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SOME STEINHAUS TYPE THEOREMS OVER VALUED FIELDS

par P.N. NATARAJAN

Ann. Math. Blaise Pascal, Vol. 3, N° 2, 1996, pp.183-188

1. Preliminaries :

In this paper K denotes R (the field of real numbers) or C (the field of complex
numbers) or a complete, non-trivially valued, non-archimedean field as will be explicitly
stated depending on the context.

In the sequel, infinite matrices A = (ank), n, k = 1, 2, ... and sequences x = {xk},
k =1, 2, ... have their entries in K. If X, Y are two classes of sequences, we write (X, Y)
to denote the class of all infinite matrices A = (ank), n, k =1, 2, ... for which

Ax = {(Ax)n} E Y whenever x = { x k } E X ,
00

where = 03A3ankxk, n =1, 2, ...,
k=1

it being assumed that the series on the right converge. The sequence Ax = is

called the A-transform of x = {xk}. The sequence spaces , p > 1 , , c, co are

defined as usual i.e.,
00

ip = {.r=={~} : ~ ~  ~ 1 ;
k=1

l~ = {x = {xk} : sup |xk|  oo} ;
t~l

c = { x = { x k } : limxk=s for some sEK};
k-oo

Co = {a- = I lim xk = 0} .
k --+ 00

Note that lp c co C c C l~ where p > 1. For convenience we write 11 = i. (l, c; P’)
00

denotes the class of all infinite matrices A E (~, c) such that lim (Ax)n = ~ x kn--~oo ~ *~
k=1

whenever x = E .~.
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2. The case K = R or C

When K = R or C, it is known ([11 ]), p. 4,17) that A = (ank) E (~, c) if and only if
(1) sup lankl  oo ;

n,k
and

(2) lim ank = ~k exists, k =1, 2, ....
n-~oo

We now prove the following

THEOREM 2.1 : .

When K = R or C, A E (.~, c; P’) if and only if (1) holds and (2~ holds with
(3) ~k = 1, k =1, 2, ....

Proof. .

Let A E (i, c ; P’). Let ek be the sequence in which 1 occurs in the kth place and 0
elsewhere, k =1, 2, ... i.e.,

ek = {x(k)i}~i=1
where

x; k) = 1, if i = k ;
= 0, otherwise.

00

Then ek E l, k = 1, 2, ..., = 1 and (Aek)n = ank so that lim ank = 1, i.e.,

~j~ =1, k = 1,2,.... Thus (1) and (3) are necessary for A E (l, c ; P’).
00

Conversely, let (1) and (3) hold. Let x = {xk} E t. In view of (1), l ankxk converges,
k=1

n =1, 2, .... Now, .

00

(Ax)n = 03A3 ankxk
k=l
00 00

= + ~ xk~
k=1 k=1

00 00 .

this being true since 03A3 ankx k and 03A3 x k both converge.
k=l k=1
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00

Since  oo, given ê > 0, there exists a positive integer N such that
k=1

(4) E |xk|  ~ 2A,
k=N+1

where A = sup |ank - 1|. Since lim ank = 1, k = 1, 2, ..., N, we can choose a positive
n-oo

integer N’ > N such that

(5) |ank - 1|  ~ 2NM , n > = 1,2,...,N,

where M > 0 is such that M, k = 1,2,.... Now, for n ~ N’,
oa N o0

|03A3(ank - 1)xk| ~ 03A3|ank - 1| |xk| + 03A3|ank - 1| |xk|l

 N’2;M.M + A. ~ , in view of (4) and (5)
= Ea

00 00

so that lim = 0. Thus lim (Ax)n = ~ xk.
k=1 k=l

Consequently A E (.~, c ; P’) which completes the proof of the theorem.

When K = R or C, the Steinhaus theorem (~4 ], p. 187, Theorem 14) can be
written conveniently in the form (c, c ; P) n (l~, c) = 0, where (c, c; P) denotes the class
of all infinite matrices A E (c, c) such that lim (Ax)n = lim x k.

We shall call such type of theorems as "Steinhaus type theorems". Such theorems
were considered in [2], [3 ], [8 ]. Using Theorem 1, we shall deduce one such theorem.

THEOREM 2.2 :

(i, c ; P’ ) n c) = 0 whenever p > 1. .

Proof. :

Suppose A = (ank) E (i,c P’) n where p > 1. It is known ([11 ], p. 4, 16) that
A E (~p, c) whenever p > 1, if and only if (2) holds and

00

(6) sup 03A3 |ank|q  oo,

where - + - = 1. It now follows that 03A3|03B4k|q  00, which contradicts the fact that
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00

03B4k = 1, k = 1,2,..., since A e (l,c ; P’) and consequently 03A3 |03B4k|q diverges. This
k=l

establishes our claim.

Remark 2.3.
Since c) C (c, c) C (co, c) C (.~p, c) where p > 1, we have (~, c; P’) n (X, c) = 0,
when X = where p > 1.

3. The case when K is a complete, non-trivially valued, non-archimedean
field.

For concepts and results in Analysis over complete, non-trivially valued, non-
archimedean fields, we refer to [1 ]. In this case, Steinhaus type theorems were consi-
dered in [6 ], [7 ], [8 ], [10 ].

When K is a complete, non-trivially valued, non-archimedean field, one can prove
that Theorem 2.1 continues to hold. In this case, if A = (ank) E (~, c ; P’) n c),
then lim sup |ank - 1) = 0 (see [6 ], Theorem 2). So for any c,0  ~  1, there exists

j~i

a positive integer N such that
~-l)6,n>~=l,2,....
In particular, |aNk - 1|  ê, k = 1,2,....

Thus lim |aNk - 1| ~ ~ i.e. , |0 - 1| ~ ~ (since A E (l~, c), lim ank = 0, n =1, 2, ...,
by Theorem 2 of [6 ]) i.e. , ,1,  ~, a contradiction on the choice of ~. Consequently we
have :

Theorem 3.1
When K is a complete, non-trivially valued, non-archimedean field,

P’) n ~.

Remark 3.2 : 
’

However, (f, c ; Pi) n ( c, c) ~ 0 when K is a complete, non-trivially valued, non-
archimedean field, as the following example illustrates.

Consider the infinite matrix
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i.e., ank = 1, k  n -1 ;
= -(r-1) ~ k=~ ~ ;
= 0, otherwise.

00

Then sup |ank|  1  ~, lim ank =1, k = 1, 2, ... and lim 03A3 
ank = 0 so that A E

(~, c ; ; P’) ~ (c, c) (for criterion for A E (c, c), see [5 ~, [9 ]). Since (c, c) C (co, c) C (.~p, c)
where p > 1, it follows that n (X, c) ~ ~, when X = c, co, lp where p > 1.
This indicates a violent departure in when K is a non-archimedean valued field from
the case K = R or C.
(co, c P’) denotes the class of all infinite matrices A E (co, c) such that lim (Ax)n =

n-oo

00 00

whenever x = {xk} ~ c0. In this context it is worthwhile to note that xk
k=1 k=1

converges if and only if { x ~ } E co.

Remark 3.3 : :

(co~ c a p~) = (~, c f p’)~

Proof.
Adapting the proof of Theorem 2.1, with suitable modifications for the non-archimedean
case, we have, A E (co, c ; P’) if and only if (1) and (3) hold. The result now follows.

4. General remarks

It is to be noted that .~p, p > are linear spaces with respect to coordinatewise
addition and scalar multiplication irrespective of how K is chosen. When K = R or C,
co, are Banach spaces with respect to the norm = sup |xk| where x = {xk} E

k>I

co, c or l~, while they are non-archimedean Banach spaces under the above norm when
K is a complete, non-trivially valued, non-archimedean field.

Whatever be K, lp is a Banach space with respect to the norm

~x~ = ( |xk|p)1/p, x = {xk} E Qp,
~==1

Whatever be K, if A = (ank) E (f, c ; P’), then A is bounded and ~A~ := sup |ank|.
n,k

However, (~, c; P’) is not a subspace of BL( f, c), i.e. , the space of all bounded linear
mappings of i into c, since lim 2ank = 2, k = 1,2,... and consequently 2A ~ (~, c ; P’~)

n--~oo

when A E (~, c ; P’).
I thank the referee for his helpful comments which enabled me to present the

material in a better form.
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