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COMPACTIFICATION AND COMPACTOIDIFICATION

E. Beckenstein, L. Narici, and W. Schikhof

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.43-50

Abstract. After discussing some of the many ways to get the Banaschewski compactifi-
cation 03B20T of an arbitrary ultraregular space T, we develop another construction of 03B20T in
Th. 2.1. Using those ideas, we develop an analog of 03B20T2014what we call a compactoidification
K,T of an ultraregular space T in Sec. 3; r~T is, in essence, a complete absolutely convex

compactoid ’superset’ of T to which continuous maps of T with precompact range into any
complete absolutely convex compactoid subset may be ’continuously extended.’

1991 Mathematics subject classification: 46S10, 54D35, 54C45

1 The Many Faces

For any topological spaces X and Y, C (X, Y) and C* (X, V) denote the spaces of continuous
maps of X into Y and the continuous maps of X into Y with relatively compact range, respec-
tively. To say that a topological space X is ultraregular or ultranormal means, respectively,
that the clopen sets are a basis or disjoint closed subsets of X may be separated by clopen
sets. A synonym for ultraregular is 0-dimensional. We have a slight preference for the former
in order to avoid confusion with other notions of dimension. Throughout the discussion, T
denotes at least a Hausdorff space. For an ultraregular space E containing at least two points
and ultraregular T, B. Banaschewski [2] discovered a compactification 03B20T of T in which

every x E C* (T, E) may be continuously extended to 03B20x E E). 03B20T is nowadays
usually called the Banaschewski compactification of T. It functions as the natural analog of
the Stone-ech compactification (03B20T is aT for ultranormal T) in non-Archimedean analy-
sis. Like the Stone-Cech compactification, the Banaschewski compactification is a protean
entity, assuming many different guises. We discuss some of them in this section and then

develop a new one in Sec. ?.

1.1 As a completion
Let E be an ultraregular space containing at least two points and let T be ultraregular. Let
C* (T, E) denote the weakest uniform structure on T making each x E C* (T, E) uniformly
continuous into the compact space cl x (T) equipped with its unique compatible uniform
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structure. By [I], pp. 92-93, since T is ultraregular, C* (T, E) is compatible with the topology
on T and C* (T, E) is a precompact uniform structure on T. Since C* (T, E) is precompact,
its completion 03B20T is compact and is called the Banaschewski compactification of T. 03B20T
is ultranormal ([2], p. 131, Satz 2 or [1], p. 93, Theorem I)-hence ultraregular-and, by
the usual process of extension by continuity function from a dense subspace to the whole
space, each x E C* (T, E) may be continuously extended to a unique continuous function 03B20x
E C* E). 03B20T is unique in a sense we discuss in the context of E-compactifications (Th.
1.6). At this point the reader may find the notation /3oT curious. Why 03B20T and not ,QET?
As long as E is ultraregular and contains at least two points ([I], p. 93, ~8~, pp. 240-243).
the uniformity C* (T, E) does not depend on E! A fundamental system of entourages for
C* (T, E), no matter what E is, is defined by the sets

where P is any finite open (therefore clopen) cover of T by pairwise disjoint sets. The

completion of T with respect to this uniformity is the way Banaschewski obtained 03B20T. The
definition of PoT as the completion of C* (T, E) where E is the discrete space of integers
was first given in [7], though the idea of treating compactifications as completions is due to
Nachbin. The connection with the Stone-Cech compactification is the following.

Definition 1.1 Let P be a finite clopen cover of a topological space S by pairwise disjoint
sets and let V denote the uniformity generated by Vp . YYe say that S is strongly ultraregular

.

Theorem 1.2 ([8], pp. 251-2) (a) Every ultranormal T1-space S is strongly ultraregular.
(b) If a topological space S is strongly ultraregular then 03B20S = 03B2S.

1.2 As an E-Compactification
Tihonov proved that a completely regular space T may be characterized as one that is

homeomorphic to a subspace of a product [0, 11m of unit intervals. Even though his name is
not associated with it, he created the first version of the Stone-ech compactification /3T of
T by then taking the closure of T in [0, 1]m. Engelking and Mrówka [5] developed analogous
notions of E-completely regular space T and E-compactification 03B2ET. Let Sand E be two
topological spaces. S is called E-completely regular if it is homeomorphic to a subspace of the
m-fold topological product Em for some cardinal m. If E = R or [0, 1] , this is the familiar
notion of complete regularity. With 2 denoting the discrete space {0,1 }, it happens that

Theorem 1.3 ([16], p. 17) A topological space S is 2-completely regular if and only if it is
an ultraregular To-space.

An E-compact space is one which is homeomorphic to a closed subspace of a topological
product Em for some cardinal m. The 2-compact spaces are characterized as follows:

Theorem 1.4 ([5]. p.430, Example (iii)) A topological space S is 2-compact if and only if
it is compact and ultraregular.
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An E-compactification {3ET of an E-completely regular space T is

(I) an E-compact space which contains T as a dense subset and

(2) (’the E-extension property’) each x E C (T, E) may be extended to 13Ex E

C(03B2ET, E).

The following analogs of properties of the Stone-Cech compactification obtain for E-

compactifications.

Theorem 1.5 ((5~, p. 433, Theorem 4, [16] , pp. 25-27,4.3 and 4.4). . An E-completely regular
(Hausdorff) space T has a Hausdorff E-compactification 03B2ET with the following properties:.

(a) If S is an E-compact space then every continuous function x : T --~ S has a continuous

extension x : 03B2ET ~ S.

(b) The space 03B2ET is unique in the sense that if S is an E-compact space containing T
as a dense subset and such that every continuous x : T ~ E has a continuous extension to

S, then S is homeomorphic to 03B2ET under a homeomorphism that is the identity on T.

(c ) T is E-compact if and only if T = 03B2ET.

How does this apply to 03B20T? Ultraregular spaces Tare 2-completely regular by Th.
1.3. Since 03B20T is compact and ultranormal, it follows that /3oT is 2-compact by Th. 1.4.

Therefore, by Th. 1.5(b) it follows that

Theorem 1.6 UNIQUENESS OF PoT is homeomorphic to ~32T under a homeomor-
phism that is the identity on T, as would be any ultraregular compactification of an ultrareg-
ular T with the E-extension property.

1.3 As a Space of Characters

Let F be an ultraregular Hausdorff topological field so that X = C. (T, F) may be considered
as an F-algebra. A character of X is a nonzero algebra homomorphism from X into F. Let
the set H of characters of X be equipped with the weakest topology for which the maps
H --~ F, h - h (x), are continuous for each x E C* (T, F). For each p E /3oT let pA denote
the evaluation map at p, the map C’ (T, F) ~ F, x ~ 03B20x (p). It is trivial to verify that
each p’ is a character of C. (T, F) . But more is true: You get all the characters of C. (T, F)
this way. In fact, the map

A : 03B20T ~ H
p ’--’ P A

establishes a homeomorphism between poT and H. The details may be found in [1], Theorem
3 and [8], Theorem 8.15.
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1.4 Characters Again
Once again 03B20T is realized as a space of nonzero homomorphisms-ring homomorphisms this
time-into the very simple (discrete) field 2 with 2 elements.

A commutative ring X with identity in which each element is idempotent is called a
Boolean ring. A subcollection X of the set of subsets of a given set T which is closed under
union, intersection and set difference of any two of its members is called a ring of sets.
Such a collection forms a ring in the usual algebraic sense if addition and multiplication
are taken to be symmetric difference and intersection, respectively. If the sets in X cover
T then X is called a covering ring. Since X must have a multiplicative identity (i.e., with
respect to intersection) any covering ring must contain T as an element. Any covering ring
X generates (in the sense that it is a subbase for) a ultraregular topology on T ; the topology
is ultraregular since the complement T - A of any open set (member of X) must belong to X.
In the converse direction, the class CI (T) of clopen subsets obviously constitutes a covering
ring of any topological space T.

Let X be a Boolean ring and endow 2x with the product topology. The Stone space
S (X) of the Boolean ring X is the subspace of 2X of all nonzero ring homomorphisms of
X into 2. S (X ) is called the Stone space because of Stone’s use of it in his remarkable
characterization of compact ultraregular spaces.

THE STONE REPRESENTATION THEOREM ([12], Theorem 4, [12], [4] p.227 or
[6j, pp. 77-80) If T is a compact ultraregular space, then T is homeomorphic to
the Stone space of the Boolean ring CI (T) of clopen subsets of T. Conversely, the
Stone space S (X ) of any Boolean ring X is a compact ultraregular Hausdorff
space and X is ring-isomorphic to the Boolean ring CI (T) of clopen subsets of
S (X ).

If T is ultraregular then 03B20T is the Stone space of CI (T). Indeed, the map p : T -+

S (CI (T)), t ~ 03B2t, defined for t ~ T and K ~ CI (T) by

1 ~ 2 t ~ K(03B2t)(K) = {0 ~ 2 t ~ K
is a homeomorphism of T onto a dense subset of the compact ultraregular Hausdorff space
S (Cl (T)). .

1.5 As a Space of Measures

Let T be ultraregular and let Cl (T) be the ring (algebra, actually, since T E CI (T )) of clopen
subsets of T, and let F be an ultraregular Hausdorff topological field. A 0-1 measure on T
is a finitely additive set function m : CI (T) --~ ~0,1) C F satisfying the condition:

m (U) = 0 and 

in other words, that clopen subsets of sets of measure 0 also have measure 0. Measures mt
’concentrated at points t E T’ (also called ’purely atomic’ or ’the point mass at t’)) which
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are 1 on a clopen set U if t E U and 0 otherwise are 0-1 measures on T. The weak clopen
topology for the collection M of all 0-1 measures on T has as a neighborhood base mo E M
sets of the form

_ {m E M : = = I,...n}

where the Sj are clopen sets and n E N. It is trivial to verify that the map t -- mt is a

homeomorphism of T into M. Using the techniques of (IJ one can demonstrate that M is
a compact ultranormal Hausdorff space to which any x E C* (T, F) may be continuously
extended. It follows that 03B20T = M in the sense of Th. 1.6.

Last, let us mention that 03B20T may also be realized as a wallman compactification utilizing
the lattice of clopen subsets of T.. 

2 A New Approach
A construction of 03B20T using the methods of non-Archimedean functional analysis is presented
in Theorem 2.1. The proof hinges on the fact that, for a local field F, if U is a neighborhood
of 0 in a locally F-convex space X then its polar U° is Q (X’, X)-compact ([15], Th. 4.11).
Note that (}’ (X’, X) is ultraregular since the seminorms px ( f ) E X, f E X’, are
non-Archimedean.

Theorem 2.1 Let F be a local field, let T be ultraregular and let C’(T, F) denote the sup-
normed space of all continuous F-valued functions on T with relatively compact range. There
is an ultranormal compactification 03B20T of T such that any x E C*(T, F) may be continuously
extended to a function 03B20x E C (03B20T, F).

Proof. For t E T, let t" denote the evaluation map x ~----~ x(t) for any x E C’(T, F). ~Ve
note that each such is a continuous linear form (algebra homomorphism, actually) and
is of norm one. Thus T " = {t^ : t E T} C U where U denotes the unit ball of the norm-
dual C*(T, F)’ of C*(T, F). Furthermore, the map i T ~ C*(T, Fl’, t ~ t", embeds T

homeomorphically in C*(T, F)’ endowed with its weak-* topology by the following argument.
The map i is obviously injective. If a net t~ --~ t E T then x(t,) -~ x(t) for any x E C*(T, F);
hence -; t" and therefore i is continuous. To see that i is a homeomorphism onto

let ~’1 be a closed subset of T. Since T is ultraregular, if t ~ I( then there exists
x E C*(T, F) such that x(t) = 0 and |x(K)| = r > 1. Hence the polar of tx} is a
neighborhood of t" disjoint from and is a closed subset of i(K). As U is the polar
of the unit ball of C*(T, F), it follows that U is weak-*-compact ([IS), Th. 4.11}. Therefore
the closure cT in U of (the homeomorphic image of ) T " is compact in C*(T, F)’ endowed
with the weak-* topology. As to the continuous extendiblity of x E C’(T, F), consider the
canonical image Jx of x in the second algebraic dual of C*(T, F), i.e., for any f E C*(T, F)’,
Jx(f) = f (x). Clearly Jx is weak-*-continuous on C*(T,F)’; so, therefore, is its restriction
Qoz = Jx Should this be called cFT rather than cT? No topologically significant changes
occur for different F’s: the compactness of the ultraregular space cT and the fact that T is
C*-embedded in cT imply that cT = 03B20T by Th. 1.6.



48

3 Compactoidification
In this section we construct a compactoidification r~T of an ultraregular space T. (F, ~~!)
denotes a complete nontrivially ultravalued field throughout. As usual, we abbreviate ’F-
convex’ to ‘convex.’ A map f defined on an absolutely convex subset A of a vector space
over F with values in some absolutely convex set in a vector space over F is called affine if
f (ax + by) = a f (x) + b f (y) for all x, y E A and all a, b E F with ~a~  I and ~b~  1.

Definition 3.1 A compactoidification of an ultraregular space T is a pair (i, 03BAT) where 03BAT
is a complete absolutely convex compactoid subset of some Hausdorff locally convex space
E over F and t : T --> KT is a continuous map with precompact range for which following
extendibility property holds : For any complete absolutely convex compactoid subset A of some
Hausdorff locally convex space E over F and any continuous map j : T -~ A with precompact
range, there exists a unique continuous affine map J : KT --~ A such that J o i = j.

~T
, 

J

i ~ ~
T ’ A

Theorem 3.2 A compactoidification is unique in the following natural sense: if (i1, 03BA1T)
and (i2, 03BA2T) are compactoidifications o f T then there exists a unique affine homeomorphism
Ji : 03BA1T ~ 03BA2T such that Jl o i1 = i2. Moreover, the map i must be injective.

Proof. By definition, there exist unique continuous affine maps Ji and J2 such that J20il =

i2 and J1 o i2 = i1. Thus, J1 o (J2 o i1) = J1 o i2 = i1.
. 

yT
, 

J2
ht ~

. 

T -’-~ ~c2T
Since the identity map II : t ~ t of 03BA1T onto KIT also satisfies II o il = ii, it follows from
the uniqueness that fi = Ji o Jz. Similarly, 12 = J2 o Ji where 12 is the identity map of K2T
onto K2T. It follows that Ji is a homeomorphism of 03BA1T onto K.2T and J2 is its inverse. if

ii (ti) = ii (t2) then i2 (ti) = Ji o ii (tl) = J1 o il (t2) = i2 (t2) so if one of the maps i is 1-1,
all such i must be. As shown in Theorem 3.3, there is an i that is 1-1.

In the notation of Sec. 2:

Theorem 3.3 Let T be ultraregular and let the continuous dual C* (T, F)’ of C* (T, F) carry
the weak-* topology. Then

(a) the closed absolutely convex hull 03BAT of T^ is the unit ball U of C’ (T, F)’ and

(b ) the pair a compactoidi fication of T .

Proof. Clearly the absolute convex hull B of f is contained in the unit ball U of

C* (T, Fl’. Since U is a complete compactoid by the p-adic Alaoglu theorem ([9], Prop.
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3.1), so, therefore, is the closed absolutely convex hull ~T of the compact set cl T" . .
It follows from [10], Prop. 1.3 that B is edged (i.e., if the valuation of F is dense then
cl B = n {a( clB) : a E F, (ai > 1}) and therefore ([9], Th. 4.7) a polar set in C" (T, F)’.
If cl B ~ U there must exist g E C* (T, F)" such that (g~  1 on Band 19 ( f )~ > 1 for some
f E U-cl B. Since g must be an evaluation map determined by some point x E C* (T, F)
by [9], Lemma 7.1, we have found an 2 such that ( = (~) ~  1 for all t E T but

~ f (~)~ > I. As this contradicts ~j  1, the proof of (a) is complete.
(b) As in the proof of Th. 2.1, i is a homeomorphism onto the precompact set T ". To

verify the extendibility requirement, let A be a complete absolutely convex compactoid and
let j : T ~ A be continuous with precompact range. V’e define the affine extension J of j on
the absolutely convex hull B of T^ by taking J 1 a=ti") _ aij (t=) for a= e F, |ai| I 
1, i = 1, ... , n. The definition makes sense because the t;" are linearly independent for
distinct ti. Evidently j = J o i. To prove the continuity of J, let s -- s = asitsi^ be a
net in B convergent to 0 in the weak-* topology. Let [A] denote the linear span of A and
note that for any f E ~A~’, the map f o j E C* (T, F) ,since j (T) is precompact. Thus,

f(J( s)) = f (03A3 03B1sij (tsi)) = 03A3 asif(j(tsi)) = s (f o j) ~ 0

and we conclude that J (~~) --> 0 in the weak topology of (Aj . As A is of countable type.
hence a polar space, the weak topology coincides with the initial one on the compactoid A
([9], Th. 5.12) so J (~cs) -~ 0 in A. By continuity and ’affinity,’ J extends uniquely to a
continuous affine map of cl B = r~T into A, since A is complete.
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