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TOPOLOGICAL P-ADIC VECTOR SPACES

AND INDEX THEORY

Gilles Christol and Zoghman Mebkhout

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.93-98

Abstract. This report is part of a work developed from Robba’s ideas whose ultimate goal
would be to obtain a general finiteness theorem for p-adic cohomology. The basic question
is to prove existence of index for ordinary differential operators. Here we expose continuity
properties of index. Although it is apparently of an algebraic nature, the difficulties of index
theory are mainly analytic. In particular, it involves a great deal of topological vector
spaces, far beyond mere Banach spaces theory. The aim of this report is to illustrate this
fact.

1991 Mathematics subject classification : 12H25

I Index and duality.
Let k be a complete ultrametric field, for instance k = ~ p, let E be a k-vector space

and u : E --> E a linear map.

Definition. The map u is said to have an index if both ker u and coker u = E/ Im u are
finite-dimensional. If so, set :

x(u) = x( u, E) = dim(keru) - dim(cokeru)

Let E be a (locally convex) topological k-vector space, let u be continuous and let E’
be the (strong) dual of E.

Question. If u has an index does it has one ? If true, compare x( u) and ).

The following facts are easy to verify :
ker(’u ) = is isomorphic to the dual of the space coker(u) endowed with the
quotient topology.
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The pairing {x, y) def (x, y) gives a canonical map coker(tu ) (keru)’ . .
To go further, a definition is needed :

Definition. The space E is said to have Banach’s property if both conditions u continuous
and coker u finite-dimensional imply that Im u is closed.

For instance, as already noticed by L. Schwarz, every Banach space has Banach’s
property (this is a straightforward consequence of the open map theorem applied to the
map E x F -~ E for some algebraic, but a priori not topological, supplementary
F of Im u ).

Proposition 1 : : If E has Banach ’3 property and if u has an index then dim(ker tu ) =
dim(coker u) and dim(coker tu )  dim(ker u). . In other words, tu has an index and x(u) +

Proof : By hypothesis, Im u is closed then
1 ) coker u is Hausdorff hence :

dim(ker = dim(coker u)’ = dim(coker u)

2) The map coker(u ) ~ (ker u)’ is injective. Actually, let x in E. If its image x in
coker % belongs to ker i one has (x, y) = 0 for y in ker u. Hence one can define z in
(Im u)’ by {z, u(y)) = {x, y). As Im u is closed, z is the restriction of some element of
E’ also denoted by z. Then one has z = ~(~) and .r=0.

Remarque. If Hahn-Banach theorem were true for k-vector spaces, one could also prove
that i is onto. To bypass this difliculty, additional conditions are needed.

Corollary 2 : : If E is re f lexive (E and E" topologically isomorphic) and both E and E’
have Banach’s property then u has an index if and only if tu has an index. In that case

x{u) + x(~ ~ = 0.
Proof : By proposition 1 applied to u and tu :

dim(ker~ ) = dim(coker u),

dim(coker tu ) = dim(ker ttu) = dim(ker u).

II Spaces.
For each r > 0, let H(r ) be the ring of power series 03A3n>0 an xn of k[[x]] which converge

in the "closed" disk r (of some enough large extension of k). The k-vector space
H(r) is a Banach for the usual norm = max|x|~r |f(x)|.

Let be the ring of Laurent series 03A3n0 an x" of 1 x k[[1 x ]] which converge in the
"closed" disk centered at infinity |x| > r and which are zero at infinity. The k-vector space
K(r) is a Banach for the norm = max|x|~r |f(x)|.
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Let ,A(r) be the ring of power series 03A3n>0 an x" of k[[x]] which converge in the "open"
disk  r. . The relation :

A(r) = ~ H(s) = lim H(r - 1 n)

shows that ,A(r) is a countable inverse limit of Banach spaces. Then it is a Frechet space
when endowed with inverse limit topology. This is the "usual" topology defined by the

family of and we will use it. ..

Let be the ring of Laurent series f = x" of z k~~ ~ ]] which converge
in the disk s  for some s  r (depending on f ). The relation :

H~(r) = U K(s) = lim K(r - - ) 1

shows that is a countable direct limit of Banach spaces. We will endow it with

(locally convex) direct limit topology. Now, by definition of the direct limit topology, the

canonical imbedement ?’~lT (r) --> H(r) is continuous. Hence is an Hausdorff countable

direct limit of Banach spaces, namely an ,C~ space in the Grothendieck terminology [4].
Let R(r) be the field of Laurent series f = an xn of ]] which converge in

the annulus s   r for some s  r (depending on f ). The Mittag-Leffler decomposition

~(r) = ® A( r )
defines the topology on R(r) which is then an space.

Theorem 3 [5] : : The space A(r) is reflexive and its dual is H~(r) for the pairing
(03A3n~0anxn,03A3n~0bnx-n-1)=03A3n~0 anbn.

So is both an space and a D,~ space (dual of Frechet [4] ). Moreover, the

space R(r) is its one dual.

To conclude this section we recall two "classical" results :

Theorem 4 : : Every Frechet space has Banach’s property.

Theorem 5 [4, page 200] : : Every ~C.~ space has Banach’s property.

In fact, the second one is written for real or complexe spaces. It is possible but rather
tedious to verify that Hahn-Banach is not used in this long proof. Let take the opportunity
to express the wish that this basic theorem and related ones take their deserved places in
future account of topological spaces over an ultrametric field.

III Operators.
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Let D be the non-commutative ring K[x, d dx] I of (linear) differential operators with
polynomial coefficients. The spaces A(r), and R(r) are stable by derivation. As
A(r) and R.(r) contain ~[3?], they are D-modules for the scalar multiplication P f = P(f).
To define a Ð-module structure on one uses the exact sequence :

0 2014. A(r) 2014. H~(r) 20142014 0 (**)

For f in and P in P we define the scalar multiplication by P/ = ~(P(/)). Then
(**) becomes an exact sequence of Ð-modules.

Any difserential operator P acts continuously on the Banach spaces H(r) and K(r).
Hence it acts continuously on A(r) and R(r) and then on H~(r).
Basic facts : Let P = ~~o a, ( ~)’ be a differential operator of D. The following
assertion are easy to check :

A) ker(P,X(r)) and are finite-dimensional and their dimen-
sions are bounded by c(P) = d + max, deg(a,).

B) One has ~P = ~~o(- a, for the three dualities we defined (use the Leibnitz rule
to rearrange the terms).
Now the following result is a particular case of corollary 2.

Corollary 6 : A differential opener P has an index in A(r) if and only if the differential
operator tP has an index in H~(r) . If so ~(P,A(r)) + = 0.

If one is only interested in the exitence of index, one can work on R as shown by the
following result.

Proposition 7 : If an differential opener P has an index in R(r) then : has index
both in A(r) and and one has :

= ~(P,A(r)) + = ~(tP,A(r))

Proof : The short exact sequence (**) gives rise to a long exact sequence :

0 -~ 2014. 2014. 

~ coker(P, A(r)) 2014. coker(P,R(r)) 2014. coker(P, H~(r)) ~ 0

where underlined spaces are finite-dimensional by hypothesis or by assertion A). Then the
two remaining spaces are also finite-dimensional.

IV The Theorems.
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We are now interested by the way the index varies with r.

Theorem 8 : : Let rn be a growing sequence with limit r and let P be a differential
operator. If P has an index in H~(rn) for all n then it has an index in H~(r) and
~(P,H~(r)) = limn~~ ~(P,H~(rn) (index being integers, that means ~(P,H~(r)) =
X( P, for n large enough).

Proof : (see [1]). As rn  the canonical injection H~(rn) - H~(rn+1) has
dense image. Then the map coker(P,H~(rn)) ~ coker(P,H~(rn+1)), between finite-
dimensional Hausdorf spaces, has dense image hence is onto. Therefore the sequence

dim (coker(P, is decreasing and the sequence dim (coker(P, increasing
and bounded by assertion A). Hence both are constant for ra large enough. To conclude,
suffice it to say that = lim H~(rn) and that lim is an exact functor.

Corollary 9 : : Let rn be a growing sequence with limit r and let P be a differential
operator. If P has an index in A(rn) for all n then it has an index in A(r) and x(P, ,A(r)) _
limn~~ ~(P,A(rn)).

Proof : By duality (see (1~).
Remark : There are two obstructions to obtain a direct proof of the corollary 9. The
first one is that lim is not an exact functor. This could be overpassed by means of a

sophisticated version of Mittag-Leffler condition due to Grothendieck (~3?, III-o-13.2.4).
The second and deeper one, is that the sequence dim (coker(P, A(rn)) has no a priori
reason to be bounded.

We’ll explain elsewhere [2] how to define, for each real r, "p-adic exponents for the
radius r" of the differential operator P. This definition is far too long to be given here.
Then it will be possible to prove the folowing very deep result conjectured by Robba [6] :
Theorem 10 [1,2] : If p-adic exponents for the radius r of P are not Liouville neither
have Liouville differences, then
I~ P has an index in A(r).
2) X (P, .A{r)) = X (tP, ,A(r)), hence X (P, ?Z(r)) = 0. .
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