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ON DIFFERENCES OF SELF-ADJOINT SEMIGROUPS

JAN A. VAN CASTEREN

This work is dedicated to the memory of A. Badrikian.

ABSTRACT. Let Ko be the generator of a strong Markov process (X(t), PZ ),. with
state space E, that is locally compact and second countable. Assume that the corre-

sponding semigroup is self-adjoint and positivity preserving in the space L2(E, m).
Here ni is a Radon measure on E. Let V and W be Kato-Feller potentials and
let H0 := K0+V, respectively H1 := K0+W be the generators of the corre-

sponding Feynman-Kac semigroups {Vj(t) : t > = 0, 1. Fix t0 > 0 and let

{Ej(03BE) : 03BE R}, j = 0, 1, be the spectral decompositions of K0+V and K0+W re-

spectively. Suppose that the function exp V belongs to L°° ( E, m)

or suppose that limt~0 supx~E Ex [ (t0 (W (X (s)) - V (X (s))))2] = 0. Then the

following assertions are equivalent:

(i) For all bounded intervals Ao and Ai the operator E0(A0)(W - V)E1(A1)
is compact;

(ii) The operator V)V1(t0/2) is compact;
(iii) The operator V0(t0) - V1(t0) is compact.

Among others the identity in (2.6) below is used substantially. A number of conse-

quences of that formula-is established.

SOMMAIRE. Soit Ko le générateur d’un processus Markovien {X(t), Pz }, avec un es-

pace d’etat E, qui est localement compact et vérifie 1’axiome de deuxieme denom-

brabilite. On suppose que le semi-groupe associé est auto-adjoint et qu’il preserve
la positivite dans 1’espace L2(E, m). Ici m denote une mesure de Radon sur E.

Soient V et W des fonctions potentielles et soient Ho := Ko+V, respectivement
Hl := Ko+W les generateurs des semigroupes de Feynman-Kac {Vj(t) : t > 0},
j = 0, 1, associes. On fixe to > 0 et soient {EJ(~) : ~ E R~, j = 0, 1, les decompo-
sitions spectrales de Ko+V et Ko+W respectivement. On suppose que la fonction
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exp (-!toKo) V ( appartient a L°°(E, m) ou que la condition suivante est
vérifiée: limtlo supx~e Ex [(t0 (W (X (s)) - V(X(s))))2] = 0. Alors les assertions

suivantes sont equivalentes : 

(i) L’operateur Eo(Ao)(W - est compact pour tous les intervalles
bornes Ao et Ai;

(ii) 1’operateur V0(t0/2)(W - V)V1(t0/2) est compact;
(iii) l’opérateur V1(t0) est compact.

Entre autres l’identité dans (2.6) au-dessous est utilisée essentiellement. Un certain
nombre de consequences de cette formule est etabli.

1. INTRODUCTION.

Let H0 and H1 be complex Hilbert spaces, let Ho and HI be self-adjoint op-
erators with domains in H0 respectively H1, and let J : H1 ~ H0 be a bounded
linear operator. Suppose that Ho and Hi are bounded below with lower bounds
- wo and respectively. We write V0(t) = exp(-tH0) and V1(t) = exp(-tH1).
Notice that the families { V~ (t) : Re t > OJ, j = 0, 1, are strongly continuous semi-
group and that the family r E R? is a strongly continuous unitary group.
Furthermore let ~Ea(~) : ~ E R) and ~Ei(~) : ~ E R} be the spectral decomposition
corresponding to Ho and .Hi respectively. So that e.g. for f in the domain of Ho,
H0f, f = E0(d03BE)f, f. Put

D(t)T = t0V0(u)TV1(t - u)du, Re t > 0. (1.1)

Notice the identity

RetO, (1.2)

if T = H1 - H0. We want to investigate some compactness properties of the
operator D(t4 )T . In the present our results will be based on Proposition 2.1. . below.
Instead of Cauchy semi groups that were crucial in [22], here we use an identically
distributed, independent sequence of random variables which follow a logistic law:
see Proposition 2.2. In §3 some Hilbert-Schmidt and trace properties are given for
operators closely related to differences of Feynman-Kac semigroups. In §4 part of
this is applied to Feynman-Kac semi groups in order to establish the result in the
abstract.

2. . SOME OPERATOR IDENTITIES

Let B1(H1, H0) denote the ideal of trace class operators, let B2(H1, H0)) denote
the ideal of Hilbert-Schmidt operators, let B~(H1, H0) denote the ideal of compact
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operators, and let B(H1, H0) denote the space of all bounded linear operators from
xl to Mo. If there is no ambiguity we write Bi for and similarly for
the other spaces. As in the introduction let Ho and H~ be self-adjoint operators in

xo respectively H1. In the sequel we employ the following notation:

V0(t) = exp(-tH0) and V1(t) = exp (-tH1); (2.1)

D(t)T = ~ u)du; ; (2.2)

t) T = V0(i03C3)D(t)TV1 (-io); (2.3)
G (o, t) T = tV0(i03C3)V0(t/2)TV1(t/2)V1(-i03C3). (2.4)

We also use a sequence of independent identically distributed real valued random
variables (Uj : j EN), where each variable U; is logistically distributed:

P [Uj ~ B] 2 B 1 (cosh 03C0)2d
= 03C02~0 

sinh 03C0 (cosh 03C0)

3 1B(03C3)d03C3d. (2.5)

Let (nB ~’~ be the probability space corresponding to the sequence (!7i, ~2,...). .
For more information on logistic random variables see e.g. Evans et al [13, §24].
Many of the equalities in the Proposition 2.2. will be a consequence of the identity
in the following proposition.

2.1. . Proposition. The following identity is true:

t0 V0(t0/2)TV1 (t0/2)

= 03C0 2 ~-~ 1 (cosh 03C0)2V0(it0)t00V0(u)TV1(t0 - u)duV1(-it0)d (2.6)

= E’ [F(U1 t0, t0 )T]. 
’

Remark. Define the operator valued Cauchy semigroup {exp ( -tA) : t > 0~ on
B (H1, H0) via the formula

exp (--tA) (T ) = 1 03C0 ~-~ d t 
r2 + t2 V0(i)TV1(-i), t > o. (2.7)

In [22] the central identity was
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The basic role of equality (2.8) in (22~ is taken over by equality (2.6) in the present
paper. It is quite well possible, that with the semigroup in (2.7) there can be
associated a quantum diffusion.

Proof. The proof will depend on the Poisson formula in the upper half-plane. From
the definitions we get

03C0 2~-~ 1 (cosh 03C0)2F(rt0,t0)Td
= 203C0 ~-~ 1 exp (203C0) + 2 + exp (-203C0)

V0(it0) t00 V0(u)TV1(t0 - u)duV1(-it0)d

7o 7-00 exp (2?rr) + 2 + exp (-2~rr)
Uo (i (r - i u ) to) TVl (to - i (r - iu) ta) dT du

(r" is the straight line ru(r) = 7- - iu)

= 203C0t0 10 0393u 1 exp (203C0 (03B6 + iu)) + 2 + exp (-203C0 (03B6 + au))
(Cauchy’s theorem: ( = -2i + r)

/~i r°° ~
V0(i03B6t0)TV1(t0 - i03B6t0)d03B6 du

= 203C0t00 ~ - exp (203C0( + iu)) + 2 - exp (-203C0 ( + iu))
V0 (it0) V0 (t0/2) TV1 (t0/2) V1(-it0) dT du

2i ~ i a f ~ ~oth (~ (r ~- iu))
V0(it0) V0 (t0/2)TV1(t0/2)V1 (-it0) dr du

= lim t0 2i ~-~ (coth (03C0 (r + i(1 - ~))) - coth (03C0 (r + i~)))
V0(it0) V0 (t0/2) TV1 (t0/2) V1 (-it0) dT

== lim t0 ~ Im exp(03C0( - i~)) + exp(-03C0( - i~))
elo ,/_~ 
V0(it0)V0 (t0/2)TV1 (t0/2) V1 (-it0)d

= lim 2t0 sin (203C0~) ~-~ 1 (exp(03C0) - exp(-03C0))2 + (2 sin(03C0~))2
~~0

V0 (it0)V0 (t0/2)TV1 (t0/2) V1 (-it0) dr. (2.9)

Next we make the substitution
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We also write

~(~)
= V0 (it0 03C0 log (03BE + 03BE2 + 1))V0(t0/2) TV1 (t0/2) V1 (- it0 03C0 log (03BE + 03BE2 + 1)) .

So from (2.9) we obtain

03C0 2 ~-~ 1 (cosh 03C0)
2 F(t0, t0)Td

= lim t0 cos (03C0~) sin(03C0~) 03C0 ~-~ 1 03BE2 + (sin(03C0~))3U(03BE)d03BE 1+03BE2
= t0U(0) = t0V0 (t0/2)TV1 (t0/2).

This proves the equality in (2.6).

In the following proposition we collect a number of relevant identities.

2.2. Proposition. (a) Let V0(t) and V1(t) be as above and also let the other
notation be as above. Let T : : H0 ~ H1 be a continuous linear operator. The

function f is a function in and  is a Borel measure of bounded variation on
the real line. The following identities are true:

G(03C3t0, t0)T = E’ [F(03C3 + U1) T] ; (2.10

~-~ E’f(03C3-(U1 +... + Uj))G(03C3t0, t0)Td03C3

= ~-~E’f(03C3 - (U1 +...+Uj+1))F(03C3t0, t0)Td03C3. (2.11)

In addition the following equality is true: 
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Some other equates are

f(03C3)F(03C3t0, t0)Td03C3 - (kj)(-1)j ~-~ E’f(03C3-(U1 +...+Uj))G(03C3t0, t0)Td03C3
= 1 203C0 ~-~~-~(1 - 03BE/2 sinh (03BE/2))n+1 (03BE)ei03C303BEd03BEF(03C3t0, t0)Td03C3;
~-~ f(03C3)G(03C3t0 t0)Td03C3
= 03C02 ~0 sinh 03C0 (cosh 03C0)3 ~-~ f(03C3)F((u + 03C3)t0, t0)Td03C3 du d; (2.16)

~-~ G(03C3t0, t0)Td (03C3)
= 03C02 ~0 sinh 03C0 (cosh 03C0) 3 ~-~ F((u + 03C3)t0, t0)Td (03C3) du d; (2.17)

(b) Jf the function / is n times continuously differentiable, then the following iden-
tity is valid as well:

- (-1)kE’U1...Uk 10 ds1 ... 10 dsk ~-~ f(k) (03C3 - (s1U1 +...+ skUk))G(03C3t0, t0)Td03C3k=0

= 1 203C0 ~-~~-~ (1 - 03BE/2 sinh (03BE/2))n+1 (03BE)ei03C303BEd03BEF(03C3t0, t0)Td03C3. (2.18)

(c) la addition the following identity is true ~ N ):

(kj) (-1)jE’[G((U1 +...+Uj)t0,t0)T]
= F(0, t0)T - 

(N + 1j) (-1)j E’(F((U1 +...+ Uj)t0, t0)T]. (2.19)
/

(d) Let ti(T,s) be a harmonic function on R x (20141/2,1/2) with the property that
the following expression

lim sup ~-~ |1/2-~ -1/2+~ u(r,s)ds dr

is finite. Then the following identity is true as well:
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Proof. (a) The equality in (2.10) coincides with the one in (2.6) for r = 0. The one
in (2.10) then follows from the definitions of and . Since the random

variable does not depend on the variables Ui , .... the equality in (2.11)
is a consequence of Fubini’s theorem, of equality (2.11), and of the fact that the
Redistribution of i7j+i coincides with that of Ui . The equality of the expressions
in (2.12) and in (2.13) follows from the following argument:

E7(~-(~l+"-+~))

= 1 203C0 E’ ~-~ (03BE) exp(i(03C3 - (U1 +...+ Uj))03BE)d03BE

= 1 203C0 ~-~ (03BE)ei03C303BE E’ exp(-i(U1 +...+ Uj)03BE)d03BE
(the variables U1,... , Uj are mutually independent and identically distributed)

= - /" /(~)~~ (~ [exp 27r ~_~

- ~~~~(5E~))~ ~

Here we used the fact that the Fourier transform of the Redistribution of the

variable Ui is given by the function 03BE ~ 03BE/2 sinh (03BE/2). Equality (2.21) together with
a limiting argument will show the equality of the expressions in (2.12) and in (2.13).
Next we proceed with proving the equality of (2.13) and (2.14). From the identity

, u>0,
7T V_~ t~ + T~

we infer

1 203C0 ~-~(~-~ (03BE)exp (1 2|03BE|)ei03BEd03BE1 203C0~-~ log (1 + 1 (03C3 - )2)G(03C3t0, t0)03C3t0, t0)Td03C3 d
= 1 203C0 ~-~(~-~ (03BE)exp(1 2|03BE|)e03BEd03BE)1 03C0~-~10u u2 + (03C3 - )2duG(03C3t0, t0)Td03C3 d

= 1 203C0 ~-~ (03BE)exp(1 2|03BE|) ei03C303BEd03BE ~-~ 10 exp (-u |03BE|) duG (03C3t0, t0)Td03C3

~/:(/:~"~~~~-~-
= / 
This shows that the expressions in (2.13) and in (2.14) are equal. The first equality
in (2.12) is a consequence of the identity in (2.15). So we only need to prove the
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identity in (2.15). This may be achieved as follows:

Notice that (2.22) is the same as (2.15). The equalities in (2.16) and in (2.17) follow
from the equality in (2.11) together with translation invariance of one-dimensional
Lebesgue measure and Fubini’s theorem.
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(b) The identity

E(~~)~~-~+-"+~))
j==o ~~

= (-1)kU1...Uk ~10 ds1...~10 dskf(k) (03C3 - (s1U1 + ... + skUk))

implies the equality in (2.18).

(c) The equality in (2.19) is proved in the same manner as the equality in (2.15).

(d) First we prove the equality in (2.20) for harmonic function u(r, s) of the form:

u(,s) = 03C0 2 ~~-~ Re 1 (cosh 03C0 (-03C3+is))2f(03C3)d03C3,
where / is a function in L1(R). For such a function u( T, s) we get, for 0  e  1/2,

/ u(r, s )ds 
.

J-1 2+~
= - 03C0 2 

~~-~ 

Re 
~-~-+~

1 (cosh 03C0 (-03C3+is))2dsf(03C3)d03C3

=  ~~-~ Re (1 i tanh 03C0 (r - r + is) |s=-~ s=-+~) f(03C3)d03C3
= ~~-~ Re (1 i -1 exp (203C0 (-03C3+is))+1) |s=-~ s=-+~ f(03C3)d03C3

= / J-~ (exp (03C003C3) - exp (-03C003C3))2 + 4 sin2 03C0~

= 1 03C0 ~~-~cos03C0~ 1+03BE2f(-1 03C0log (03BEsin03C0~+1+03BE2sin203C0~ )) d03BE 1+03BE2sin203C0~.

So that

lim ~-~ -+~u(,s)ds = /(T). .
~o ~~~

On the other hand we also see
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This shows the equality in (2.20) for harmonic functions with the indicated proper-
ties. In order to complete the proof we shall also prove assertion (d) for a harmonic
function u(T, s) of the form

u(, s) = ~~-~ cos 03C0s cosh 03C0(-03C3)-sind 03C0s

f(03C3)d03C3.

Therefore we need the following identities:

~1/2-1/2cos03C0s cosh 03C0(-03C3)-sin03C0s ds = ~1/2-1/2
1 cosh 03C0(+is-03C3)

ds

= 1 03C0log cosh 03C0(-03C3)+1 cos 03C0(-03C3)-1.

Then we get

~~-~ ~~-~u(- 03C3,)f(03C3)d03C3F(t0, t0)Td

= ~~-~ ~~-~1 cosh 03C0(-03C3)f(03C3)d03C3F(t0,t0)Td~-~ ~-~ cosh 03C0(-03C3)
(Cauchy’s theorem, see the argument for the proof of equality (3.6))

= ~~-~ ~~-~ ~1/2-1/2
1 cosh 03C0(+is-03C3)

dsf(03C3)d03C3G(t0,t0)Td

= ~~-~ ~1/2-1/2 u(,s)dsF(t0,t0)Td.
Since the same argument can be used for the function u(r, -s), this suffices for a
proof via a density argument and the fact that solutions for the Dirichlet problem
on the strip R x ~- ~, 2 ) are of the form

u(r~)= °° ~-~ cosh 03C0( - 03C3) - sin 03C0s
+ ~~-~ cos 03C0s cosh 03C0(-03C3)+sin03C0sf2(03C3)d03C3

3. SOME INEQUALITIES.

Let the notation be as in §2. In this section we consider a sub-additive ho-

mogeneous function (a semi-norm) p : -r (0, oo), where 
denotes the space of all finite rank operators from between the Hilbert spaces x~
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and H0. We suppose that p(V0(i)TV1(-i)) = p(T) for all r E R. We also intro-

duce the following convex sets of harmonic functions on the strip R x (-,):
harm1 ( 3.1 )

= {u : R x (-1 2, 1 2) ~ R : u harmonic and lim sup ~-~ |1 2-~-1 2+~ u(,s)ds| dr ~ 1};
harm+1 = ( u E harm1 : ~a-a u(,s)ds ~ 0 for all 0 ~ a  2 ? . (3.2)

3.1. Proposition. (a) The following equalities are valid:

t0p(V0(t0/2)TV1(t0/2))
= sup {p (~~-~ u(,0)V0(it0)D(t0)TV1(-it0)) : u ~ harm1} (3.3)

= sup {P (~~-~ u(,0)V0(it0)D(t0)TV1(-it0)) : u ~ harm+1}. (3.4)

(b) Let f : R -. R be any C’~-function with the property that the integrals

J ~ dQ are finite for all kEN. The following inequality is valid:

p (~~-~ f()V0(it0)D(t0)TV1(-it0)d)
~ (long 2 03C0)k ~~-~|f(k)()| dt0p(V0(t0/2)TV1(t0/2)). (3.5)

(c) Next let ~c be a real (or complex) Borel measure on R. The following inequality
is valid:

p(~~-~ G (03C3t0, t0)Td (03C3)) ~ p (~~-~ F (03C3t0, t0) Td (03C3)) . (3.6)

(d) In addition the inequalities

p(G(0,t0)T) ~  p (1 2 ~- F(ut0,t0)Tdu) ~ p(F(0,t0)T) (3.7)

hold true.

(e) Let f E Ll(R) be a function with the property that the function
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belongs to L1(R). Then the following inequalities are true:

~~ ~~"~~~ (3.8)

~ ~/~ G ~’) (3.9)

. 

Proof. (a) From equality (2.20) in assertion (d) of Proposition 2.2. we obtain the
inequality

p(~~-~u(,0)F(t0,t0))Td) = lim p (~1/2-~-1/2+~ ~~-~u(,s)G(t0,t0)Td ds)
= lim p (~1/2-~-1/2+~ u(,s)G(t0,t0)Tds d)
~ lim ~~-~|~1/2-~-1/2+~ u(,s)ds| p(G(t0,t0)T)di0 ~_~ /
= lim ~~-~ |~1/2-~-1/2+~u(,s)ds|p(G(0,t0)T)d. (3.10)

From (3.10) it follows that the quantity p(G(0,t0)T) dominates the expression in
(3.3). In turn, since harm+ C harmi the expression in (3.4) is trivially dominated
by the one in (3.3). Upon inserting the function

u(,s) = Re 03C0 21 (cosh 03C0(+is))2

together with employing the following facts:

/ /W 17~+, = 2 ~~

= 4 cos 03C0~ sin 03C0~ (exp(03C0(-03C3))-exp(-03C0(-03B4)))2+4 sin2 03C0~

>0 and

~~-~~-~-+~u(,s)ds d = 1-2~ ~ 1
in conjunction with Proposition 2.1. yields the inequality
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Altogether this shows the equalities in (3.3) and (3.4).

(b) Since E’ |U1| = long 2 03C0 the inequality in (3.5) is a consequence of assertion (b) in

Proposition 2.2.

(c) The inequality in (3.6) is a consequence of the equality in (2.17) : notice the

equality 
03C02 

~~-~ 2 sinh 03C0 (cosh 03C0)3 dr = 1. (3.11)

(d) Let p, be the Dirac measure at o. An appeal to (2.17) together with (3.11) yields
the first inequality in (3.7). The second inequality follows from the subadditivity,

positive homogeneity, and continuity of the function p together with the standard

hypothesis that = peT) for all T R.

(e) The inequalities in (3.8) and (3.9) follow from the corresponding equalities in

(2.13) and (2.14) respectively. We also notice the identities (see the proof of equality
(2.13) and (2.14) in Proposition 2.1.):

1 203C0 ~~-~(03BE)sinh(03BE/2) 03BE/2ei03C303BEd03BE

= 1 203C0 ~~-~ (~~-~(03BE)exp (|03BE|)ei03BEd03BE)1 203C0 log (1 + 1 (03C3-)2) d, and
~L’~(~(~~)"=’’

3.2. Corollary. (a) Let T be linear operator with the property that, for every

T > 0, the operator ~-F(ut0, t0)Tdu is compact, Hilbert-Schmidt, or of trace
class respectively. Then the operator G(0, to)T possesses the corres ponding property
as well.

(b) Let.f be a C~-function with the property that the expression

is finite or let f( T) = ~(r,0), where is a harmonic function belonging to

harmi . Let T be an operator for which the operator V0(t0/2)TV1(t0/2) is a Hilbert-
Schmidt operator (or a trace class operator, or a compact operator), then this

property is shared with the operator ~~-~ f(03C3)V0(i03C3t0)D(t0)TV1(-i03C3t0)d03C3. The
same conclusion is true if f is a function belonging to LI(R) which possesses the

property that the integral
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is a member of as well.

(c) Let T : H1 -+ H0 be an operator with the property that for every f E Ll(R)
there exists a function 9 E such that

~~-~ f(03C3)F (03C3t0, t0) Td03C3 = ~~-~g(03C3)G (03C3t0 , t0) Td03C3.

Suppose that the operator V0(t0/2)TV1(t0/2) is compact, or Hilbert-Schmidt, or
trace class. Then so are operators ~~-~f(03C3)F (03C3t0, t0) Td03C3, for f belonging to
L1(R).

Remark i. . Let Ho = f and 81 = f ~E1(d~) be the spectral decompositions
of Ho and Hi respectively. Suppose that there exist bounded intervals Ao and Ai
in R with the property that E0(A0)TE1(A1) = T. Then the hypothesis in (c) is
satisfied. in fact let u : : R -. R be a compactly supported C°°-function with the
property that

1A0-A1(03BE) ~ u (t003BE/2) ~ 1.

Then 
~ 

’ 

~~-~ f(03C3)F (03C3t0, t0) Td03C3 ~~-~g(03C3)G (03C3t0, t0) Td03C3,

where the function g is chosen in such a way that

9(~) = f(~)Sin~~ZI2).~(~)~
This can be shown by noticing that, for f E the operator

J~ 
equals the so-called double Stieltjes operator integral

~~(t0(03BE-~)) sinh t0(03BE-~) t0(03BE-~)E0(d03BE)G(0,t0)TE1(d~)
= ~~(t0(03BE- ~))sinh t0(03BE-~) t0(03BE-~)u (t0 2(03BE- ~)) E0(d03BE)G(0, t0)TE1(d~)
= ~ ~(t0(03BE- ~))E0(d03BE)G(0,t0TE1(d~) = ~~-~g(03C3)G (03C3t0,t0) Td03C3.

Remark 2. In [1, 2, 3, 4] Birman and Solomyak make a detailed study of operators
of the form 

_ _ 

.
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In (23, p. 225-228] Yafaev gives some information as well on these so-called double
Stielt jes operator integrals and so do the authors of (16~ on page 66. Related results
and estimates can be found in Farforovskaya [14, 15] and in Peller [17].

Proof. Assertion (a) follows from the equality in (2.17) together with the inequality
in (3.7) for an appropriate choice of p and of p. The measure is supposed to be
the Dirac measure at the origin. For p we either take the usual operator norm, the

Hilbert-Schmidt, or the trace norm.

(b) This assertion is a consequence of inequality (3.5) together with the equality in

(2.18) in case we are dealing with an appropriate C°°-function and of (3.4) together
with (2.20) in case we are dealing with a harmonic function in harml. . In case the
function f possesses the property that the inverse Fourier transform of the function

-. ) smh 2 belon g s to L1(R) we employ inequality (3.8) in assertion (e) of
Proposition 3.1.

(c) Since
G (03C3t0, t0) T = t0V0(i03C3t0)V0(t0/2)TV1(t0/2)V1(-i03C3t0),

this assertion is readily established.

3.3. Theorem. Let T : H1 ~ Mo be a linear operator. The following assertions
are equivalent: .

(1) The operator D(to)T is compact;
(2) The operator D(to )T is bounded, the operator V0(t0/2)TV1(t0/2) is

compact and

lim = 0. (3.12)
a io

Proof. (1) ~ (2). . A compact operator is automatically bounded. The compactness
of the operator V0(t0/2)TV1(t0/2) follows from equality (2.6) in Proposition 2.1.
The equality in (3.12) also follows from the compactness of the operator Ð(to)T
in conjunction with the strong continuity of the semigroups ~y~(a) : a > 0~ and

a > 0~. . In fact, assume that the equality in (3.12) were not true. Then
there exists a sequence of elements n E N) in ~ll of norm one, which converges
to ~~ weakly, together with a sequence of positive real numbers (an : n EN), which
decreases to 0, such that for some ê > 0, the inequality

~V0(an)D(t0)TV1(an)xn - D(t0)Txn~ ~ ~

is true for all n E N. It follows that a?o is also the weak limit of the sequence

E N ). Since, by compactness, the equalities



180

are valid in norm sense, this is a contradiction.

(2) ~ (1). The compactness of the operator V0(t0/2)TV1(t0/2) implies that of
This can be seen as follows. Put

la() = 
03C0 2a1 (cosh (03C0/a))2.

A Tauberian argument (see e.g. Theorem 3, page 357 of Yosida [24]) applies to the
effect that the subspace {l1 * 03C6 : 03C6 ~ L1(R)} is dense in L1(R). So there exists a
sequence of functions in Ll(R) such that

lim ~la/t0 - l1*03C6a,n~1 = 0.

So we obtain

aV0(a/2)D(t0)TV1(a/2) = ~~-~l1()F(a,a)D(t0)Td

= D(a)(~~-~la/t0()F(t0,t0)Td)

{Tauberian theorem)

= lim D(a) (~~-~l1 * 03C6a,n()F (t0, t0) Td)

(equality (2.10) in Proposition 2.2.)

= lim D(a) (~~-~03C6a,n()G(t0,t0)Td). (3.13)

The operators in (3.13) are compact, and hence we see that the operators
Vo(a)D(to )TYl (a), a > 0, are compact as well. So (1) follows from the equality in
(3.12).

Remark.. Let : H1 ~ J0 be a continuous linear operator. Suppose that the
operators Ho ,~’-subordinate with respect to Hi . . By definition this means that
there exist locally bounded functions f o and f1, defined on R, with the following
properties: 

~

(a) |f0(03BB)| ~ 1, 1, lim03BB~~|f0(03BB)| = lim03BB~~|f1(03BB)| = ~;

(b) The operator V is a continuous linear operator from D ( f i (Hl )) (with
its graph-norm) to the space D ( f o(Ho )) (with its graph-norm).

It will then follow that the operator is bounded from ~I to ~-lo
and that condition (b) is satisfied: see e.g. Lemma 7, page 207 of Yafaev [23].
For the more details see e.g. Definition 6, page 207 of [23]. If, in addition, Hi
is 3*-subordinate with respect to Ho, then the operators Ho and Hi are said to
be mutually subordinate. In case V = I, so that H0 = H1, then Ho and Hi are
mutually subordinate with respect to each other if e.g. D(H1) = D(Ho ) or if, for
03B3 > 0 large enough, D + H0)1/2 = D + H1 )1/2. If H1 = and if J is the

identity operator we just say that Ho is subordinate to Hi provided they have the
properties (a) and (b). Hamiltonians which are subordinate to each other play a
central role in mathematical scattering theory: see e.g. Yafaev [23].
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4. AN APPLICATION TO FEYNMAN-KAC SEMIGROUPS. .

In the present section we want to apply some of the results obtained in the

previous section to Feynman-Kac or generalized Schrödinger semigroups. In this

context we let E be a locally compact second countable Hausdorff space with a non-

negative Radon measure m. The operator Ko is supposed to generate a strongly
continuous, positivity preserving, semi group {exp (-tKa) : t > 0} with the property
that 0 ~ f  1 implies 0  exp (-tKo) f  1. It is well-known that in the present
circumstances there exists a strong Markov process

~(~~ ~~ P.), ~ (X (t) : t > 0), (X(t) : t > ~) , (~9= : t >) , (E, ~)}

with the property that exp (-tKo) = Ex ~ f (X (t)~. . We may assume that for
the paths t ~ X(t) are Px-almost surely right-continuous and have left limits in E
on their life time ( := inf {s > 0 : ~}. . Here A is an extra point, which we
add to the state space, in order to make genuine probability measures on the space
E° := E U A out of the sub-probabilities B f B po(t, ~, y)dm(y). The proof of
this result is quite technical. It combines the well-known theorem of Kolmogorov
on projective systems of measures with a proof of the fact that the indicated path
space has full measure, so that no information is lost. Proofs are omitted. They can
be found in for example Blumenthal and Getoor [5, Theorem 9.4. p. 46]. . Another

good reference for Markov processes is the book by Ethier and Kurtz [12]. The
Markov property means that for all t > 0 and for all x in the state space E the

equality

Ex [Y o 03B8t|Ft] = EX(t) [Y] , Px-almost surely.

Here Ft is the "information" from the past: is the 03C3-field generated by the state
variables (X (s) s  t). The relevant relation between the state variables X (t),
t > 0, and the translation or shift variables ~9~, s > 0, is the following identity:
X(t) o = X(s + t), for all s and t ~ 0. We will also need the strong Markov
property, where instead of "fixed" times t we consider adapted times, so-called

stopping times S. Such a time S has the property that for every s > 0 the event

{ S  s } belongs to the a-field .~’9. . Since the paths of our process may be chosen to
be continuous from the right and to possess left limits in E on their life time, we

may enlarge the a=fields 7t in such a way that the filtration : t > 0} is right
continuous and that for any Borel subset B of E the hitting time of B is a stopping
time for this new filtration. These extended q-fields in this enlarged filtration
will again be denoted by 7t. For more details see e.g. Chapter 2 in Blumenthal
and Getoor [5]. The a-field corresponding to the stopping time S is then defined
by
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In the sequel we will need the notion of Kato-Feller potential. A function V : .E -~
[-~, ~] is called a Kato-Feller potential if its negative part V- satisfies

lim sup ~~t0 exp(-03C3K0)V_d03C3 ~~ = 0, (4.1 )

and if for every compact subset K its positive part Y+ satisfies

lim sup ~ ~t0exp(-03C3K0)(1KV+)d03C3 ~~ = 0.

In fact for our purposes it will be sufficient to assume that V+ is locally an L1-
function together with the fact that (4.1) is replaced with

lim sup ~ ~t0 exp(-03C3K0)V_d03C3~~  , (4.2)

It can be proved that a function which is (locally) of Kato class is locally an L1-
function. For the Laplace operator a proof can be found in [20]. If V is such
a Kato-Feller potential, then we may use the Feynman-Kac formula to define a
self-adjoint semigroup in L2(E, m):

[exp(-t(K0+V)) f] (x) = Ex [exp(- ~t0V(X(u))du) f(X(t))],
where f belongs to L2(E, m). In fact the same formula may be employed to define
a strongly continuous semigroup in Co(E) and in the spaces  p  oo.

For more details the reader is referred to the literature: Simon {18, 19], [7, 8, 9, 10,
11, 21~. . Suppose that the function V belongs to . If V- has form bound 0, then
Ko + Y extends to the generator of a strongly continuous semigroup in Lp(E, m),
1  p  oo. This result is due to W. Arendt (private communication). Our proofs
require a condition like (4.2). It is not clear if and how that this can be relaxed. In
what follows we write to indicate the norm of the operator T considered as
an operator from Lq(E, m) to Lp(E, m).

4.1. Theorem. Let V and W be (Kato-Feller) potentials and Jet the constants
M2 v and be chosen in such a way that

~ exp 

/ 
-2 / 

to/2 

V(J~))~ 
B1 

 M2v exp ( Ex [exp -2 0 V(X(s))ds / J  M2V exp --82v , ,
for all x E E. Let E R} be the spectraJ decomposition of K0+V. Sup-
pose that ~exp(-t0K0) |W-V|~~ is finite.

( 1 ) For every bounded interval Ao in R the operator
Eo(Ao) ~W - V~ is bounded and
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(2) A similar result is true for operators of the form Ei(Ai) )W 2014 Vj E1(A1),
where Ai is a bounded interval in R. .

(3) The Hamiltonians K0+V and are mu tually subordinate.

As before, in the sequel we write

and

Proof. (1) We begin by noticing the identity

E0(A0)|W-V|E0(A0)

= E0(A0)exp (1 2t0 (K0+V)) V0(t0/2) l W - V|V0(t0/2)exp (1 2t0 (K0+V)) E0(A0).
Hence we see

~E0(A0)|W-V|E0(A0)~2,2

~ ~E0(A0)exp(t0(K0+V))~22,2~V0(t0/2)|W- V| V0(t0/2)~2,2

= ( exp (1 2t003BE))2 ~V0(t0/2) ~W- V|V0(t0/2)~2,2 .

Next we shall estimate the L2-L2-norm of the operator

|W - V) = exp (-1 2t0(K0+V))|W - V|exp (-1 2t0 (K0+V)).
Therefore fix f > 0 in L2(E,m). Then, by Feynman-Kac formula and Cauchy-
Schwartz’ inequality, we have
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From (4.4) we get 
’

exp (-1 2t0(K0+V))|W - V|exp (-1 2t0 (K0+V))f,f~
= |W - V|exp (-1 2t0 (K0+V))f,exp (-1 2t0(K0+V)) f~
~ M2V exp (1 2t0b2V)|W(x)-V(x)| [exp(-1 2t0K0) f2] (x)dx
= M2V exp (1 2t0b2V) |W - V|, exp (-1 2t0K0) f2~
= M2V exp (t0b2V) exp (-1 2t0K0) |W - V|,f2~
~ M2V exp (1 2t0b2V)~exp (-t0 2K0)|W - V|~~ ~f~22. (4.5)

From (4.5) inequality (4.3) in Theorem 4.1. readily follows.

(2) The proof of this assertion is exactly the same as the one for assertion (1).

(3) From the arguments in (4.5) it will follow that the operator

_

is bounded. If a is larger than the bottom of the spectrum of K0+W and of K0+V
it will follow that the operator (aI + Put Ho = K0+V
and Hi = Ko 3W. Put = exp (to ~a + ~~ /2) and fi(a) = 1 + So

the Hamiltonian Hi is subordinate to Ho . Upon interchanging the roles V and W
in (4.5) we also see that Ho is subordinate to Hi .

A relevant result reads as follows.

4.2. Theorem. Let V and W be (Kato-feller) potentials for which

lim sup exp  2 and for which

lim sup ~~t0 exp(-03C3K0)W_d03C3~~  1 2
as well. Suppose

(4.6)

or suppose that
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Then the following assertions are equivalent:

(i) For all bounded interva.ls Ao and A1 the operator Eo (Ao )(W -V )El (A1 )
is compact; .

(ii) The operator V)Vi(to/2) is compact;
(iii) The operator D(to) is compact.

Here E R} is the spectral resolution of K0+V and {E1(03BE):03BE ~ R}
that of K0+W.

Remark 1. In the presence of (4.6), item (3) in Theorem 4.1. implies that the

Hamiltonians KOOV and K0+W are mutually subordinate.

Remark 2. Suppose that W - V satisfies

lim sup /’ [exp ( -sKo ) W - (x) = 0.

From the Markov property it follows that condition (4.7) is satisfied.

Proof. The assertions (i) and (ii) are always equivalent.

(iii) =~ (i). By virtue of Theorem 3.3. we see that the compactness of D(to) implies
the compactness of the operator Vo(to/2)(W - V)Vi(to/2). But then it is easy to

see that all operators of the form Eo(Ao)(W - V)JBi(Ai), where Ao and Ai are

bounded intervals in R are compact.

(i) =~ (iii). Let Ao and Ai be bounded intervals in R. Since

E0(A0)D(t0)E1(A1) = D(t0)E0(A0)(W - V)E1)A1)

we infer from assertion (i) that the operator E0(A0)D(t0)E1(A1) is compact. Next
let fo and fl(a) be functions which make Ho subordinate to Hl. . For n and m in

N and -03B31 the bottom of the spectrum of K0+W, we then have

~E0(n, ~)V1(t0)~2,2
~ ~E0(n, ~)V1(t0)E1[-03B31, m]~2,2+ ~E0(n, ~)V1(t0)E1 (m, ~)~2,2
C ~E0(n, ~)E1 [-03B31, m]~2,2 ~V1(t0)~2,2 + ~V1(t0)E1 (m, ~)~2,2
 ~E0(n, ~)f0(H0)f1(H1)-1f(H1)E1[-03B31,m]~2,2 ~V1(t0)~2,2

+ ~V1(t0)E1 (m, ~)~2,2
~ sup 1 f0(03BB ~f0(H0)f1(H1)-1~2,2 sup f(03BB)e03B31t0 + e-mt0.

Hence we obtain limn~~~E0(n, ~)V1(t0)~2,2 = 0. A similar argument implies
limn~~~V0(t0)E1(n, ~)~2,2 = 0. Consequently, for -yl the bottom of the spec-
trum of H~ (j = 0, 1),
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Since we already know that operators of the form E0(A0)D(t0E1(A1), where Ao
and At are bounded intervals are compact, assertion (ii) follows.

(iii) ~ (ii). This implication immediately follows from Theorem 3.3.

(ii) =~ (iii). From Theorem 3.3. it follows that we only need to show that (see
(3.12)):

lim~V0(a)D(t0)(W - V)V1(a)-D(t0)(W - V)~2,2 = 0. (4.8)

Since D(to)(W - V) = Vo(to) - Vi(to), (4.8) is true whenever the following limits
are zero:

lim~V0(a)V0(t0)V1(a) - V0(t0)~2,2 = lim~V0(a)V1(t0)V1(a) - V1(t0)~2,2 = 0.

(4.9)
Since

lim~V0(2a)V0(t0) - V0(t0)~2,2 = lim~V1(2a)V1(t0) - V1(t0)~2,2 = 0.
the identities in (4.9) are true whenever we prove the equalities:

lim~V1(a)V0(t0 - a) - V0(t0)~2,2 = lim ~V0(a)V1(t0 - a) - V1(t0)~2,2 = 0, (4.10)

Since the conditions on V and W are interchangeable, it suffices to prove that

lim~V0(a)V1(t0 - a) - V1(t0)~2,2 = 0.

Put ev(t) = exp (-~t0 V(X(u))du), put Vs = (1 - s)V + sW, and

fix f E L~(E, m). From the Feynman-Kac formula together with the Markov
property we obtain

[V0(a)V1 (t0 - a)f] (x) - [V1(t0)f] (x)

= Ex[~a0 (V(X(u)) - W(X(u)))du ~10 e(1-s)V+sW(t)dseV(t0- a) o 03B8af(X(t0))] .

So from Cauchy-Schwarz’ inequality together with another appeal to the Markov
property it follows that
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From (4.11) we infer

~V0(a)V1(t0a) - V1(t0)~22,2
 zEE EZ [(~a0 (V(X(u)) - W(X(u))) du) 2]

~~10 ds1 ~10 ds2 exp (-a(K0+2V(s1+s2)/2)) exp (-(t0 - a) (K0+2W)) ~1,1
= sup Ex [(~a0 (V(X(u)) - W(X(u))) du)2]

~exp (-(t0 -a)(K0+2W)) ~10 ds1 ~10 ds2 exp (-a (K0+2V(s1s2)/2)) ~~,~
C xEE E [(~a0 (V(X(u)) - W(X(u))) du)2]
sup sup [exp (-(t0 - b) (K0+2W)) 1] (x)

sup sup [~10 ds1 ~10 ds2 exp (-b (K0+(2 - s1 - s2) V + (s1 + s2)W)) 1] (x).06t0 x~E  0 0

From Khas’minskii’s lemma and our assumptions we see that (4.10) is true.. So
assertion (iii) follows.
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