Annales mathématiques Blaise Pascal

BERTIN DIARRA

Representative subalgebra of a complete ultrametric Hopf algebra

Annales mathématiques Blaise Pascal, tome 2, no 1 (1995), p. 99-115
http://www.numdam.org/item?id=AMBP_1995__2_1_99_0
© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

REPRESENTATIVE SUBALGEBRA OF A COMPLETE

ULTRAMETRIC HOPF ALGEBRA

Bertin Diarra

Abstract

Let (H, m, c, η, σ) be a complete ultrametric Hopf algebra over a complete ultrametric valued field K, e be the unit of H and k the canonical map of K in H. In order words, H is a Banach algebra with multiplication $m: H \widehat{\otimes} H \rightarrow H$, coproduct $c: H \rightarrow H \widehat{\otimes} H$ a continuous algebra homomorphism, inversion or antipode $\eta: H \rightarrow H$ a continuous linear map and counit $\sigma: H \rightarrow K$ a

 continuous algebra homomorphism. The coassociativity and countinary axioms hold, and$$
m \circ\left(\eta \otimes 1_{H}\right) \circ c=k \circ \sigma=m \circ\left(1_{H} \otimes \eta\right) \circ c .
$$

We define the representative subalgebra $\mathcal{R}(H)$ of H, i.e. the subalgebra of H generated by the coefficient "functions" associated with the finite dimensional left H-comodules. Under some conditions on $H, \mathcal{R}(H)$ is a direct sum of finite dimensional subcoalgebras and is dense in H. But in general, $\mathcal{R}(H)$ is not dense in H. The algebra $\mathcal{R}(H)$ is a generalization of the algebra of representative functions on a group. Notice that when the valuation of K and the norm of H are trivial, one obtains the well known fact that H is equal to its representative subalgebra.

INTRODUCTION.

Let (H, m, c, η, σ) be a complete ultrametric Hopf algebra over the complete ultrametric valued field K. An ultrametric Banach space E over K is said to be a left Banach H-comodule if there exists a continuous linear map $\Delta_{E}: E \rightarrow H \widehat{\otimes} E$, called coproduct, such that
(i) $\left(c \otimes 1_{E}\right) \circ \Delta_{E}=\left(1_{H} \otimes \Delta_{E}\right) \circ \Delta_{E}$
(ii) $\left(\sigma \otimes 1_{E}\right) \circ \Delta_{E}=1_{E}$

A closed linear subspace E of E is a (left) Banach subcomodule of E if $\Delta_{E}(M) \subset$ $H \widehat{\otimes} M$.

Let $\left(E, \Delta_{E}\right)$ and $\left(F, \Delta_{F}\right)$ be two left Banach comodules. A continuous linear map $u: E \rightarrow F$ is a Banach comodule morphism if $\Delta_{F} \circ u=\left(1_{H} \otimes u\right) \circ \Delta_{E}$.

It is associated with any left Banach H-comodule $\left(E, \Delta_{E}\right)$ the closed linear subspace $R\left(\Delta_{E}\right)$ of H spaned by the coefficient "functions" $\left(1_{H} \otimes x^{\prime}\right) \circ \Delta(x), x^{\prime} \in E^{\prime}, x \in E$, where E^{\prime} if the Banach space dual of E. Furthermore, let $\mathcal{R}(H)$ be the linear subspace of H spaned by all the $R\left(\Delta_{E}\right)$ where $\left(E, \Delta_{E}\right)$ is a finite dimensional left H-comodule. Then $\mathcal{R}(H)$ is a (non necessary closed)sub-Hopf-algebra of $H ; \mathcal{R}(H)$ is called the representative subalgebra of H. In general, $\mathcal{R}(H)$ is not dense in H (cf. [1] or [5], [6]). However, with additional conditions on H it will be shown that $\mathcal{R}(H)$ is dense in H.

If E and F are ultrametric Banach spaces over K, we denote by $E \widehat{\otimes} F$ the complete tensor product, that is the completion of $E \otimes F$ with respect to the norm $\|z\|=$ $\operatorname{Inf}_{z=\Sigma x_{j} \otimes y_{j}}\left(\max _{j}\left\|x_{j}\right\|\left\|y_{j}\right\|\right)$. In the sequel all Banach spaces are ultrametric.

I - LEFT BANACH COMODULES

I-1 Tensor products of left Banach comodules

Let $\left(E, \Delta_{E}\right)$ and $\left(F, \Delta_{F}\right)$ be two left Banach comodules. One has the continuous linear $\operatorname{map} \Delta_{E \widehat{\otimes} F}: E \widehat{\otimes} F \rightarrow H \hat{\otimes} E \hat{\otimes} H \hat{\otimes} F \rightarrow H \hat{\otimes} H \hat{\otimes} E \widehat{\otimes} F \rightarrow H \hat{\otimes} E \widehat{\otimes} F$ where $\Delta_{E \widehat{\otimes} F}=\left(m \otimes 1_{E} \otimes 1_{F}\right) \circ\left(1_{H} \otimes \tau_{E \widehat{\otimes} F} \otimes 1_{F}\right) \circ\left(\Delta_{E} \otimes \Delta_{F}\right)$ and $\tau_{E \widehat{\otimes} F}(x \otimes a)=a \otimes x$.

Proposition $1: \Delta_{E \widehat{\otimes} F}: E \widehat{\otimes} F \rightarrow H \widehat{\otimes} E \widehat{\otimes} F$ is the coproduct of a left Banach H comodule structure on $E \widehat{\otimes} F$.

Proof: Put, for $x \in E$ and $y \in F, \Delta_{E}(x)=\sum_{j \geq 1} a_{j} \otimes x_{j} \in H \hat{\otimes} E$ and $\Delta_{F}(y)=\sum_{\ell \geq 1} b_{\ell} \otimes y_{\ell} \in$ $H \widehat{\otimes} F$. Therefore, one has $\Delta_{E \widehat{\otimes} F}(x \otimes y)=\sum_{j \geq 1} \sum_{\ell \geq 1} a_{j} b_{\ell} \otimes x_{j} \otimes y_{\ell}$.
(i) It follows immediately that $\left(\sigma \otimes 1_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)=\sum_{j \geq 1} \sum_{\ell \geq 1} \sigma\left(a_{j} b_{\ell}\right) x_{j} \otimes y_{\ell}=$ $=\sum_{j \geq 1} \sum_{\ell \geq 1} \sigma\left(a_{j}\right) \sigma\left(b_{\ell}\right) x_{j} \otimes y_{\ell}=\sum_{j \geq 1} \sigma\left(a_{j}\right) x_{j} \otimes \sum_{\ell \geq 1} \sigma\left(b_{\ell}\right) y_{\ell}=x \otimes y=1_{E \widehat{\otimes} F}(x \otimes y)$. From what, one deduces $\left(\sigma \otimes 1_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}=1_{E \widehat{\otimes} F}$
(ii) Also, one has for $x \in E, y \in F$
a) $\left(c \otimes 1_{E}\right) \circ \Delta_{E}(x)=\sum_{j \geq 1} c\left(a_{j}\right) \otimes x_{j}=\sum_{j \geq 1} \sum_{s \geq 1} \alpha_{s, j}^{1} \otimes \alpha_{s, j}^{2} \otimes x_{j}=\left(1_{H} \otimes \Delta_{E}\right) \circ \Delta_{E}(x)=$ $=\sum_{j \geq 1} a_{j} \otimes \Delta_{E}\left(x_{j}\right)=\sum_{j \geq 1} \sum_{k \geq 1} a_{j} \otimes \gamma_{k, j} \otimes x_{k, j}$
and

$$
\begin{aligned}
& \left(c \otimes 1_{F}\right) \circ \Delta_{F}(y)=\sum_{\ell \geq 1} c\left(b_{\ell}\right) \otimes y_{\ell}=\sum_{\ell \geq 1} \sum_{t \geq 1} \beta_{t, \ell}^{1} \otimes \beta_{t, \ell}^{2} \otimes y_{\ell}=\left(1_{H} \otimes \Delta_{F}\right) \circ \Delta_{F}(y)= \\
& =\sum_{\ell \geq 1} b_{\ell} \otimes \Delta_{F}\left(y_{\ell}\right)=\sum_{\ell \geq 1} \sum_{m \geq 1} b_{\ell} \otimes \rho_{m, \ell} \otimes y_{m, \ell}
\end{aligned}
$$

Let $E_{x}=E\left[\left(x_{j}, j \geq 1\right) \cup\left(x_{k, j}, k \geq 1, j \geq 1\right)\right]$ be the closed linear subspace of E spaned by $\left(x_{j}, j \geq 1\right) \cup\left(x_{k, j}, k \geq 1, j \geq 1\right)$, and $F_{y}=E\left[\left(y_{\ell}, \ell \geq 1\right) \cup\left(y_{m, \ell}, m \geq 1, \ell \geq 1\right)\right]$ be the closed linear subspace of F spaned by $\left(y_{\ell}, \ell \geq 1\right) \cup\left(y_{m, \ell}, m \geq 1, \ell \geq 1\right)$. It is clear that the Banach spaces E_{x} and F_{y} are of countable type. Furthermore, if $x^{\prime} \in E_{x}^{\prime}$ and $y^{\prime} \in F_{y}^{\prime}$ one has

$$
\begin{aligned}
& \left(1_{H} \otimes 1_{H} \otimes x^{\prime}\right) \circ\left(c \otimes 1_{E}\right) \circ \Delta_{E}(x)=\sum_{j \geq 1} \sum_{s \geq 1}<x^{\prime}, x_{j}>\alpha_{s, j}^{1} \otimes \alpha_{s, j}^{2}= \\
= & \left(1_{H} \otimes 1_{H} \otimes x^{\prime}\right) \circ\left(1_{H} \otimes \Delta_{E}\right) \circ \Delta_{E}(x)=\sum_{j \geq 1} \sum_{k \geq 1}<x^{\prime}, x_{k, j}>a_{j} \otimes \gamma_{k, j}
\end{aligned}
$$

and
$\left(1_{H} \otimes 1_{H} \otimes y^{\prime}\right) \circ\left(c \otimes 1_{F}\right) \circ \Delta_{F}(y)=\sum_{\ell \geq 1} \sum_{t \geq 1}\left\langle y^{\prime}, y_{\ell}\right\rangle \beta_{t, \ell}^{1} \otimes \beta_{t, \ell}^{2}=$
$=\left(1_{H} \otimes 1_{H} \otimes y^{\prime}\right) \circ\left(1_{H} \otimes \Delta_{F}\right) \circ \Delta_{F}(y)=\sum_{\ell \geq 1} \sum_{m \geq 1}<y^{\prime}, y_{m, \ell}>b_{\ell} \otimes \rho_{m, \ell}$.
β) On one hand, one has, $\left(c \otimes 1_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)=\sum_{j \geq 1} \sum_{\ell \geq 1} c\left(a_{j} b_{\ell}\right) \otimes x_{j} \otimes y_{\ell}=$ $=\sum_{j \geq 1} \sum_{\ell \geq 1} c\left(a_{j}\right) c\left(b_{\ell}\right) \otimes x_{j} \otimes y_{\ell}=\sum_{j \geq 1} \sum_{\ell \geq 1}\left(\sum_{s \geq 1} \alpha_{s, j}^{1} \otimes \alpha_{s, j}^{2}\right)\left(\sum_{t \geq 1} \beta_{t, \ell}^{1} \otimes \beta_{t, \ell}^{2}\right) \otimes x_{j} \otimes y_{\ell}$.

On the other hand, one has

$$
\left(1_{H} \otimes \Delta_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)=\sum_{j \geq 1} \sum_{\ell \geq 1} a_{j} b_{\ell} \otimes \Delta_{E \widehat{\otimes} F}\left(x_{j} \otimes y_{\ell}\right)=\sum_{j \geq 1} \sum_{\ell \geq 1} \sum_{k \geq 1} \sum_{m \geq 1} a_{j} b_{\ell} \otimes
$$ $\gamma_{k, j} \rho_{m, \ell} \otimes x_{k, \ell} \otimes y_{m, \ell}$.

Hence, if $x^{\prime} \in E_{x}^{\prime}$ and $y^{\prime} \in F_{y}^{\prime}$; first, one has $\left(1_{H} \otimes 1_{H} \otimes x^{\prime} \otimes y^{\prime}\right) \circ\left(c \otimes 1_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)=\sum_{j \geq 1} \sum_{s \geq 1}<x^{\prime}, x_{j}>\alpha_{s, j}^{1} \otimes \alpha_{s, j}^{2} \sum_{\ell \geq 1} \sum_{t \geq 1}<y^{\prime}, y_{\ell}>$ $\beta_{t, \ell}^{1} \otimes \beta_{t, \ell}^{2}=\left(1_{H} \otimes 1_{H} \otimes x^{\prime}\right) \circ\left(c \otimes 1_{E}\right) \circ \Delta_{E}(x) \cdot\left(1_{H} \otimes 1_{H} \otimes y^{\prime}\right) \circ\left(c \otimes 1_{F}\right) \circ \Delta_{F}(y)=$ $=\left(1_{H} \otimes 1_{H} \otimes x^{\prime}\right) \circ\left(1_{H} \otimes \Delta_{E}\right) \circ \Delta_{E}(x) \cdot\left(1_{H} \otimes 1_{H} \otimes y^{\prime}\right) \circ\left(1_{H} \otimes \Delta_{F}\right) \circ \Delta_{F}(y)$.

And, second, one has
$\left(1_{H} \otimes 1_{H} \otimes x^{\prime} \otimes y^{\prime}\right) \circ\left(1_{H} \otimes \Delta_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)=\sum_{j \geq 1} \sum_{k \geq 1}<x^{\prime}, x_{k, j}>a_{j} \otimes \gamma_{k, j} \sum_{\ell \geq 1} \sum_{m \geq 1}<y^{\prime}, y_{m, \ell}:$ $b_{\ell} \otimes \rho_{m, \ell}=\left(1_{H} \otimes 1_{H} \otimes x^{\prime}\right) \circ\left(1_{H} \otimes \Delta_{E}\right) \circ \Delta_{E}(x) \cdot\left(1_{H} \otimes 1_{H} \otimes y^{\prime}\right) \circ\left(1_{H} \otimes \Delta_{F}\right) \circ \Delta_{F}(y)$.

Therefore, for any $x^{\prime} \in E_{x}^{\prime}$ and any $y^{\prime} \in F_{y}^{\prime}$, we have
(a) : $\left(1_{H} \otimes 1_{H} \otimes x^{\prime} \otimes y^{\prime}\right)\left[\left(c \otimes 1_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)-\left(1_{H} \otimes \Delta_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)\right]=0$
$\gamma)$ Since $E_{x}\left[\right.$ resp. $\left.F_{y}\right]$ is of countable type, there exist $\alpha_{0}>0, \alpha_{1}>0$ and
$\left(e_{j}\right)_{j \geq 1} \subset E_{x}\left[\right.$ resp. $\left.\left(f_{\ell}\right)_{\ell \geq 1} \subset F_{y}\right]$ such that for $z \in E_{x}\left[r e s p . ~ \zeta \in F_{y}\right]$ one has $z=\sum_{j \geq 1} \lambda_{j} e_{j}\left[\right.$ resp. $\left.\zeta=\sum_{\ell \geq 1} \mu \ell f_{\ell}\right]$ with $\alpha_{0} \operatorname{Sup}_{j \geq 1}\left|\lambda_{j}\right| \leq\|z\| \leq \alpha_{1} \operatorname{Sup}_{j \geq 1}\left|\lambda_{j}\right|\left[r e s p . \alpha_{0} \operatorname{Sup}_{\ell \geq 1}\left|\mu_{\ell}\right| \leq\right.$ $\|\zeta\| \leq \alpha_{1} \operatorname{Sup}_{\ell \geq 1} \mid \mu_{\ell} \|($ cf. [4]).

Moreover, one has $E_{x} \widehat{\otimes} F_{y} \simeq c_{0}\left(\mathbb{N}^{*} \times \mathbb{N}^{*}, K\right)$ and $(H \widehat{\otimes} H) \widehat{\otimes}\left(E_{x} \widehat{\otimes} E_{y}\right) \simeq$ $\simeq c_{0}\left(\mathbb{N}^{*} \times \mathbb{N}^{*}, H \widehat{\otimes} H\right)(c f .[7])$; any Z in $(H \widehat{\otimes} H) \widehat{\otimes}\left(E_{x} \widehat{\otimes} E_{y}\right)$ can be written in the unique form $Z=\sum_{j \geq \ell} A_{j \ell} \otimes e_{j} \otimes f_{\ell}$ with $A_{j \ell} \in H \widehat{\otimes} H$ and $\alpha_{0}^{2} \operatorname{Sup}_{j, \ell}\left\|A_{j \ell}\right\| \leq\|Z\| \leq \alpha_{1}^{2} \operatorname{Sup}_{j, \ell} \mid A_{j, \ell} \|$.

Let $e_{j}^{\prime} \in E_{x}^{\prime}\left[\right.$ resp. $\left.f_{l}^{\prime} \in F_{y}^{\prime}\right]$ be the continuous linear form defined by $\left\langle e_{j}^{\prime}, e_{j_{1}}\right\rangle=$ $\delta_{j j_{1}}\left[r e s p .<f_{\ell}^{\prime}, f_{\ell_{1}}>=\delta_{\ell \ell_{1}}\right]$. Setting $\left(c \otimes 1_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)-\left(1_{H} \otimes \Delta_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes$ $y)=Z_{0}=\sum_{j, \ell} A_{j \ell}^{0} \otimes e_{j} \otimes f_{\ell} \in H \widehat{\otimes} H \widehat{\otimes} E_{x} \widehat{\otimes} F_{y}$, for any $j_{1} \geq 1$ and any $\ell_{1} \geq 1$, by (a), one has $\left(1_{H} \otimes 1_{H} \otimes e_{j_{1}}^{\prime} \otimes f_{\ell_{1}}^{\prime}\right)\left(Z_{0}\right)=\sum_{j, \ell} A_{j \ell}^{0} \delta_{j_{1} j} \delta_{\ell_{1} \ell}=A_{j_{1} \ell_{1}}^{o}=0$. It follows that $Z_{0}=0$, i.e. $\left(c \otimes 1_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)=\left(1_{H} \otimes \Delta_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}(x \otimes y)$. From what, one deduces that $\left(c \otimes 1_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}=\left(1_{H} \otimes \Delta_{E \widehat{\otimes} F}\right) \circ \Delta_{E \widehat{\otimes} F}$.

Corollary : Let M [resp. N] be a left Banach H-subcomodule of $E[$ resp. F]. Then $M \widehat{\otimes} N$ is a left Banach subcomodule of $E \widehat{\otimes} F$.

I-2 Banach comodule morphisms

1-2-1 Range and kernel

Proposition 2: Let $u: E \rightarrow F$ be a Banach comodule morphism.
(i) If V is a Banach subcomodule of F, then $u^{-1}(V)$ is a Banach subcomodule of E.
(ii) The closure $\overline{u(E)}$ of $u(E)$ is a Banach subcomodule of F

Corollary : Let V and W be Banach subcomodule of the left Banach H-comodule E; then $V \cap W$ is a Banach subcomodule of E.

Proofs : Rather easy, or see [3].
Note : One can also see [3] for the spaces of comodule morphisms.
Remark 1 : If M is a Banach subcomodule of the left Banach H-comodule E, it is induced on the quotient Banach space E / M a structure of Banach left H-comodule such that the canonical map $E \rightarrow E / M$ is a comodule morphism.

Then, if $u: E \rightarrow F$ is a Banach comodule morphism and if u is strict, the Banach comodule $E / k e r u$ and $u(E)$ are isomorphic. Also, one can define the cokernel of u as being $F / \overline{u(E)}$.

I-2-2 Comodule morphisms of E into H associated with $\Delta ; R(\Delta)$

Put $\Delta=\Delta_{E}$ the coproduct of the left Banach H-comodule E. Obviously, H is a left Banach H-comodule with respect to its coproduct c.

Proposition 3 : For any $x^{\prime} \in E^{\prime}$, the linear map $A_{x^{\prime}}=\left(1_{H} \otimes x^{\prime}\right) \circ \Delta: E \rightarrow H$ is a Banach comodule morphism.

Proof : It is easy to see that $c \circ\left(1_{H} \otimes x^{\prime}\right)=c \otimes x^{\prime}=\left(1_{H} \otimes 1_{H} \otimes x^{\prime}\right) \circ\left(c \otimes 1_{E}\right)$. Therefore $c \circ A_{x^{\prime}}=c \circ\left(1_{H} \otimes x^{\prime}\right) \circ \Delta=\left(1_{H} \otimes 1_{H} \otimes x^{\prime}\right) \circ\left(c \otimes 1_{E}\right) \circ \Delta=\left(1_{H} \otimes 1_{H} \otimes x^{\prime}\right) \circ\left(1_{H} \otimes \Delta\right) \circ \Delta=$ $=\left(1_{H} \otimes\left[\left(1_{H} \otimes x^{\prime}\right) \circ \Delta\right]\right) \circ \Delta=\left(1_{H} \otimes A_{x^{\prime}}\right) \circ \Delta$.

Corollary 1 :

(i) $\operatorname{ker} A_{x^{\prime}}$ is a closed subcomodule of E.
(ii) $\overline{A_{x^{\prime}}(E)}$ is a left Banach subcomodule(= closed left coideal) of H.

Corollary 2 : If E is a space of countable type, one has $k e r A_{x^{\prime}} \neq E$ for any $x^{\prime} \in E, x^{\prime} \neq 0$

Proof : Indeed, if $x^{\prime} \in E^{\prime}, x^{\prime} \neq 0$ and $0<\alpha<1$, there exists a α-orthogonal base $\left(e_{j}\right)_{j \geq 1} \subset E$ such that $\left\langle x^{\prime}, e_{1}\right\rangle=1$ and $\left\langle x^{\prime}, e_{j}\right\rangle=0, j \geq 2$. Moreover for any $j \geq 1, \Delta\left(e_{j}\right)=\sum_{\ell \geq 1} a_{\ell j} \otimes e_{\ell}$ and $e_{j}=\sum_{\ell \geq 1} \sigma\left(a_{\ell j}\right) e_{\ell}$; therefore $\sigma\left(a_{\ell j}\right)=\delta_{\ell j}$ and $A_{x^{\prime}}\left(e_{1}\right)=\left(1_{H} \otimes x^{\prime}\right) \circ \Delta\left(e_{1}\right)=a_{11} \neq 0$ since $\sigma\left(a_{11}\right)=1$.

Corollary 3: Assume that H is a pseudo-reflexive Banach space; i.e. $H \rightarrow H^{\prime \prime}$ is isometric.

Let E be a simple Banach left H-comodule, i.e. E contains no proper closed subcomodule. Then E is a Banach space of countable type and $A_{x^{\prime}}$ is injective for each $x^{\prime} \in$ $E^{\prime}, x^{\prime} \neq 0$.

Proof : If H is pseudo-reflexive, it is shown in [3] that any simple Banach left H comodule is a space of coutable type. Applying Corollary 2, one sees that $A_{x^{\prime}}$ is injective for $x^{\prime} \in E^{\prime}, x^{\prime} \neq 0$

Let $\beta: E \otimes E^{\prime} \rightarrow K$ be the continuous linear form defined upon $\beta\left(x \otimes x^{\prime}\right)=\left\langle x^{\prime}, x\right\rangle$. Put $\rho_{\Delta}=\left(1_{H} \otimes \beta\right) \circ\left(\Delta \otimes 1_{E^{\prime}}\right) \circ \tau: E^{\prime} \widehat{\otimes} E H$, where $\tau\left(x^{\prime} \otimes x\right)=x \otimes x^{\prime}$. Then ρ_{Δ} is linear and continuous with $\left\|\rho_{\Delta}\right\| \leq\|\Delta\|$. Moreover for $x^{\prime} \in E^{\prime}, x \in E$, one has $\rho_{\Delta}\left(x^{\prime} \otimes x\right)=\left(1_{H} \otimes x^{\prime}\right) \circ \Delta(x)$.

Put $R(\Delta)=\overline{\rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right)}$ the closure of $\rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right)$ in H. Obviously, $R(\Delta)$ is the closed linear subspace of H spaned by the elements $\left(1_{H} \otimes x^{\prime}\right) \circ \Delta(x), x^{\prime} \in E^{\prime}, x \in E$, called the coefficients of the comodule (E, Δ).

Proposition 4: $\quad R(\Delta)=\overline{\rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right)}$ is a left Banach subcomodule (= closed left coideal) of H.

Proof : Since $c: H \rightarrow H \widehat{\otimes} H$ is linear and is a homeomorphism of H onto $c(H)$, one has $c(R(\Delta))=\overline{c\left(\rho_{\Delta}\left(E^{\prime} \hat{\otimes} E\right)\right)}$, a closed linear subspace of H.

It remains to show that if $a=\rho_{\Delta}\left(x^{\prime} \otimes x\right)=\left(1_{H} \otimes x^{\prime}\right) \circ \Delta(x)=A_{x^{\prime}}(x), x^{\prime} \in E^{\prime}, x \in E ;$ then $c(a) \in H \widehat{\otimes} R(\Delta)$. Writing $\Delta(x)=\sum_{j \geq 1} a_{j} \otimes x_{j}$; one has $c(a)=c \circ A_{x^{\prime}}(x)=\left(1_{H} \otimes\right.$ $\left.A_{x^{\prime}}\right) \circ \Delta(x)=\sum_{j \geq 1} a_{j} \otimes A_{x^{\prime}}\left(x_{j}\right)=\sum_{j \geq 1} a_{j} \otimes \rho_{\Delta}\left(x^{\prime} \otimes x_{j}\right) \in H \widehat{\otimes} R(\Delta)$.

Proposition 5 : If the left Banach comodules E and E_{1} with coproduct respectively Δ and Δ_{1} are isomorphic, then $R(\Delta)=R\left(\Delta_{1}\right)$.

Proof : Let $u: E \rightarrow E_{1}$ be a comodule isomorphism, in other words, u is linear, continuous and bijective with $\Delta_{1} \circ u=\left(1_{H} \otimes u\right) \circ \Delta$. Moreover, the reciprocal map u^{-1} of u satisfies $\left(1_{H} \otimes u^{-1}\right) \circ \Delta_{1}=\Delta \circ u^{-1}$ and the transpose of $u,{ }^{t} u: E_{1}^{\prime} \rightarrow E^{\prime}$ is linear, continuous and bijective with $\left({ }^{t} u\right)^{-1}={ }^{t} u^{-1}$.

Set $a=\rho_{\Delta_{1}}\left(z_{1}\right) \in \rho_{\Delta_{1}}\left(E_{1}^{\prime} \widehat{\otimes} E_{1}\right)$ and $z_{1}=\sum_{j \geq 1} y_{j}^{\prime} \otimes y_{j}, y_{j}^{\prime} \in E_{1}^{\prime}, y_{j} \in E_{1}, \lim _{j}\left\|y_{j}^{\prime}\right\|\left\|y_{j}\right\|=0$. There exist, for $j \geq 1$ unique $x_{j}^{\prime} \in E^{\prime}$ and $x_{j} \in E$ such that $y_{j}^{\prime}={ }^{t} u^{-1}\left(x_{j}^{\prime}\right)=x_{j}^{\prime} \circ u^{-1}$ and $y_{j}=u\left(x_{j}\right) ;$ moreover $\lim _{j}\left\|x_{j}^{\prime}\right\|\left\|x_{j}\right\|=0$. Therefore $a=\rho_{\Delta_{1}}\left(z_{1}\right)=\sum_{j \geq 1} \rho_{\Delta_{1}}\left(y_{j}^{\prime} \otimes y_{j}\right)=$ $=\sum_{j \geq 1}\left(1_{H} \otimes y_{j}^{\prime}\right) \circ \Delta_{1}\left(y_{j}\right)=\sum_{j \geq 1}\left(1_{H} \otimes x_{j}^{\prime} \circ u^{-1}\right) \circ \Delta_{1} \circ u\left(x_{j}\right)=\sum_{j \geq 1}\left(1_{H} \otimes x_{j}^{\prime}\right) \circ\left(1_{H} \otimes u^{-1}\right) \circ \Delta_{1} \circ$ $u\left(x_{j}\right)=\sum_{j \geq 1}\left(1_{H} \otimes x_{j}^{\prime}\right) \circ \Delta\left(x_{j}\right)=\sum_{j \geq 1} \rho_{\Delta}\left(x_{j}^{\prime} \otimes x_{j}\right)=\rho_{\Delta}\left(\sum_{j \geq 1} x_{j}^{\prime} \otimes x_{j}\right)$. Hence, $a=\rho_{\Delta}(z) \in$ $\rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right)$ where $z=\sum_{j \geq 1} x_{j}^{\prime} \otimes x_{j} ;$ that is $\rho_{\Delta_{1}}\left(E_{1}^{\prime} \widehat{\otimes} E_{1}\right) \subset \rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right)$. Likewise,one has $\rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right) \subset \rho_{\Delta_{1}}\left(E_{1}^{\prime} \widehat{\otimes} E_{1}\right)$.

Therefore $\rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right)=\rho_{\Delta_{1}}\left(E_{1}^{\prime} \widehat{\otimes} E_{1}\right)$ and $R(\Delta)=R\left(\Delta_{1}\right)$.
Assume that E is a free Banach space i.e. $E \simeq c_{0}(I, K)=\left\{\left(\lambda_{j}\right)_{j \in I} \subset K / \lim _{j} \lambda_{j}=0\right\}$. In other words, there exist $\left(e_{j}\right)_{j \in I} \subset E, \alpha_{0}, \alpha_{1} \in \mathbb{R}_{+}^{*}$ such that any $x \in E$ can be written
in the form $x=\sum_{j \in I} \lambda_{j} e_{j}, \lambda_{j} \in K$ and $\alpha_{0} \sup _{j \in I}\left|\lambda_{j}\right| \leq\|x\| \leq \alpha_{1} \sup _{j \in I}\left|\lambda_{j}\right|$.For any continuous linear form $x^{\prime} \in E^{\prime}$, one has $\frac{1}{\alpha_{1}} \sup _{j \in I}\left|<x^{\prime}, e_{j}>\left|\leq\left\|x^{\prime}\right\| \leq \frac{1}{\alpha_{0}} \sup _{j \in I}\right|<x^{\prime}, e_{j}>\right|$. Let e_{j}^{\prime} be the element of E^{\prime} defined by $\left\langle e_{j}^{\prime}, e_{\ell}\right\rangle=\delta_{j \ell}$. Put $E_{0}^{\prime}=E\left[\left(e_{j}^{\prime}\right)_{j \in I}\right]$, the closed linear subspace of E^{\prime} spaned by $\left(e_{j}^{\prime}\right)_{j \in I}$. Hence each $x^{\prime} \in E_{0}^{\prime}$ can be written in the unique form $x^{\prime}=\sum_{j \in I} \mu_{j} e_{j}^{\prime}, \mu_{j} \in K, \lim _{j}\left|\mu_{j}\right|=0$. Moreover, if $v \in E_{0}^{\prime} \widehat{\otimes} E \subset E^{\prime} \widehat{\otimes} E$, one has $v=\sum_{j, \ell} \mu_{\ell j} e_{\ell}^{\prime} \otimes e_{j}, \mu_{\ell j} \in K, \lim _{(j, \ell)} \mu_{\ell j}=0$ and $\frac{\alpha_{0}}{\alpha_{1}} \sup _{j, \ell}\left|\mu_{\ell, j}\right| \leq\|v\| \leq \frac{\alpha_{1}}{\alpha_{0}} \sup _{j, \ell}\left|\mu_{\ell j}\right|$.

On the other hand, one has $H \widehat{\otimes} E \simeq c_{0}(I, H)=\left\{\left(a_{j}\right)_{j \in I} \subset H / \lim _{j} a_{j}=0\right\}$. For any $z \in H \widehat{\otimes} E$ one has $z=\sum_{j \in I} a_{j} \otimes e_{j}, a_{j} \in H$ with $\lim _{j}\left\|a_{j}\right\|=0$ and $\alpha_{0} \sup _{j \in I}\left\|a_{j}\right\| \leq\|z\| \leq$ $\alpha_{1} \sup _{j \in I}\left\|a_{j}\right\|$. Hence, if (E, Δ) is a left Banach H-comodule, for $x \in E$, one has $\Delta(x)=$ $=\sum_{j \in I} A_{j}(x) \otimes e_{j}$. In particular $\Delta\left(e_{\ell}\right)=\sum_{j \in I} A_{j}\left(e_{\ell}\right) \otimes e_{j}=\sum_{j \in I} a_{\ell j} \otimes e_{j}$ and $\left(c \otimes 1_{E}\right) \circ \Delta\left(e_{\ell}\right)=$ $=\sum_{j \in I} c\left(a_{\ell j}\right) \otimes e_{j}=\left(1_{H} \otimes \Delta\right) \circ \Delta\left(e_{\ell}\right)=\left(1_{H} \otimes \Delta\right)\left(\sum_{k \in I} a_{\ell k} \otimes e_{k}\right)=\sum_{k \in I} a_{\ell k} \otimes \sum_{j \in I} a_{k j} \otimes e_{j}=$ $=\sum_{k \in I} \sum_{j \in I} a_{\ell k} \otimes a_{\ell j} \otimes e_{j}$. Thus one obtains
(1) $c\left(a_{\ell j}\right)=\sum_{k \in I} a_{\ell k} \otimes a_{k j} ; \ell, j \in I$

> Also, one has
(2) $\sigma\left(a_{\ell j}\right)=\delta_{\ell j} ; \ell, j \in I$
(3) $\sum_{k \in I} a_{\ell k} \eta\left(a_{k j}\right)=\delta_{\ell j} \cdot e=\sum_{k \in I} \eta\left(a_{\ell k}\right) \otimes a_{k j} ; \ell, j \in I$.

Proposition 6 : $\quad R_{0}(\Delta)=\overline{\rho_{\Delta}\left(E_{0}^{\prime} \hat{\otimes} E\right)}$ is a closed subcoalgebra of H. In other words $c\left(R_{0}(\Delta)\right) \subset R_{0}(\Delta) \widehat{\otimes} R_{0}(\Delta)$

Proof : \quad Since $\left(e_{j}^{\prime} \otimes e_{\ell}\right)_{(j, \ell) \in I \times I}$ is a total family of $E_{0}^{\prime} \widehat{\otimes} E$ and ρ_{Δ} is linear and continuous, the family $\left(\rho_{\Delta}\left(e_{j}^{\prime} \otimes e_{\ell}\right)\right)_{(j, \ell) \in I \times I}$ is total in $\overline{\rho_{\Delta}\left(E_{0}^{\prime} \widehat{\otimes} E\right.}=R_{0}(\Delta)=$ the closed linear subspace of H spaned by the $\left(1_{H} \otimes x^{\prime}\right) \circ \Delta(x), x^{\prime} \in E_{0}^{\prime}, x \in E$.

To see that $c\left(R_{0}(\Delta)\right) \subset R_{0}(\Delta) \widehat{\otimes} R_{0}(\Delta)$, it suffices to show that for $\ell, j \in I$ one has $c\left(\rho_{\Delta}\left(e_{j}^{\prime} \otimes e_{\ell}\right)\right) \in R_{0}(\Delta) \widehat{\otimes} R_{0}(\Delta)$. However, by definition, $\rho_{\Delta}\left(e_{j}^{\prime} \otimes e_{\ell}\right)=\left(1_{H} \otimes e_{j}^{\prime}\right) \circ \Delta\left(e_{\ell}\right)=$ $=a_{\ell j} \in R_{0}(\Delta)$. Then, one deduces from (1) that $c\left(\rho_{\Delta}\left(e_{j}^{\prime} \otimes e_{\ell}\right)\right)=c\left(a_{\ell j}\right)=\sum_{k \in I} a_{\ell j} \otimes a_{k j} \in$
$R_{0}(\Delta) \widehat{\otimes} R_{0}(\Delta)$.
Note : If $v=\sum_{\ell, j} \mu_{\ell j} e_{j}^{\prime} \otimes e_{\ell} \in E_{0}^{\prime} \widehat{\otimes} E$, one has $\rho_{\Delta}(v)=\sum_{\ell, j} \mu_{\ell j} a_{\ell j}$ and $a \in R_{0}(\Delta)$ iff there exist $v_{n} \in E^{\prime} \widehat{\otimes} E$ such that $a=\lim _{n \rightarrow+\infty} \rho_{\Delta}\left(v_{n}\right)$.

Remark 2: Let (E, Δ) and $\left(E_{1}, \Delta_{1}\right)$ be two isomorphic left Banach comodules that are free Banach spaces. If $u: E \rightarrow E_{1}$ is a comodule isomorphism, $\left(e_{j}\right)_{j \in I}$ a base of E and $\left(\varepsilon_{j}\right)_{j \in I}$ the base of E_{1} defined by $\varepsilon_{j}=u\left(e_{j}\right)$; then, with the above notations, one has $R_{0}(\Delta)=R_{0}\left(\Delta_{1}\right)$.

Remark 3 : If $\operatorname{dim} E=n<+\infty$, one has $R(\Delta)=R_{0}(\Delta)=\rho_{\Delta}\left(E^{\prime} \otimes E\right)$ and $\operatorname{dim} R(\Delta) \leq n^{2}$

II - REPRESENTATIVE SUBALGEBRA

II - 1 Conjugate comodule of a finite dimensional comodule

Let (E, Δ) be a (Banach) left H-comodule of finite dimension and $\left(e_{j}\right)_{1 \leq j \leq n}$ a K base of E. As above, for any $x \in E$, one has $\Delta(x)=\sum_{j=1}^{n} A_{j}(x) \otimes e_{j}$ and $A_{j}(x)=\left(1_{H} \otimes e_{j}^{\prime}\right) \circ$ $\Delta(x)=\rho_{\Delta}\left(e_{j}^{\prime} \otimes x\right) ; A_{j}=\left(1_{H} \otimes e_{j}^{\prime}\right) \circ \Delta \in \mathcal{L}(E, H)$. In particular $\Delta\left(e_{\ell}\right)=\sum_{j=1}^{n} a_{\ell j} \otimes e_{j}$ where $a_{\ell j}=A_{j}\left(e_{\ell}\right)=\rho_{\Delta}\left(e_{j}^{\prime} \otimes e_{\ell}\right) ;$ and we have the relations (1), (2) and (3), with $I=[1, n]$. The relation (3) means here, that the matrix $A=\left(a_{\ell j}\right)_{1 \leq \ell, j \leq n} \in M a t_{n}(H)$ is invertible with inverse $A^{-1}=\left(\eta\left(a_{\ell j}\right)_{1 \leq \ell, j \leq n}\right.$.

Fix the base $\left(e_{j}\right)_{1 \leq j \leq n}$ of E and define the linear map $\Delta^{\vee}: E^{\prime} \rightarrow H \otimes E^{\prime}$ by setting $\Delta^{\vee}\left(e_{j}^{\prime}\right)=\sum_{\ell=1}^{n} \eta\left(a_{\ell j}\right) \otimes e_{\ell}^{\prime}, 1 \leq j \leq n$. Hence for $x^{\prime}=\sum_{j=1}^{n} \mu_{j} e_{j}^{\prime} \in E^{\prime}$, one has $\Delta^{\vee}\left(x^{\prime}\right)=$ $\sum_{\ell=1}^{n} \sum_{j=1}^{n} \mu_{j} \eta\left(a_{\ell j}\right) \otimes e_{j}^{\prime}=\sum_{\ell=1}^{n} A_{\ell}^{\vee}\left(x^{\prime}\right) \otimes e_{\ell}^{\prime}$.

Lemma 1 : $\quad\left(E^{\prime}, \Delta^{\vee}\right)$ is a left H-comodule.
Proof: One verifies that $\sigma \circ \eta=\sigma$; indeed, if $a \in H$, then $c(a)=\sum_{t \geq 1} a_{t}^{1} \otimes a_{t}^{2}$. Hence, one has $m \circ\left(\eta \otimes 1_{H}\right) \circ c(a)=\sum_{t \geq 1} \eta\left(a_{t}^{1}\right) a_{t}^{2}=\sigma(a) e$ and $a=\left(1_{H} \otimes \sigma\right) \circ c(a)=\sum_{t \geq 1} a_{t}^{1} \sigma\left(a_{t}^{2}\right)$. It
follows that $\eta(a)=\sum_{t \geq 1} \eta\left(a_{t}^{1}\right) \sigma\left(a_{t}^{2}\right)$ and $\sigma \circ \eta(a)=\sum_{t \geq 1} \sigma\left(\eta\left(a_{t}^{1}\right)\right) \sigma\left(a_{t}^{2}\right)=\sigma\left(\sum_{t \geq 1} \eta\left(a_{t}^{1}\right) a_{t}^{2}\right)=$ $\sigma(\sigma(a) e)=\sigma(a)$.

Since $\sigma\left(a_{\ell j}\right)=\delta_{\ell j}$, one has $\left(\sigma \otimes 1_{E^{\prime}}\right) \circ \Delta^{\vee}\left(e_{j}^{\prime}\right)=\sum_{\ell=1}^{n} \sigma \circ \eta\left(a_{\ell j}\right) e_{\ell}^{\prime}=\sum_{\ell=1}^{n} \sigma\left(a_{\ell j}\right) e_{j}^{\prime}=$ $=e_{j}^{\prime}, 1 \leq j \leq n$. It follows, by linearity, that $\left(\sigma \otimes 1_{E^{\prime}}\right) \circ \Delta^{\vee}=1_{E^{\prime}}$.

Let us remember that $c \circ \eta=\tau \circ(\eta \otimes \eta) \circ c$ where $\tau(a \otimes b)=b \otimes a$. Hence, we have $c \circ \eta\left(a_{\ell j}\right)=\sum_{k=1}^{n} \eta\left(a_{k j}\right) \otimes \eta\left(a_{\ell k}\right)$. Therefore $\left(c \otimes 1_{E^{\prime}}\right) \circ \Delta^{\vee}\left(e_{j}^{\prime}\right)=\left(c \otimes 1_{E^{\prime}}\right)\left(\sum_{\ell=1}^{n} \eta\left(a_{\ell j}\right) \otimes e_{\ell}^{\prime}\right)=$ $=\sum_{\ell=1}^{n} \sum_{k=1}^{n} \eta\left(a_{k j}\right) \otimes \eta\left(a_{\ell j}\right) \otimes e_{\ell}^{\prime}=\sum_{k=1}^{n} \eta\left(a_{k j}\right) \otimes \Delta^{\vee}\left(e_{k}^{\prime}\right)=\left(1_{H} \otimes \Delta^{\vee}\right)\left(\sum_{k=1}^{n} \eta\left(a_{k j}\right) \otimes e_{k}^{\prime}\right)=$ $=\left(1_{H} \otimes \Delta^{\vee}\right) \circ \Delta^{\vee}\left(e_{j}^{\prime}\right)$, and $\left(c \otimes 1_{E^{\prime}}\right) \circ \Delta^{\vee}=\left(1_{H} \otimes \Delta^{\vee}\right) \circ \Delta^{\vee}$.

Corollary : $\quad R\left(\Delta^{\vee}\right)=\eta(R(\Delta))$.

Proof : Identifing $E^{\prime \prime}$ with E, one has $R\left(\Delta^{\vee}\right)=\rho_{\Delta^{v}}\left(E \otimes E^{\prime}\right)$. Set $z=\sum_{1 \leq \ell, j \leq n} \lambda_{\ell j} e_{\ell} \otimes$ $e_{j}^{\prime} \in E \otimes E^{\prime} ;$ hence $\rho_{\Delta^{v}}(z)=\sum_{1 \leq \ell, j \leq n} \lambda_{\ell j} \rho_{\Delta^{v}}\left(e_{\ell} \otimes e_{j}^{\prime}\right)$. However $\rho_{\Delta^{v}}\left(e_{\ell} \otimes e_{j}^{\prime}\right)=\left(1_{H} \otimes\right.$ $\left.e_{\ell}\right) \circ \Delta^{\vee}\left(e_{j}^{\prime}\right)=\eta\left(a_{\ell j}\right)=\eta\left(\rho_{\Delta}\left(e_{j}^{\prime} \otimes e_{\ell}\right)\right)$; therefore $\rho_{\Delta^{v}}(z)=\sum_{1 \leq \ell, j \leq n} \lambda_{\ell j} \eta\left(\rho_{\Delta}\left(e_{j}^{\prime} \otimes e_{\ell}\right)\right)=$ $\eta\left(\rho_{\Delta}\left(z_{1}\right)\right)$ where $z_{1}=\sum_{1 \leq \ell, j \leq n} \lambda_{\ell j} e_{j}^{\prime} \otimes e_{\ell} \in E^{\prime} \otimes E$. It follows that $R\left(\Delta^{\vee}\right) \subset \eta(R(\Delta))$. The same formulae show that if $a=\rho_{\Delta}\left(z_{1}\right) \in R(\Delta)$, where $z_{1}=\sum_{1 \leq \ell, j \leq n} \lambda_{\ell j} e_{j}^{\prime} \otimes e_{\ell} \in E^{\prime} \otimes E$, one has $\eta(a)=\rho_{\Delta^{\vee}}(z)$ where $z=\sum_{1 \leq \ell, j \leq n} \lambda_{\ell j} e_{\ell} \otimes e_{j}^{\prime} \in E \otimes E^{\prime}$, hence $\eta(R(\Delta)) \subset R\left(\Delta^{\vee}\right)$.

II- 2 Direct sum of Banach comodules

Let $\left(E_{s}\right)_{1 \leq s \leq m}$ be a finite family of left Banach H-comodules with Δ_{s} the coproduct of E_{s}. The direct sum $E=\bigoplus_{s=1}^{m} E_{s}$ equiped with any norm equivalent to the norm $\left\|\sum_{s=1}^{m} x_{s}\right\|=$ $=\max _{1 \leq s \leq m}\left\|x_{s}\right\|$ is a Banach space. Put $\Delta=\bigoplus_{s=1}^{m} \Delta_{s}$, i.e. $\Delta\left(\sum_{s=1}^{m} x_{s}\right)=\bigoplus_{s=1}^{m} \Delta_{s}\left(x_{s}\right)$. It is readily seen that (E, Δ) is a left Banach comodule. Moreover, if $p_{s}: E \rightarrow E$ is the projection of E onto E_{s}, then $1_{H} \otimes p_{s}$ is a projection of $H \widehat{\otimes} E$ onto $H \widehat{\otimes} E_{s}$ and one has
$H \widehat{\otimes} E=\bigoplus_{s=1}^{m} H \widehat{\otimes} E_{s}$. On the other hand p_{s} is a comodule morphism i.e. $\left(1_{H} \otimes p_{s}\right) \circ \Delta=$ $\Delta \circ p_{s} ;$ furthermore $\left(1_{H} \otimes p_{s}\right) \circ \Delta\left(x_{t}\right)=0$ for $s \neq t$ and $x_{t} \in E_{t}$.

Also, we have $E^{\prime}=\bigoplus_{s=1}^{m} E_{s}^{\prime}$; the projections associated with this direct sum are the ${ }^{t} p_{s}, 1 \leq s \leq m$.
Proposition 7 : With the above notations, one has $\rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right)=\sum_{s=1}^{m} \rho_{\Delta_{s}}\left(E_{s}^{\prime} \widehat{\otimes} E_{s}\right)$ and $R(\Delta)$ is the closure of $\sum_{s=1}^{m} R\left(\Delta_{s}\right)$ in H.
Proof : If $x_{s}^{\prime} \in E_{s}^{\prime}, x_{t} \in E_{t}$ and $s \neq t$, then $\left(1_{H} \otimes x_{s}^{\prime}\right) \circ \Delta\left(x_{t}\right)=\left(1_{H} \otimes x_{s}^{\prime}\right) \circ \Delta_{t}\left(x_{t}\right)=0$. Set $z=\sum_{j \geq 1} x_{j}^{\prime} \otimes x_{j} \in E^{\prime} \widehat{\otimes} E=\bigoplus_{s=1}^{m} \bigoplus_{t=1}^{m} E_{s}^{\prime} \widehat{\otimes} E_{t}$, one has $z=\sum_{j \geq 1} \sum_{s=1}^{m} \sum_{t=1}^{m} x_{s, j}^{\prime} \otimes x_{t, j}$. It follows that $\rho_{\Delta}(z)=\sum_{j \geq 1} \sum_{s=1}^{m} \sum_{t=1}^{m} \rho_{\Delta}\left(x_{s, j}^{\prime} \otimes x_{t, j}\right)=\sum_{j \geq 1} \sum_{s=1}^{m} \sum_{t=1}^{m}\left(1_{H} \otimes x_{s, j}^{\prime}\right) \circ \Delta\left(x_{t, j}\right)=$ $=\sum_{j \geq 1} \sum_{s=1}^{m} \sum_{t=1}^{m} \delta_{s, t}\left(1_{H} \otimes x_{s, j}^{\prime}\right) \circ \Delta_{t}\left(x_{t, j}\right)=\sum_{j \geq 1} \sum_{s=1}^{m} \rho_{\Delta_{s}}\left(x_{s, j}^{\prime} \otimes x_{s, j}\right)=\sum_{s=1}^{m} \rho_{\Delta}\left(\sum_{j \geq 1} x_{s, j}^{\prime} \otimes x_{s, j}\right)=$ $=\sum_{s=1}^{m} \rho_{\Delta_{s}}\left(z_{s}\right)$. If $z_{s} \in E_{s}^{\prime} \widehat{\otimes} E_{s} \subset E^{\prime} \hat{\otimes} E, 1 \leq s \leq m$, one has $\rho_{\Delta}\left(z_{s}\right)=\rho_{\Delta_{s}}\left(z_{s}\right)$. Therefore, on one hand, $\rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right) \subset \sum_{s=1}^{m} \rho_{\Delta}\left(E_{s}^{\prime} \widehat{\otimes} E_{s}\right)$, and on the other hand, $\rho_{\Delta_{s}}\left(E_{s}^{\prime} \widehat{\otimes} E_{s}\right) \subset$ $\rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E\right)$. Hence, one has $\rho_{\Delta}(E \hat{\otimes} E)=\sum_{s=1}^{m} \rho_{\Delta}\left(E^{\prime} \widehat{\otimes} E_{s}\right)$. One verifies readily that $R(\Delta)$ is equal to the closure of $\sum_{s=1}^{m} R\left(\Delta_{s}\right)$ in H.
Corollary : If $\operatorname{dim} E_{s}<+\infty, 1 \leq s \leq m$, then one has $R(\Delta)=\sum_{s=1}^{m} R\left(\Delta_{s}\right)$ where $E=\bigoplus_{s=1}^{m} E_{s}, \Delta=\bigoplus_{s=1}^{m} \Delta_{s}$.

Remark 3: If the comodules $\left(E_{s}, \Delta_{s}\right), 1 \leq s \leq m$, are pairewise isomorphic, then for the comodule (E, Δ) where $E=\bigoplus_{s=1}^{m} E_{s}, \Delta=\bigoplus_{s=1}^{m} \Delta_{s}$, one has $R(\Delta)=R\left(\Delta_{s}\right), 1 \leq s \leq m$.

II-3 The representative subalgebra of \mathbf{H}

Let $\mathcal{S}(H)$ be the set of all elements of the form $a=\left(1_{H} \otimes x^{\prime}\right) \circ \Delta(x)$ of H where (E, Δ) is a finite dimensional left H-comodule and $x^{\prime} \in E^{\prime}, x \in E$. Let us put $\operatorname{dim} E=\operatorname{dim} \Delta$

Lemma 2: $\quad \mathcal{S}(H)$ is a multiplicative, unitary submonoid of H.
Proof : \quad Set $a=\left(1_{H} \otimes x^{\prime}\right) \circ \Delta(x)$ and $b=\left(1_{H} \otimes y^{\prime}\right) \circ \Delta_{1}(y) \in S(H)$ where (E, Δ) and $\left(E, \Delta_{1}\right)$ are left H-comodules of finite dimension and $x^{\prime} \in E^{\prime}, x \in E, y^{\prime} \in E_{1}^{\prime}, y \in E_{1}$. One has $\Delta(x)=\sum_{j=1}^{p} a_{j} \otimes x_{j}, \Delta_{1}(y)=\sum_{\ell=1}^{q} b_{\ell} \otimes y_{\ell}$ and $\Delta_{E \otimes E_{1}}(x \otimes y)=\sum_{j=1}^{p} \sum_{\ell=1}^{q} a_{j} b_{\ell} \otimes x_{j} \otimes y_{\ell}$. Hence, $\left.a b=\left(1_{H} \otimes x^{\prime}\right) \circ \Delta(x) \cdot\left(1_{H} \otimes y^{\prime}\right) \circ \Delta(y)=\sum_{j=1}^{p} \sum_{\ell=1}^{q} a_{j} b_{\ell}\left\langle x^{\prime}, x_{j}\right\rangle<y^{\prime}, b_{\ell}\right\rangle=$ $\left(1_{H} \otimes x^{\prime} \otimes y^{\prime}\right) \circ \Delta_{E \otimes E_{1}}(x \otimes y) \in \mathcal{S}(H)$.

Since $c(e)=e \otimes e, E=K . e$ is a left subcomodule of H of dimension 1, one has $e=\left(1_{H} \otimes \sigma\right) \circ c(e) \in \mathcal{S}(H)$.

Let $\mathcal{R}(H)$ be the linear subspace of H spaned by $\mathcal{S}(H)$. Then $\mathcal{R}(H)$ is an unitary subalgebra of H. Indeed, if $a=\sum_{j=1}^{p} \lambda_{j} a_{j}$ and $b=\sum_{\ell=1}^{q} \mu_{\ell} b_{\ell}$ are two elements of $\mathcal{R}(H)$, since $a_{j} b_{\ell} \in \mathcal{S}(H)$, one has $a b=\sum_{j=1}^{p} \sum_{\ell=1}^{q} \lambda_{j} \mu_{\ell} a_{j} b_{\ell} \in \mathcal{R}(H)$. One says that $\mathcal{R}(H)$ is the representative subalgebra of H.

Note : Put, for the left H-comodule (E, Δ) of finite dimension, $S(\Delta)=\{a=$ $\left.\left(1_{H} \otimes x^{\prime}\right) \circ \Delta(x) \in H ; x^{\prime} \in E, x \in E\right\}$. As in Proposition $5, S(\Delta)$ depends only of the isomorphism class $\tilde{\Delta}$ of (E, Δ). Furthermore, one has $\mathcal{S}(H)=\bigcup_{\operatorname{dim} \Delta<+\infty} S(\Delta)$.

Also, it is clear that the K-linear vector space $R(\Delta)=\rho_{\Delta}\left(E^{\prime} \otimes E\right)$ is spaned by $S(\Delta)$. Hence one has $\mathcal{R}(H)=\bigcup_{\operatorname{dim} \Delta<+\infty} R(\Delta)$. Moreover, if $\left(E_{1}, \Delta_{1}\right)$ and $\left(E_{2}, \Delta_{2}\right)$ are two comodules, then $R\left(\Delta_{1} \oplus \Delta_{2}\right)=R\left(\Delta_{1}\right)+R\left(\Delta_{2}\right)$ contains $R\left(\Delta_{1}\right)$ and $R\left(\Delta_{2}\right)$ i.e. the family $(R(\Delta))_{\Delta}$ ordered by inclusion is directed upward.

Theorem 1: The representative subalgebra $\mathcal{R}(H)$ of H is such that $c(\mathcal{R}(H)) \subset \mathcal{R}(H) \otimes$ $\mathcal{R}(H)$. Moreover $(\mathcal{R}(H), m, c, \eta, \sigma)$ is a Hopf algebra.

Proof : It follows from Proposition 6 and Remark 3 that if Δ is a coproduct of finite dimension, then $c(R(\Delta)) \subset R(\Delta) \otimes R(\Delta)$: that is $R(\Delta)$ is a coalgebra. Since
$\mathcal{R}(H)=\bigcup_{\text {dim } \Delta<+\infty} R(\Delta)$ is the union of coalgebras, it is a coalgebra. On the other hand, one deduces from the Corollary of Lemma 1 that $\eta(\mathcal{R}(H)) \subset \mathcal{R}(H)$. The Theorem 1 is proved.

II - 4 Simple comodules of finite dimension

Let $\left(e_{j}\right)_{1 \leq j \leq n}$ be a base of the finite dimensional left H-comodule (E, Δ). Let us remember that $A_{j}=\left(1_{H} \otimes e_{j}^{\prime}\right) \circ \Delta$ is a comodule morphism. One sees that $\bigcap_{1 \leq j \leq n} \operatorname{ker} A_{j}=(0)$ and $\left(A_{j}\right)_{1 \leq j \leq n}$ is free in $\mathcal{L}(E, H)$. Since $A_{j}\left(e_{j}\right)=a_{j j}$, one deduces from (2) or from Corollary 2 of Proposition 3 that $e_{j} \notin \operatorname{ker} A_{j}$ and $k e r A_{j} \neq E$.

Put $H_{j}=A_{j}(E)$; then H_{j} is a left subcomodule of H of dimension $\leq n$. Furthermore, with previous notations, one has $R(\Delta)=\rho_{\Delta}\left(E^{\prime} \otimes E\right)=\sum_{j=1}^{n} H_{j}$ and $H_{j}=\sum_{\ell=1}^{n} K \cdot a_{\ell j}$, also $R(\Delta)$ is a subcoalgebra of dimension $\leq n^{2}$. One can have $\operatorname{dim} R(\Delta)<n^{2}$; for example, if $E_{q}=\bigoplus_{t=1}^{q} E$ and $\Delta_{q}=\bigoplus_{t=1}^{q} \Delta, q \geq 2$, one has $R\left(\Delta_{q}\right)=R(\Delta)$ and $\operatorname{dim} R\left(\Delta_{q}\right)=\operatorname{dim} R(\Delta) \leq$ $n^{2}<(q n)^{2}=\left(\operatorname{dim}\left(E_{q}\right)\right)^{2}$.

Definition : A left Banach H-comodule E is called simple or topologically irreducible if E is not the null space and does not contain any closed subcomodule different from (0) and E.

Let Hom.com $\left(E, E_{1}\right)$ be the Banach space of the left Banach comodule morphisms of (E, Δ) into $\left(E_{1}, \Delta_{1}\right)$ and $E n d . c o m(E)=H o m . c o m(E, E)$, this later is a Banach algebra.

Remark 4 : Schur's Lemma.

Let (E, Δ) and $\left(E_{1}, \Delta_{1}\right)$ be two simple, finite dimensional left H-comodules.
(i) If E and E_{1} are not isomorphic, one has Hom.com $\left(E, E_{1}\right)=(0)$
(ii) In the alternative case, any non null comodule morphism of E into E_{1} is an isomorphism. In particular, End.com (E) is a (skew) field of finite dimension $\leq(\operatorname{dim} E)^{2}$. If K is algebraically closed, then End.com $(E)=K .1_{E}$.

Proposition 8 : Let (E, Δ) be a simple Banach left H-comodule of finite dimension n. Let $\left(e_{j}\right)_{1 \leq j \leq n}$ be a base of E and $A_{j}=\left(1_{H} \otimes e_{j}\right) \circ \Delta, 1 \leq j \leq n$.

Then $H_{j}=A_{j}(E)$ is a simple left H-comodule of H of finite dimension n. Furthermore, there exists $J \subset[1, n]$ such that $R(\Delta)=\bigoplus_{j \in J} H_{j}$ (a direct sum of comodiules).

Proof: It is the same as in semi-simple module theory. Indeed, since ker $A_{j} \neq E$ and E is a simple comodule of finite dimension n, the map $A_{j}: E \rightarrow H_{j}=A_{j}(E)$ is a comodule
isomorphism. Hence H_{j} is a simple comodule of dimension n with base $\left(a_{\ell j}\right)_{1 \leq \ell \leq n}$. If $1 \leq j, q \leq n$, one has $H_{j} \cap H_{q}=(0)$, or $H_{j}=H_{q}$. Changing the order if necessary, we my assume that (H_{1}, \ldots, H_{m}) is the family of the distinct comodules $H_{j} ; m \leq n$. Hence $R(\Delta)=\sum_{j=1}^{m} H_{j}, H_{j} \neq H_{q}$ for $j \neq q$.

Since $H_{1} \cap H_{2}=(0)$, one has the direct sum of comodules $H_{1} \oplus H_{2}$. Let j_{0} be the least integer ≥ 3 such that $\left(H_{1} \oplus H_{2}\right) \cap H_{j_{0}}=(0)$. Hence, one has the direct sum $H_{1} \oplus H_{2} \oplus H_{j_{0}}$ and for $j<j_{0}$, one has $\left(H_{1} \oplus H_{2}\right) \cap H_{j} \neq(0)$, therefore $H_{j} \subset H_{1} \oplus H_{2}$. Hence, by induction, one obtains $J=\left\{1,2, j_{0}, \ldots j_{k}=m\right\} \subset[1, m]$ and the direct sum of comodules $\bigoplus_{j \in J} H_{j}$ such that for $\ell \notin J, H_{\ell} \subset \bigoplus_{j \in J} H_{j}$. It follows that $R(\Delta)=\bigoplus_{j \in J} H_{j}$.

Corollary : $\quad L e t(E, \Delta)$ and $\left(E_{1}, \Delta_{1}\right)$ be two simple left H-comodules of finite dimension that are not isomorphic; then $R\left(\Delta \oplus \Delta_{1}\right)=R(\Delta) \oplus R\left(\Delta_{1}\right)$, a direct sum of comodules.

Proof : With previous notations, put $R(\Delta)=\bigoplus_{j \in J} H_{j}$ and $R\left(\Delta_{1}\right)=\bigoplus_{\ell \in L} H_{\ell}^{1}$. Let $p_{j}\left[\right.$ resp. $\left.p_{\ell}^{1}\right]$ be the projection of $R(\Delta)\left[\right.$ resp. $\left.R\left(\Delta_{1}\right)\right]$ onto $H_{j}\left[\right.$ resp. $\left.H_{\ell}^{1}\right]$. Suppose that $R(\Delta) \cap R\left(\Delta_{1}\right) \neq(0)$; this finite dimensional comodule must contain at least one simple comodule V. There exists $j \in J[$ resp. $\ell \in L]$ such that $p_{j}(V) \neq(0)\left[\right.$ resp. $p_{\ell}^{1}(V) \neq$ $(0)]$; therefore $p_{j}(V)=H_{j}\left[\right.$ resp. $\left.p_{\ell}^{1}(V)=H_{\ell}^{1}\right]$. Since V is simple, $p_{j \mid V}\left[r e s p . p_{\ell \mid V}^{1}\right]$ is an isomorphism of V onto H_{j} [resp. $\left.H_{\ell}^{1}\right]$. It follows that H_{j} and H_{ℓ}^{1} are isomorphic. Hence E and E_{1} are isomorphisc ; a contradiction. Therefore $R(\Delta) \cap R\left(\Delta_{1}\right)=(0)$ and $R\left(\Delta \oplus \Delta_{1}\right)=R(\Delta) \oplus R\left(\Delta_{1}\right)$.

Remark 5: Notations and hypothesis as above. If Kis algebraically closed, then the $H_{j}, 1 \leq j \leq n$, are pairewise distinct.

Proof: Indeed, if $H_{j}=H_{q}$ for $j \neq q$, then $u=A_{j} \circ A_{q}^{-1}$ is an automorphism of the finite dimensional simple comodule H_{j}. By Schur's lemma, one has $u=\lambda \cdot 1_{H_{j}}, \lambda \in k, \lambda \neq 0$. Hence $A_{j}=\lambda A_{q}$ and $a_{j j}=A_{j}\left(e_{j}\right)=\lambda A_{q}\left(e_{j}\right)=\lambda a_{j q}$. Therefore $\sigma\left(a_{j j}\right)=1=\lambda \sigma\left(a_{j q}\right)=$ $\lambda \delta_{j q}=0$; a contradiction.

Let H^{\prime} be the Banach space dual of H; if we set for $a^{\prime}, b^{\prime} \in H^{\prime}, a^{\prime} * b^{\prime}=\left(a^{\prime} \otimes b^{\prime}\right) \circ c$, then H^{\prime} becomes a complete normed algebra with unit σ. If (E, Δ) is a left Banach comodule, setting for $a^{\prime} \in H^{\prime}$, and $x \in E, a^{\prime} \cdot x=\left(a^{\prime} \otimes 1_{E}\right) \circ \Delta(x)$, one induces on E a complete normed right H^{\prime}-module structure. Moreover, if H is a pseudo-reflexive Banach space, then any closed right H^{\prime}-submodule of E is a Banach left H-subcomodule of E and reciprocally (cf. [3]).

Let $\left(E^{\prime}, \Delta^{\vee}\right)$ be the conjugate of the finite dimensional left H-comodule (E, Δ). One has for any $a^{\prime} \in H^{\prime}, x^{\prime} \in E^{\prime}$ and $x \in E,\left\langle a^{\prime} \cdot x^{\prime}, x\right\rangle=\left\langle x^{\prime},{ }^{t} \eta\left(a^{\prime}\right) \cdot x\right\rangle$. Therefore, if M is a H^{\prime}-submodule of E, then $M^{\perp}=\left\{x^{\prime} \in E^{\prime} /\left\langle x^{\prime}, x\right\rangle=0, x \in M\right\}$ is a H^{\prime}-submodule of E^{\prime}. Reciprocally, if η is bijective and if M^{\prime} is H^{\prime}-subcomodule of E^{\prime}, then $M^{\prime \perp}$ is a H^{\prime}-submodule of E.

Proposition 9 : Let H be a complete ultrametric Hopf algebra that is a pseudo-reflexive Banach space such that η is bijective.

Then, a finite dimensional left H-comodule (E, Δ) is simple if and only if $\left(E^{\prime}, \Delta^{\vee}\right)$ is simple.

Proof : Indeed, suppose that (E, Δ) is simple ; if M^{\prime} is a left H-subcomodule of $\left(E^{\prime}, \Delta^{\vee}\right)$ then $M^{\prime \perp}$ is a left H-subcomodule of E; therefore $M^{\prime \perp}=(0)$ or $M^{\prime \perp}$ and $M^{\prime}=E^{\prime}$ or $M^{\prime}=(0)$. By the same way, one shows the reciprocal.

II-5 When H admits a left integral

II-5-1 Again some general facts

Lemma 3 : $\quad L e t(E, \Delta)$ be a finite dimensional left H-comodule and let Δ_{c} be the restriction of c to $R(\Delta)=\rho_{\Delta}\left(E^{\prime} \otimes E\right)$; then $R\left(\Delta_{c}\right)=R(\Delta)$.

Proof : Let $\left(e_{j}\right)_{1 \leq j \leq n}$ be a base of E. One has $\Delta\left(e_{\ell}\right)=\sum_{j=1}^{n} a_{\ell j} \otimes e_{j}, 1 \leq \ell \leq n$ and $\left(a_{\ell j}\right)_{1 \leq \ell, j \leq n}$ spans $R(\Delta)$. Since $\sigma_{\mid R(\Delta)} \in R(\Delta)^{\prime}$, one has, according to (1), $a_{\ell j}=$ $=\left(1_{H} \otimes \sigma\right) \circ c\left(a_{\ell j}\right)=\rho_{\Delta_{c}}\left(\sigma \otimes a_{\ell j}\right) \in R\left(\Delta_{c}\right)$ and $R(\Delta) \subset R\left(\Delta_{c}\right)$. Reciprocally, if $a^{\prime} \in R(\Delta)^{\prime}$ and $a=\sum_{1 \leq \ell, j \leq n} \lambda_{\ell j} a_{\ell j} \in R(\Delta)$, one has $\left(1_{H} \otimes a^{\prime}\right) \circ \Delta_{c}(a)=\sum_{1 \leq \ell, j \leq n} \sum_{k=1}^{n} \lambda_{\ell j}\left\langle a^{\prime}, a_{k j}\right\rangle$ $a_{\ell k} \in R(\Delta)$ and $R\left(\Delta_{c}\right) \subset R(\Delta)$.

Lemma 4: Any finite dimensional left H-subcomodule E of H is contained in the representative subalgebra $\mathcal{R}(H)$ of H.

Proof : If $\left(e_{j}\right)_{1 \leq j \leq n}$ is a base of $E \subset H$, one has $c\left(e_{j}\right)=\sum_{\ell=1}^{n} a_{\ell j} \otimes e_{\ell}$. Let c_{E} be the restriction of c to E, then $R\left(c_{E}\right)$ is spaned by $\left(a_{j \ell}\right)_{1 \leq j, \ell \leq n}$. Since $e_{j}=\left(1_{H} \otimes \sigma\right) \circ c\left(e_{j}\right)=$ $=\sum_{\ell=1}^{n} \sigma\left(e_{\ell}\right) a_{j \ell} \in R\left(c_{E}\right)$, one has $E \subset R\left(c_{E}\right) \subset R(H)$.

Note : If K and H are discrete, one deduces from the above result and from Theorem 1-(ii) - of [3] that $\mathcal{R}(H)=H$.

II-5-2 Under the hypothesis: H admits a left integral

Let Ω be the family of the isomorphic classes of the simple, finite dimensional left H-comodules; Ω is not empty : its contains the class of the left subcomodule K.e of H. If $\omega \in \Omega$ is the class of (E, Δ), we set $R(\omega)=R(\Delta)$ that is independant of (E, Δ). It is readily seen that $\mathcal{R}_{s}(H)=\sum_{\omega \in \Omega} R(\omega)$ is a subcoalgebra of $\mathcal{R}(H)$. Moreover $\mathcal{R}_{s}(H)=$ $\bigoplus_{\omega \in \Omega} R(\omega)$, a direct sum of coalgebras. Indeed for any finite subset $\left(\omega_{1}, \ldots, \omega_{m}\right)$ of Ω, one has $\sum_{t=1}^{n} R\left(\omega_{t}\right)=\bigoplus_{t=1}^{m} R\left(\omega_{t}\right):$ see Corollary of Propositions 8 and its proof. Furthermore, if η is bijective, then $\mathcal{R}_{s}(H)$ is a sub-Hopf-algebra of $\mathcal{R}(H)$.

By definition, a left integral for the complete Hopf algebra H is an element ν of H^{\prime} such that $\mu * \nu=<\mu, e>\nu$ for all $\mu \in H^{\prime}$. The complete Hopf algebra H is called supple if H is a pseudo-reflexive Banach space and $\eta \circ \eta=1_{H}$. For H, a supple complete Hopf algebra that admits a left integral ν such that $\langle\nu, e\rangle=1$, we know that any simple left Banach H-comodule is finite dimensional (Theorem 3 - [3]) .

Theorem 2: Let H a supple complete Hopf algebra that admits a left integral ν such that $\langle\nu, e\rangle=1$. Then $R(H)=\bigoplus_{\omega \in \Omega} R(\dot{\omega})$ where Ω is the family of the isomorphic classes of simple Banach left H-comodules.
(ii) The Hopf algebra $\mathcal{R}(H)$ is dense in H, that is $H=\overline{\mathcal{R}(H)}=\widehat{\bigoplus_{\omega \in \Omega}} R(\omega)$.

Proof :

(i) One deduces from [2] - Theorem 3 that any finite dimensional H-comodule (E, Δ) is semi-simple i.e. $(E, \Delta)=\bigoplus_{\tau} \bigoplus_{t}\left(V_{t, r}, \Delta_{t, \tau}\right)$ with $V_{t, \tau} \in \omega_{\tau}$ and $\omega_{\tau} \in \Omega$. Hence $R(\Delta)=\sum_{\tau} \sum_{t} R\left(\Delta_{t, \tau}\right)=\sum_{\tau} R\left(\omega_{\tau}\right)=\bigoplus_{\tau} R\left(\omega_{\tau}\right) \subset \mathcal{R}_{s}(H)$. It follows that $\mathcal{R}(H)=$ $\mathcal{R}_{s}(H)=\bigoplus_{\omega \in \Omega} R(\omega)$.
(ii) The Hopf algebra H is naturally a Banach left H-comodule with coproduct c. Let $a \in H, a \neq 0$; since H is pseudo-reflexive, the Banach left subcomodule $E(a)=\overline{H^{\prime} \cdot a}$ of H contains a and is a non null Banach space of countable type (cf. [3]).

With the hypothesis, we know that $E(a)$ contains simple left H-subcomodules (finite dimensional) (cf. [3]).

Let $\left(V_{\tau}\right)_{\tau \in T}$ be the family of all simple subcomodules of $E(a)$. Put $W=\sum_{\tau \in T} V_{\tau}$, there exists $S \subset T$ such that $W=\bigoplus_{r \in S} V_{\tau}$; one has $c(W) \subset H \otimes W$. Since c is a homeomorphism of H onto $c(H)$, setting $E_{0}=\bar{W}$, one has $c\left(E_{0}\right) \subset H \widehat{\otimes} E_{0}$, i.e. E_{0} is a Banach left subcomodule of $E(a)$. In fact $E_{0}=E(a)$. Otherwise, one has a direct sum of Banach comodules $E(a)=E_{0} \oplus E_{1}$ with $E_{1} \neq(0)$ (cf. [2]). However E_{1} must contain at least one simple comodule V and by definition of W, one has $V \subset W$. Hence $E_{0} \cap E_{1} \neq(0)$; a contradiction.

Let ω_{τ} be the isomorphic class of the simple comodule $V_{\tau}, \tau \in T$. By Lemma 4, $V_{\tau} \subset R\left(\omega_{\tau}\right), \tau \in T$. Hence, we have $W=\sum_{\tau \in T} V_{\tau} \subset \sum_{\tau \in T} R\left(\omega_{\tau}\right) \subset \bigoplus_{\omega \in \Omega} R(\omega)=\mathcal{R}(H)$. It follows that $a \in E(a)=E_{0}=\bar{W} \subset \overline{\mathcal{R}(H)}$. We have proved that $H=\overline{\mathcal{R}(H)}=\widehat{\bigoplus_{\omega \in \Omega}} R(\omega)$.

Note : The above results are abstract version of some results of representation theory of groups. In particular Theorem 2 is Peter-Weyl Theorem (cf. [3]).

REFERENCES

[1] B. DIARRA. Algèbres de Hopf et fonctions presque périodiques ultramétriques, to appear in Rivista di Matematica pura ed applicata $n^{\circ} 16$.
[2] B. DIARRA. Ultrametric almost periodic linear representations, In " p -adic Functional Analysis", Editorial Universidad de Santiago, Chile, 1994, p. 45-55.
[3] B. DIARRA. On reducibility of ultrametric linear representations, Glasgow Math. Jour. 37 (1995), p. 83-98.
[4] A.C.M. VAN ROOIJ. Non-Archimedean functional Analysis, Marcel Dekker, NewYork, 1978.
[5] W.H. SCHIKHOF. An approach to p-adic almost periodicity by means of compactoids, Report 8809 , Department of Mathematics, Catholic University (Nijmigen 1988).
[6] W.H. SCHIKHOF. p-Adic almost periodic functions, Indag. Math. $1 \mathrm{n}^{\circ} 1$ (1990), p.127133.
[7] J.P. SERRE. Endomorphismes complètement continus des espaces de Banach p-adiques, Publ. Math. ${ }^{\circ} 12$ (1962) I.H.E.S. Paris, p. 69-85.

Laboratoire de MATHÉMATIQUES PURES
Université Blaise Pascal Complexe Scientifique des Cézeaux 63177 AUBIĖRE Cedex FRANCE

e-mail : diarra @ ucfma.univ-bpclermont.fr

