)$  for any  $x \in C^{*}(T, F)$ . We note that each such  $t^{-}$  is a continuous linear form (algebra homomorphism, actually) and is of norm one. Thus  $T^{*} = \{t^{*}: t \in T\} \subset U$  where U denotes the unit ball of the normdual  $C^{\bullet}(T,F)'$  of  $C^{\bullet}(T,F)$ . Furthermore, the map  $i:T \to C^{\bullet}(T,F)', t \mapsto t^{\bullet}$ , embeds T homeomorphically in  $C^*(T, F)'$  endowed with its weak-\* topology by the following argument. The map i is obviously injective. If a net  $t_s \to t \in T$  then  $x(t_s) \to x(t)$  for any  $x \in C^*(T, F)$ ; hence  $t_i \rightarrow t^{-}$  and therefore i is continuous. To see that i is a homeomorphism onto i(K), let K be a closed subset of T. Since T is ultraregular, if  $t \notin K$  then there exists  $x \in C^{\bullet}(T, F)$  such that x(t) = 0 and |x(K)| = r > 1. Hence the polar  $\{x\}^{\circ}$  of  $\{x\}$  is a neighborhood of t<sup>^</sup> disjoint from K<sup>^</sup> and K<sup>^</sup> is a closed subset of i(K). As U is the polar of the unit ball of  $C^{\bullet}(T, F)$ , it follows that U is weak-\*-compact ([15], Th. 4.11). Therefore the closure cT in U of (the homeomorphic image of )  $T^{*}$  is compact in  $C^{*}(T, F)'$  endowed with the weak-\* topology. As to the continuous extendibility of  $x \in C^{-}(T, F)$ , consider the canonical image Jx of x in the second algebraic dual of  $C^*(T, F)$ , i.e., for any  $f \in C^*(T, F)'$ , Jx(f) = f(x). Clearly Jx is weak-\*-continuous on  $C^{\bullet}(T, F)'$ ; so, therefore, is its restriction  $\beta_0 x = J x |_{cT}$ . Should this be called  $c_F T$  rather than cT? No topologically significant changes occur for different F's: the compactness of the ultraregular space cT and the fact that T is C<sup>\*</sup>-embedded in cT imply that  $cT = \beta_0 T$  by Th. 1.6.

## **3** Compactoidification

In this section we construct a compactoidification  $\kappa T$  of an ultraregular space T.  $(F, |\cdot|)$  denotes a complete nontrivially ultravalued field throughout. As usual, we abbreviate 'F-convex' to 'convex.' A map f defined on an absolutely convex subset A of a vector space over F with values in some absolutely convex set in a vector space over F is called *affine* if f(ax + by) = af(x) + bf(y) for all  $x, y \in A$  and all  $a, b \in F$  with  $|a| \leq 1$  and  $|b| \leq 1$ .

**Definition 3.1** A compactoidification of an ultraregular space T is a pair  $(i, \kappa T)$  where  $\kappa T$  is a complete absolutely convex compactoid subset of some Hausdorff locally convex space E over F and  $i: T \to \kappa T$  is a continuous map with precompact range for which following extendibility property holds: For any complete absolutely convex compactoid subset A of some Hausdorff locally convex space E over F and any continuous map  $j: T \to A$  with precompact range, there exists a unique continuous affine map  $J: \kappa T \to A$  such that  $J \circ i = j$ .



**Theorem 3.2** A compactoidification is unique in the following natural sense: if  $(i_1, \kappa_1 T)$ and  $(i_2, \kappa_2 T)$  are compactoidifications of T then there exists a unique affine homeomorphism  $J_1: \kappa_1 T \to \kappa_2 T$  such that  $J_1 \circ i_1 = i_2$ . Moreover, the map i must be injective.

**Proof.** By definition, there exist unique continuous affine maps  $J_1$  and  $J_2$  such that  $J_2 \circ i_1 = i_2$  and  $J_1 \circ i_2 = i_1$ . Thus,  $J_1 \circ (J_2 \circ i_1) = J_1 \circ i_2 = i_1$ .

$$\begin{array}{c} \kappa_1 T \\ i_1 \uparrow & \searrow \\ T & \stackrel{i_2}{\longrightarrow} & \kappa_2 T \end{array}$$

Since the identity map  $I_1: t \mapsto t$  of  $\kappa_1 T$  onto  $\kappa_1 T$  also satisfies  $I_1 \circ i_1 = i_1$ , it follows from the uniqueness that  $I_1 = J_1 \circ J_2$ . Similarly,  $I_2 = J_2 \circ J_1$  where  $I_2$  is the identity map of  $\kappa_2 T$ onto  $\kappa_2 T$ . It follows that  $J_1$  is a homeomorphism of  $\kappa_1 T$  onto  $\kappa_2 T$  and  $J_2$  is its inverse. If  $i_1(t_1) = i_1(t_2)$  then  $i_2(t_1) = J_1 \circ i_1(t_1) = J_1 \circ i_1(t_2) = i_2(t_2)$  so if one of the maps *i* is 1-1, all such *i* must be. As shown in Theorem 3.3, there is an *i* that is 1-1.

In the notation of Sec. 2:

**Theorem 3.3** Let T be ultraregular and let the continuous dual  $C^*(T, F)'$  of  $C^*(T, F)$  carry the weak-\* topology. Then

(a) the closed absolutely convex hull  $\kappa T$  of  $T^*$  is the unit ball U of  $C^*(T, F)'$  and

(b) the pair  $(i, \kappa T)$  is a compact of T.

**Proof.** Clearly the absolute convex hull B of  $T^{-}$  is contained in the unit ball U of  $C^{-}(T, F)'$ . Since U is a complete compactoid by the p-adic Alaoglu theorem ([9], Prop.

3.1), so, therefore, is the closed absolutely convex hull  $\kappa T$  of the compact set cl  $T^{\wedge}$ . It follows from [10], Prop. 1.3 that B is edged (i.e., if the valuation of F is dense then cl  $B = \cap \{a(\ clB) : a \in F, |a| > 1\}$ ) and therefore ([9], Th. 4.7) a polar set in  $C^{\bullet}(T, F)'$ . If cl  $B \neq U$  there must exist  $g \in C^{\bullet}(T, F)''$  such that  $|g| \leq 1$  on B and |g(f)| > 1 for some  $f \in U$ -cl B. Since g must be an evaluation map determined by some point  $x \in C^{\bullet}(T, F)$  by [9], Lemma 7.1, we have found an x such that  $|x(t)| = |t^{\wedge}(x)| \leq 1$  for all  $t \in T$  but |f(x)| > 1. As this contradicts  $||f|| \leq 1$ , the proof of (a) is complete.

(b) As in the proof of Th. 2.1, *i* is a homeomorphism onto the precompact set  $T^{\uparrow}$ . To verify the extendibility requirement, let A be a complete absolutely convex compactoid and let  $j: T \to A$  be continuous with precompact range. We define the affine extension J of j on the absolutely convex hull B of  $T^{\uparrow}$  by taking  $J(\sum_{i=1}^{n} a_i t_i^{\uparrow}) = \sum_{i=1}^{n} a_i j(t_i)$  for  $a_i \in F, |a_i| \leq 1, i = 1, \ldots, n$ . The definition makes sense because the  $t_i^{\uparrow}$  are linearly independent for distinct  $t_i$ . Evidently  $j = J \circ i$ . To prove the continuity of J, let  $s \to \mu_s = \sum_{i=1}^{n} a_i^s t_i^{s^{\uparrow}}$  be a net in B convergent to 0 in the weak-\* topology. Let [A] denote the linear span of A and note that for any  $f \in [A]'$ , the map  $f \circ j \in C^{\bullet}(T, F)$ , since j(T) is precompact. Thus,

$$f(J(\mu_s)) = f\left(\sum_{i=1}^{n_s} a_i^s j(t_i^s)\right) = \sum_{i=1}^{n_s} a_i^s f(j(t_i^s)) = \mu_s(f \circ j) \to 0$$

and we conclude that  $J(\mu_s) \to 0$  in the weak topology of [A]. As A is of countable type, hence a polar space, the weak topology coincides with the initial one on the compactoid A ([9], Th. 5.12) so  $J(\mu_s) \to 0$  in A. By continuity and 'affinity,' J extends uniquely to a continuous affine map of cl  $B = \kappa T$  into A, since A is complete.

## References

- [1] BACHMAN, G., BECKENSTEIN, E., NARICI, L. AND WARNER, S. Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc. 204, 1975, 91-112.
- [2] BANASCHEWSKI, B. Über nulldimensionale Räume, Math. Nachr. 13, 1955, 129-140.
- [3] BECKENSTEIN, E., NARICI, L. AND SUFFEL, C. Topological algebras, North-Holland Mathematics Studies 24, Notas de Matemática 60, New York: North-Holland Publishing Co., 1977.
- [4] BIRKHOFF, G. Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications 25, Providence, R.I.: 1967.
- [5] ENGELKING, R., AND MRÓWKA, S. On E-compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 6, 1958, 429-436.
- [6] HALMOS, P. Lectures on Boolean algebras, New York: Springer-Verlag, 1974.
- [7] PIERCE, R. S. Rings of integer-valued continuous functions, Trans. Amer. Math. Soc. 100, 1961, 371-394.

- [8] PROLLA, J. B. Topics in functional analysis over valued division rings, North-Holland Mathematics Studies 77, Notas de Matemática 89, New York: North-Holland Publishing Co., 1982.
- [9] SCHIKHOF, W. Locally convex spaces over non-spherically complete valued fields I, II, Bull Soc. Math. Belg. Sér. B 38, 1986, 187-224.
- [10] SCHIKHOF, W. The closed convex hull of a compact set in a non-Archimedean locally convex space, Report 8646, Mathematics Department, Catholic University, Nijmegen, The Netherlands, 1986.
- [11] SCHIKHOF, W. The equalization of p-adic Banach spaces and compactoids, in P-adic Functional Analysis, 129-149, edited by N. De Grande-De Kimpe, S. Navarro and Wim H. Schikhof, Editorial Universidad de Santiago, Santiago, Chile: 1994.
- [12] STONE, M. Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 1937, 375-481.
- [13] SPRINGER, T. Une notion de compacité dans la théorie des espaces vectoriels topolgiques, Indag. Math., 27, 1965, 182-189.
- [14] VAN ROOIJ, A. Non-archimedean functional analysis, New York: Marcel Dekker, 1978.
- [15] VAN TIEL, J. Espaces localement K-convexes, Indag. Math., 27, 1965, 249-289.
- [16] WEIR, M. Hewitt-Nachbin spaces, North-Holland Mathematics Studies 17, Notas de Matemática 57, New York: North-Holland Publishing Co., 1975.

St. John's University Staten Island, NY 10301 USA e-mail: beckenst at sjuvm.stjohns.edu

St. John's University Jamaica, NY 11439 USA e-mail: naricil at sjuvm.stjohns.edu fax: 718-380-0353

Matematisch Instituut K. U. Nijmegen Toernooiveld 6525 ED Nijmegen, The Netherlands e-mail: schikhof at sci.kun.nl