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CHAPTER ONE

Gaussian probabilities

We want to describe a situation involving the Wiener measure and the white noise

measure and we shall work with a structure more general than the "abstract Wiener space" .
Nlore precisely instead of handling only separable Banach space, we shall work with Lusin

spaces. It is not the maximum of generality, but we give only the preliminaries needed for
our purpose.

1 - General definitions and results

Let for a moment E be a topological vector space (on IR if it is not precised), locally
convex and Hausdorff and let us denote E’ its dual.

As it is well known a Borelian probability P on E is said "Gaussian centered" if

for every x’ E E’, x’(P) is a Gaussian centered probability on 1R (eventually equal to ~o).
This is equivalent to say that for every x’ E E’, the random variable :  x’,. >E’,E on

(E, P) is Gaussian centered.
In the following we shall omit the mention "centered".

If P is a Gaussian probability on E, we associate to it a linear map j from E’ into

L2 (E, P) defined as :

.?(~’) = x’, . >E’,E

(we have used the same notation for a map and its P-equivalence class, as we shall do

often in the sequel).
We have not equipped E’ with a topology, so we cannot speak about the continuity of j.
The (algebraic) transpose of j defines a linear map from L~ (E, P) into the algebraic dual

(E’)* of E’. We shall denote by S this transpose.

We have therefore : :

for f E L2(E,P): : (j(x’),f)L2(E,P) _ E  x’,x > f(x)P(dx)

= sf ~ x~ > (E~ ). E~ .
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Now we can give another definition for S :

for f E L2 (E, P), let us consider the vector function : : ~c ~ f (x)x. It belongs scalarly in

L 1 (E, P), that is to say,

for every x’ E JE/ : ~ ~ f (x)  x’, x > is integrable with respect to P.

Then we define its weak integral as the unique element from {E’)* such that,

for every x’ E E’ :  >E’*,E’:= /  x’, x > f(x)P(dx).

Now S f is the barycenter of the measure f(x)P(dx).
We shall denote by H(P) (or simply H if there is no ambiguity) the subspace S(L2 (E, P)) )

.

H(P) is called the "Cameron-Martin space" of P.

The closure of j (E’) in L (E, P) is called the "Gaussian space" of P (or the "first
Wiener chaos ") and will be denoted by E2 (P). It is an Hilbert space for the topology
induced by the topology of P).

Let us notice that : :

. H(P) = S(E2(P)) and that :

. S, when restricted to is injective, whence bijective, with values in H(P).

Actually : :

Suppose first that f E L (E, P) is orthogonal to E2 (P); that means that :

for every x’ ~ E’ : ~Ej(x’) (x) f(x)P(dx) = 0.

Then we have

for every x’ E E’ : /  x’, x > f(x)P(dx)
- ~Ef(x)xP(dx), x’ > == 0.

But this means that :

sf = 0.

The first assertion is therefore proven.
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For proving the second assertion it suffices to notice that if

f E E’2(P)

is such that
. s(f) = 0,

then :

f 1 E2 (P) and f 1 f , whence f = 0.

Now we can put on H(P) an Hilbertian structure : the image of the Hilbertian

structure of by the linear isomorphism S.
Then we have :

a) (Sf, Sg) H(P) = ~E f(x)g(x)P(dx), ~(f,g) E (E’2(P))2,
b) if f ~ E’2(P) and y’ ~ E’ :

 >(E’)*,E’= f (x)  y’,x > P(dx) _ (f,j(y’))E’2(P),

c) :

x’,x>y’,x>P(dx).

Remark : If Supp P = E, the map j : E’ -~ E2 (P) is injective. Actually, if j (x’ ~ = 0,
then : -

/ ~~>~P(d~)=0; ;
therefore :

 x’, . > is null, almost everywhere.

But  x’, . > being continuous, we have :

 x’, . > = 0 everywhere.

For the questions about which we shall be concerned, the case where

H(P) c E is of paramount importance . We shall give a sufficient condition under

which H(P) C E.

If h E H(P) we shall denote by h the element of E~(P).
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Lemma 1 Let us suppose H(P) c E. If h E H(P) , let us denote by Ph the translate of
P by h, (Ph(A) = P(A+ h)). Then we have : :

. Ph = P

. ~p = °

Proof :

( We shortly write H instead of ~f(P)) . ~ being a (P-class of ) Gaussian random
variable with variance we have:

1E exp(h)dP = exp{1 2~h~2H}.
Therefore :

is a probability.

Now, let us recall some results about the Fourier transform (or characteristic function) of
a Borelian probability on E, not necessarily Gaussian centered : :

If Q is a Borelian probability on E, we define its characteristic function as the map :
defined by :

~ ,~ J f := ~~x’).

Then two probabilities coincide if and only if their characteristic functions coincide.
In our case, where P is Gaussian, we have :

P(~’) = 

Now :

Pn.~~~) = exp{i  ~’, h >}P(x’).
Moreover we have :

~E exp{i  x’,x >} exp{h(x) - 1 2~h~H2} P(dx)
~’,~ > -ih(~))}P(d~)

= 
°
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Actually, the 2-dimension random vector (h,,j(x’)) is Gaussian (centered) and its covari-

ance matrix is equal to :

~j(x’)~E’22 (j(x’), h)E’2
(j(x’),h)E’2 ~h~2H

From what precedes we deduce immediately that P h and ex p { h -1 2 I ~h~2H f P have the same
characteristic functional.

- Lemma 1 is proven. -

Corollary : If F is a P-measurable vector subspace, carrying P, then: : H(P) C F .

(We suppose that H(P) c E).

Proof : .

Let us suppose the contrary : there exists h E H(P) such that h ~ F. Then :

(h+F) nF- 0.

But

P(h + F) > 0, by Lemma 1

and since : P(F) = l, we have :

P ( (h + F) n F) > o.

There is a contradiction.

- The Corollary is proven. -

Remark : we shall see later that for every P-measurable vector space we have : P(F) = 0

or 1 (we shall give the proof if E is Lusin).

Lemma 2 : : Let E and F be two Hausdorff l.c.v.s., and Pl be a Gaussian probability
on E. Let u : E --~ F continuous linear and P2 = , then P2 is Gaussian. Let

H~ := (i =.l, 2) then: ’

. if Hl C E we have : H2 C F.

Moreover :

. = H2, >

. u|Hi is continuous from Hl into H2 (for the Hilbertian topologies).

. the image of the unit ball of H~ by u’* is the unit ball of H~ .
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Proof :

The map u induces a linear map U from L2(F, P2) into L2(E, Pl) defined by :

Uf=fou.

It is easy to see that U is an isometry from into E’2(P1); let G = 
Let Si (resp. S2) the barycenter map considered as a map from 

onto Hi (resp. H2). Si is an isomorphism between Hilbert spaces.
I assert that :

In fact, let g E F’2(P2) then :

u’* o 5’! o = u’*(~Eg(u(x))xP1 (dx))
= ~Eg(u(x))u(x))P1(dx)
= / g(y) yP2(dy)
= Sa(9)~ .

We have proven that :

~ ~~* ~SyG) ) = Ha .

Moreover, if h E Hi with h orthogonal to G, we have

u"(h) = 0 so v,’*(Hl) = H2 .

In fact, .

for each y’ E F’:  > = u’(y’) 1 h(x)xP1(dx)
= ~Eh(x)y’(u(x))P1, (dx)

=0.

Now it is clear that

is continuous from Hl to H2, with norm one.

- Lemma ,~ is proven. -
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In the sequel we shall do the following hypothesis about P : :

(H) for every e > 0, there exists a compact Ke C E such that :

P(K~) > 1- ~.

A probability (not necessarily Gaussian) satisfying the hypothesis (H) is said a "Radon

probability". A Borelian probability will be, ipso facto, a Radon probability in the

following cases (that we shall consider in the sequel) :
. E is a separable Banach space
. more generally : E is a Lusin space.

Lemma 3 : : If P is a Radon probability (not necessarily Gaussian), P is continuous from
E (E’ with the topology of compact convergence) into ~.

Proof :

Let ~ ~]0,1[ be given and let KE be a compact subset of E such that :

P(K~) > 1 _ ~.

Let at last pKo~ the gauge of the absolute polar of K~, that is to say :

Ko~={x’~E’, |x’,x>|~1, ~x ~ K~},

= in f {03BB, a > 0, x’ E 03BBKo~}.

I assert that : .

|1 - P(x’)|~ 2~ + p03BA03BF~(x’), , ~x’.

Actually, on one hand we have :

C [-p03BAo~ (x’), pKf (x’)], by definition;

and on the other hand, if we denote by v the probability ~(P) : :

|1- (x’) I =| / m (x - |

 / ) |1 - eit| v(dt).
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But :

~IR =|t|~PKo~ + |t|>pKo~(x’)
and

|1-eit|~in f(2,|t|), ~t ~ R.

Therefore :

/ 
|t| P03BAo~ (x’) 

|1-eit | dv(t) ~ Pko~(x’) ~|t|~pKo~(x’) | f _ eit | dv(t)  p03BAo~ (x’)

and :

|t|>p03BAo~ (x’) |1-eit I dv(t)  2e

and the assertion is proven.

We deduce then immediately that : :

x’E~KE~~1-P(x’)~3~,
- Lemma 3 is proven. -

As a corollary we deduce that, if P is Gaussian, the map j : E’ ~ L2(E, P) is

continuous for E~.

Lemma 4 : : Let P be a Gaussian (Radon) probability on E. If E is quasi-complete
(this means that the closed disked hull of every bounded subset is complete), then we have:
H(P) C E.

Proof :

We have noticed that :

j : : E~ -~ L2 (E, P) is continuous.

Therefore, for every f e L2 (E, P), the linear form :

x’  ~Ef(x)  x’, x > P(dx) is continuous on E’c.

By Mackey’s theorem, we deduce that :

E E.

- Lemma ~ is proven. -
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Remark : a complete space being trivially quasi-complete, Lemma 4 can be applied when

E is complete.

Now we have the main following result : :

THEOREM 1 : : If P is Radon, Gaussian, then H(P) c E.

Proof :

Let E be the completion of E and i be the canonical injection jE 2014~ E. Let P = i(P).
By Lemma 2 and Lemma 4, we have :

i(H(P)) = H(P) ~ E.

But E = i(E) is a subspace carrying P. Therefore, by corollary of Lemma 1 :

H(P) C E

- Q.E.D.-:-

It is easy to see that H(P) and H(P) are isometric.

Remark : under the hypothesis of the theorem, the canonical injection H(P) -~ E is
continuous.

For proving this fact it suffices to prove that, for every f E L2 (E, P) and every
continuous semi-norm q, we have :

f (x)xP(dx)  where c is a constant.

By a result of Fernique and Skorokhod, we know that, for every continuous semi-norm q
on E, we have :

~E| q(x) |2 P(dx)  oo.

(A non-trivial fact if E is infinite-dimensional).
Therefore :

q (~ xf (x)P(dx) _ I q(x)P(dx)

~ ~f~L2(E,P) ~q~L2(E,P) .

The assertion is proven.
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We shall call a "Gauss space" (or "abstract Wiener space ") a couple (E, P) where
E is a Hausdorff l.c.s. and P is a centered Gaussian Radon measure on E.

2 - Cameron-Martin space of a Lusin Gauss space

From now on, E will denote a Lusin locally convex vector space and P a Gaussian
Borelian probability on E (P is automatically Radon).

We shall suppose that Supp P = E. (This is not a loss of generality). We shall

suppose moreover (unless the contrary is specified) that dim E = +00. (The case where
dim E  oo being well known).

As a first example of this situation we have the "discrete white noise" or the

canonical Gaussian measure on IRIN which is described as follows :

Let E = IRIN with the product topology (it is a polish space, therefore Lusinian). Its

dual E’ is the space IRIN0 of sequences of real numbers "almost null". Let P = 03B3~IN1 the
canonical Gaussian measure on E (yl is the N(0, 1) probability on R).

Here we have E’ c E. (x’n) e E’,j(x’) is the (P-class) function x  03A3 xnx’n
where x = IR,~}.
Obviously :

~j(x’)~2L2(IRIN,P)=03A3 |x’n|2 = ~x’~2l2
.

Therefore

~2.

Let us now determine the Cameron-Martin space of P.

Let x’ E E’, then

S(j(x’)) = IRIN (03A3 x’nxn)x P(dx).

Therefore :

S(j(x’))k = / (03A3 x’nxn) xk P(dx) = x’k. ~k.

We have then

S~ j (E‘}~ = E’ and H(P) = ~2.

The above example is actually the model for a Gaussian probability on a Lusin space,
as we shall now see.
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THEOREM 2 : Let E be a Lusin l.c.s. (Hausdorff) with infinite dimension and let
P be a Gaussian probability on E, whose support is equal to E. Then there exists a

continuous linear injection from E into IRIN, denoted 03C0, such that 03C0(P) is the canonical

Gaussian measure on IRIN.

Proof :

The family of continuous functions on E : :

{ (x’, .) E~,E , x’ E E~ } is separating.

E being Lusin and dim E = +00 there exists an infinite sequence in E’ separating

points of E. Then n E IN} is identical to the Borelian 03C3-field of E, and the j(x’n)
generate E’2(P).
Let (y~,) be the orthonormal sequence obtained from the by application of the Schmidt

orthogonalization procedure to ( j (xn ) ) ,~ . The separate points of E, and

card E IN} = +00.

Let 7r be the map x (y’n,x~)n from E into IRIN. It is trivial to see that 03C0 is linear,

continuous, injective and that :

= ,?IN . .

- Q. E. D. -

Remark 1 : 7r being continuous, it is clearly Borelian. Moreover 7r being injective, E and

IRIN being Lusinian, 7r is bimeasurable (not necessarily onto).

Remark 2 : It is easy to see that if E is finite dimensional (or more generally H(P) is finite

dimensional) there exists n and a linear continuous (not necessarily injective) application
E ~ IRn, such that 7r(P) = 03B3n.

Coming back to the situation dim E = +00, Supp P = E, we see that H(P) is

separable, therefore a Polish space. Therefore, H(P) is a Borel subset of E, and we can

speak of P(H(.P)).



72

Proposition 1 : : If H denotes the Cameron-Martin space of E, then P(H) = 0.

Proof :

We can suppose that (E, P) is the canonical Gauss space IR~. Then :

Now the random variables on IRIN are independent and N(o,1). Therefore :

~ 2;~ = +oo, almost surely,

or equivalently :

P(~2 ) = 0.

- Q. E. D. -

Remark : The result is clearly false if dim H  oo. For instance, 03B3n(IRn) = 1 (in this
case H = IRn).

We can actually prove that P(H) = 0 if and only if dim H = oo. Let us notice that
in any case P(H) = 0 or 1.

Proposition 2 : : I f (xn ) is an orthonormal basis of E~ (P) and x~ = S(xn ), then for every

x~ E E’ : ~ xn(.) -~(x~~ .)a almost surely.

Proof:

The random variables , (n E IN) are independent Gaussian with
variances

~x .

But

= (Sj(x’), xn).

Therefore :

~ ~(x~~ x~)~2 =  o0

n

and

~, xn(.) converges almost surely.
n
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We have to prove that the limit is j(x’).
Actually we have

n

,~ (x’) I ~i ~ o.~} = ~ 
i=0

n n

= ~ = L.r xi.
i=0 i=0

Now it suffices to apply the martingale convergence theorem (for real martingales).
- Q.E. D. -

Remark : The preceding result is very poor. We did not prove that

y~ xn.xn - I d for the weak topology,
nk

the exceptional set of non convergence being a priori dependent of x’.

In chapter two we shall prove that ~ ---> Id, for the topology of E.
nk

Proposition 3 : : The canonical injection i : H(P) --~ E is compact. We have even more

if K denotes the unit ball of H(P) i(K) is a compact subset of E.

Proof : :

Let us suppose first that E is a Banach space (separable since E is Lusin).

First we see that i(K) is closed in E. Actually, i being continuous, it is weakly

continuous. Therefore i(K) is weakly compact in E, then closed for the topology of E,
. 
since it is convex.

We shall now prove that i(K) is relatively compact.

Identifying the dual of H(P) with the transpose of i is equal to j, and it

suffices to prove that j E’ ~ E’2(P) is a compact map. This last fact may be verified as
follows :

Let (x) a sequence of elements of BE’ (the unit ball of E’ ) , converging weakly to

x’ E BE, , therefore converging uniformly on every compact of E ( BE’ being an equicon-
tinuous set ).



74

By Fernique’s theorem :

E~x~2E P(dx)  ~ ;

applying Lebegue’s dominated convergence theorem, we obtain :

Therefore

j(x~) ---~ j(x’) in E~{P).
- In this case the proposition is proven. -

In the general case, let us give a sketch of the proof :

E is a projective limit of a family (Ei) of Banach spaces, (indexed by a filtering set).
Let 03C0i : E ~ Ei (we can suppose that every 03C0i is dense) and let Pi = We know

that is the unit ball of H(Pi) c Ea.
It suffices to notice that the unit ball K of H(P) is compact if and only if the 03C0i(K)

are. But it is the case by the first part of the proof.
- Q. E. D. -

Proposition 4 : : Let K be a Hilbert space and u E -- K continuous linear. Then u|H(P)
is an Hilbert-Schmidt mapping from H(P) into K.

Proof :

There exists a Banach F, such that u has the following factorization :

with ,~ and 7r linear continuous, 7r a dense map.
Let Q = Q is Gaussian and r sends H(P) onto H(Q). Then can be factorized

as follows :

H(P) ~ 

2~IHtP) _ ~~ 0 7~~ 
I

{~r’ is the application 7r when it is considered as a mapping from H(P) into H(Q)
and 03B2’ = 03B2|H(Q)). It is sufficient to prove that 03B2’ is Hilbert-Schmidt and we can therefore

suppose that E is a separable Banach space.
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We already know that u|H is compact. There exists then an orthonormal basis (en) of

H ( P) , an orthonormal sequence ( fn ) in K and a sequence (Xn ) of real numbers, converging
to zero such that:

u|H(h) = £ An (h , en)H fn, Vh e H
n

(we shortly write H instead of H(P) ) .
It remains to prove that £ Aj§  oo.

Let for n e :IN :
n

Xn (.) * £ hk ek(.) fk
k=0

(with fk = 

Xn is a K-valued random variable defined on (E, P) . Clearly:

n

~Xn(.)~2K = 03A3 03BB2k |ek(.)|2.k=0

The random variables lk (. ) are independent and M(0, 1 ) .
I assert that there exists a constant Ki (independent from nand c ) such that

for every c > 0 :

P{x; |~Xn(x)~2K - 03A303BB2k| ~ c)  K1 c2 03A303BB4k. (A)
k=0 k=0

In fact if we apply the Tchebychev’s inequality to the centered random variable:

n n

£ (li£ (.) A( - A() = £ A( (li£ (:) - I) ,
k=0 k=0

we obtain (A) (the constant Ki equals E ( (e203BA(.) - 1)2}).
We deduce from (A) that for every c > 0 :

n

~ ~ £ ~ j§
P ( x;|~Xn(x)~2K - 03A3 03BB2k|  c(03A3 03BB2k)1 2} ~ 1 - K1 c2 k=0 n

k=0 k=0 
~ 

£ A2 k

> 1 - K1 c2 sup A£. (B)
0~k~n
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Now let
n n i

£ hj§ - C (£ hj§ ) ~ §
k=0 k=0

if pn,c > 0 then let :

Bn,c the open ball in K with center 0 and radius 03C1n,c

and if it is not, then :

Bn,c = ~~

It is clear that :

n . n 1

{y E K, |~y~2K - 03A303BB2k  c(03A303BB2k)2} n Bn,c = Ø.
k=a k=o

From (B) we deduce :

P{ x;|~ Xn (x)~
k2 
- 

03A3 

03BBk2|  c(

03A3 

03BB2k)
1 2} 

~ 1- K1 c2 sup 03BB2k.

Let us choose now c such that :

1- 
K1 c2 sup 03BB2k = 1 2;

we have then :

P(z e E; e n,c ~ 1 2 , for every n such that Bn,c ~ 0. (C)

Now let us suppose that u|H is not Hilbert-Schmidt.

Then 
’

n n i

~ ~~ - ~k 2 -----~ O~J.

k=0 k=0

Therefore

Bn,c ~ ~ if n is sufliciently large.

Moreover

Bn,c ~’ K, (n ---~ oo).
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But this last result contradicts (C).
Actually we shall see (Chapter two) that :

(03A3en(.) en)k ~ I dE , almost surely.
nk 

k

Therefore

P{x; Xn(x) ~Bn,c} ~ 1.
n-~oo

There is a contradiction with (C) , therefore :

u|H is Hilbert-Schmidt.

- Q.E.D.-

Corollary 1 : : Let K be an Hilbert space and v K ~ E’ linear and continuous when E’
is equipped with the strong topology. Then j o v : K ~ E’2(P) is Hilbert-Schmidt.

Proof :

Let us identify K with its dual and let v’ be the transpose of v v’ maps the bidual

E" of E into K. Let Q be the image of P by the canonical injection JT 2014~ ~ . . Identifying
E with a subset of E~~ , we know that :

H(P) = H(Q) c E". .

But

‘ vIH(P)

and

Hilbert-Schmidt.

Therefore

Hilbert-Schmidt, and also j o v.

- Corollary 1 is proven.

Remark : Clearly S o j o v is Hilbert-Schmidt from K into H(P).
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Corollary 2 : : Let Ki and K2 be two Hilbert spaces and u1 : Ki ~ E’, u2 : E ~ K2
linear continuous (E’ being equipped with the strong topology). Then :

u2 o i o S o ul - K2 is nuclear

(K1~E’~H~E~K2).
Therefore we can speak of the trace of the above application.

We have already seen that if F is a P-measurable vector subspace of E such that P(F) = 1,
then H c F. We have seen too that if dim H = +0o : : P(H) = 0.

- Corollary 2 is proven. -

Now we shall give some "zero or one laws".

Proposition 5 : : Let G be an additive subgroup of E, P-measurable. Then for every a E E
we have

P{a+G} = 0
(A trivial fact if dim E  oo).

Proof :

We have supposed E Lusin, Supp P = E and dim E = oo! Now we may suppose that

E = IRIN, with the canonical Gaussian measure on it. We need several lemmas : :

Lemma 1 : : If G is a P-measurable additive subgroup of IRIN, containing H(P) (in our
case H(P) = .~~), then for every a E IR,~ : .’

P a+G = 0 1
Proof :

Let (Xn ) be the projection of index n from IRIN into IR. Then the (Xn ) are independent
and N(0, 1) and moreover BIRIN is equal to E IN).

Now I assert that

(a + G) is P-independent from BIRIN.
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Actually let:

Yn = L Xi ei and Zn(.) = IdIRIN - Yn,
in

((ei)i~IN is the canonical "basis" of IRIN).
Since ei = S(Xi) : : Yn takes its values in H(P). Then, since H(P) C G we have :

Now it is clear that for each n, {Zn E a + G} is independent from 03C3(Xi, i therefore

(a + G) is independent of a(Xn, n E :IN).

Our assertion is then proven. In particular a + G is independent from itself.

- Lemma 1 is proven. -

Now we shall prove that the conclusion of the preceding lemma does not need the

hypothesis H C G. For this we shall need the following lemma :

Lemma 2 : : Let A C IRIN be a P-measurable set such that P(A) > 0. For every h E H,
there exists a real number rh > 0 with property : :

Proof :

The result is true if h = 0. So we suppose ~h~l2 =1. To h there corresponds a random

variable h in E2(P) as seen before.
Let

Y(.) = h(.)h and Z = Id - Y.

They are two random variables with values in IRIN, independent. Therefore :

P(A) = P{Y + Z ~ A} = ~IRIN P{Y ~ -z + A} Pz(dz) > 0

(Pz is the law of Z).
Therefore there exists some Zo E IRIN such that :

P{Y E -zo + A} > 0.
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Now let

C := {r E IR, rh E -zo + A}.

Clearly

03B31(C) = P{Y E -zo + A} > 0.

Therefore C - C is a neighbourhood. of zero : there exists rh > 0 such that :

rh E A - A}.

- Lemma 2 is proven. -

Now we are able to prove the proposition :

Let us suppose that P(a + G) > 0.
Then for every h E H there exists an integer nh such that

h E nh ((a + G) - (a + G)) = nh(G), (since G - G = G).

Therefore H C G, and by Lemma 1 we conclude that

P(a + G) =1.

- Q. E. D. -

Remark : In particular if F is a P-measurable vector subspace, P(F) = 0 or 1.

We can now see from another way that if P(F) = 1, then H C F : :
In fact, if h E H, there exists rh > 0 such that

rh e F - F = F, if .

But F being a vector space, rh e F for every r.

In the next chapter we shall see that the reproducing kernel space is the intersection
of the subspaces carrying P.

Definition : : We shall call "abstract Wiener space" (or shortly "Wiener space ")
a triple (E, H, P) where E is a Lusin l.c.s., P is a centered Gaussian measure on E and
H = H(P) is the Cameron-Martin space of P.
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3 - Some examples

First let us give a trivial example :

Let E = IRn and p  n, a natural number ; let 03B3p the normal measure on IRp having the

density (203C0)-p 2 exp {-1 2~x~2}. Let P the image of 03B3p by the canonical injection IRp ~ IRn .

P is a Gaussian measure on IRn. Moreover :

E’2(P) = IRp and H(P) = Supp P . .

( Therefore P(H(P)) = 1 H(P) is finite dimensional )
H(P) is dense in IRn if and only if p = n.

Now let us give some less trivial examples.

Bef ore doing this, we shall recall the notion of reproducing kernel Hilbert space of a

centered real Gaussian process (Xt)tET, indexed by an arbitrary set T :

Let us denote K the covariance :

K(s, t) = 

Then H(T, K) is the subspace of IRT generated by the functions : K(s, .), s (s E T) . .
m n

If u = aiK(si,.) and v = are elements of K) we set :
i==i j=l

(u,v)H(T,K) := 03A3 03B1i03B2jK(si, tj).
;j

It is easily proven that the right member is independent from the representations chosen

of u and v, and that (., .)x is symmetric non-negative definite (not necessarily a scalar

product). H(T, K) is therefore a prehilbertian vector space, whose the associated Hilbert

space is called the "reproducing kernel Hilbert space of the process (X~)" and is

denoted by H(T, K). Moreover, the elements in H(T, K) are functions on T (a non trivial

fact, a priori) :
H(T, K) C IRT.

Note that "reproducing property" is satisfied, that is to say :

(/(.), K(s, ~))H~~,K) = f (S)~ b’s E T, d f E H(T, K).
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This relation generalizes this one : ~K(s , .) , K(t , .)) = K(s , t).
For all what precedes about reproducing kernel spaces of a Gaussian process, we can see

Neveu [ Séminaire, Université de Montreal, Ete 1968 ], for instance.

The situation ’‘abstract Wiener space" is an important example of what precedes. If

(E, H, P) is an abstract Wiener space then the process indexed by E’ : :

x’ ~ .~~r,E is a Gaussian process

with covariance

(~,~)~E{~,.)(~.)}.

Then it is easy to see that the Cameron-Martin space of P is identical to the reproducing
kernel space of the process.

Now we give some more concrete examples of this situation.

Let us begin by a general consideration :
Let T be a compact metrisable space and let E = C(T) (E is a separable Banach space).
Let P be a Gaussian probability on C (T ) . Then the process (Xt)tET defined by :

Xt (w) if c~ E C(T)

is a Gaussian process under P. In this case it is easily proven that :

. for t E T : S(03B4t) = K(t,.), (if K(s, t) = IE{XsXt})

. if  is a real measure on T : S( )(.) = TK(s,.) d (s)

. if x = y = S(03BD) are elements of H(P)then

(x,y)H(P) = ~TxTK(s, t) d (s) dv(t).

We shall apply what precedes to the following cases.

Example 1 : Brownian motion on [0,1]

P is the Wiener measure on C ( ~0,1 ~ ), carried by the space Ca ( ~0,1~ ) of functions null
to zero, and continuous. The covariance of the process is

K(s, t) 
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The Cameron-Martin space is the completion of the space of functions on (0,1~ from the
form :

~[0,1] (s 039B.) d (s)

where ~. is a real measure on ~0, 11.
Now if F,~ is the distribution function of ~c, by the generalised integration by parts formula,
we have, for every t :

~[0,1] (s 039B t) dF (s) _ [(s n t) F (s)]10 - 10 (s 039B t)’ F (s) ds

= tF (1) - t0 F (s) ds

= t0 (]s, 1]) ds

Therefore

~)(.)= /’~(]~1])~.
Now the H(P)-norm of S(~c) is equal to :

[0,1]2(s~t) d (s) d (t) = ~[0,1] d (t) (~[0,1] (s n t) dF (s))
_ / f / t ~(~s, 1~) ds) (by what precedes).

./[o,i) o 

Integrating by parts once more, the above expression is seen equal to :

[F (t) t0 (]s, 1] ds]10 - 10 F (t) ([t, 1]) dt

= F (1) 10 (]s, 1]) ds - 10 F (t) (]t,1]) dt
= ~01 (]t,1])2 dt.

The function .0 
(]s, 1]) ds is null at zero, absolutely continuous ; its derivative is Lebesgue-

almost everywhere equal to (]., 1]).
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Now let us notice that the functions s ---~ ~c(~s, l~) are dense in L2((0,1~, dt), when ~
describes the set of real measures on [0,1] We can conclude that the Cameron-Martin space
of the Wiener measure is the vector space of functions from [0,1] into IR, absolutely con-

tinuous, vanishing at zero and whose the distributional derivative belongs to Lz((0, l~, dt),
equipped with the scalar product :

Example 2 : The Brownian bridge

Now let P the measure on C((0,1~) corresponding to the Brownian bridge on [0,1].
The covariance of the Brownian bridge process is : :

(s, t) ---~ K(s, t) 

For ~,, a real measure on (0,1J we have for each t :

[0,1] (s 039B t - st) d (s) =[0,t] (]s,1] ds - t ~[0,1 (]s,1]) ds.

Moreover :

[0,1]2 (s n t - st) d (s) d (t) = 10 ( (]s,1]))2 ds - (10 (]s,1]) ds) 2. .
Now let us notice that the function

t 1]) ds - t J 0 1 ~c(~s,1~) ds is null for t = 0 and t = 1. .
It is absolutely continuous and with derivative equal almost everywhere to : :

F(t) = (]t,1]) - 10 (]s,1])ds.

The norm of F is equal to : 

J[o.i] .

From this we can easily see that the Cameron-Martin space of P is the space of absolutely
continuous functions on [0,1] vanishing at zero and one, and whose derivative belongs to

L2((0, 1~) equipped with scalar product :
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Example 3 : : The Brownian motion on IR+

Let P be the Gaussian measure on E = C (R+) associated to it. C(IR+) will be
equipped with the topology of uniform convergence on compacts sets : it is a separable
Frechet space (not Banach), whence a Lusin space.

E’ is the space of signed Radon measures on IR+ with compact support.
Then as in Example 1, H(P) is equal to the space of functions [0, ~[~IR absolutely
continuous, vanishing at zero, and whose derivatives belong to L2(ffi+, dt), with the natural
norm

~f~ = ~f~L2(IR+ ,dt).

Example 4 : : E = (resp. with its usual topology.

It is a Lusin space (not Frechet). Then E’ = (resp. D(IRn)).
By Minlos’ theorem there exists a Gaussian probability P on E such that

for every cp E E’ :

(p, .) is Gaussian

with variance

~03C6~2L2(IRn).
The Cameron-Martin space is the space dt), considered as a subspace of E’ by the
canonical injection

-~ 
.

Example 5 : : (Ei, Hi, is a finite family of abstract Wiener spaces.

Then the following is a Wiener space :

n n n

; ; .

i=1 i=1 i=1

(E is equipped with the product topology. It is a Lusin space).
P is clearly a Radon measure, since E is Lusin.

We have to prove that P is Gaussian, or what is the same, that for every x’ E E’. the
random variable on E, x’ (. ) is Gaussian.
But we have (algebraically) :

n

.

i=1
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If xi E ~z, (1  i  n), let us denote by Xi the random variable :

x  Xi(x) = x’i(xi), if x = (x1, ..., xn) ~ E.

The (Xi) (1  i  n) are P-Gaussian and P independent, and if x’ = (x~, x2, ..., xn) we
have :

n

x~(~) _ ~Xa(~).
i=l

This is a Gaussian random variable.
Moreover :

n

~ 
i=l

= 03A3 ~x’i

(.)~ 2(Ei)’2(Pi).

From this we conclude that
n

E’2(P) = ~(Ei)’2(Pi).
~=1

Considering each as a subspace of E~(P) and each Ei as a subspace of E, and
apply the barycenter isomorphism S of onto H(P), we can see that

S maps onto Hi { Pz ) .

The assertion is proven.

Example 6 : : (En, H~, Pn) is a sequence of Wiener spaces.

Then :

(03A0 En, ~Hn, ~Pn) is a Wiener space, too.

The proof is almost identical to the preceding one. It suffices to notice that is

algebraically isomorphic to the direct sum ® E~ and to complete for the canonical
n n

prehilbertian structure.
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Example 7 : : (E, H, P) is a Wiener space and Eo is a Borel vector subspace,
carrying P.

If Po denotes the induced probability by P on Eo, then (Eo, H, Po ) is a Wiener space.
Actually, Eo, being Borelian, is a Lusin space for the induced topology.
Moreover :

H C Ea

since P(Eo) == 1.
Now each linear continuous form on Eo, is the restriction to Eo of a linear continuous form
on E, therefore it is Gaussian (since P(Eo) = I).

The announced result now follows.

Example 8 : : Brownian motion with values in IR~ (or infinite dimensional Brownian

motion)

Let (03A9, F, (Ft)t~IR+, P) a process basis and let a sequence of independent real

Brownian motions. We shall denote

lB t : = ( Bt ),~ t E ~0, oo ~.

Each real Brownian motion determines the usual Wiener measure on Co([0, 00[, IR) .
Therefore B defines a Gaussian measure on namely

the product measure. Let 1 denotes this probability ; C0([0, ~[, IR)IN will be equipped
with the product topology : it is a Lusin space.

the Cameron-Martin space of 1 is the Hilbertian sum of the "ordinaries" Cameron-

Martin on IR. Therefore :

f ~ H( 1) ~ f = (fn)n and 03A3 ~0 |fn(t)|2 dt  oo.

T~O

is then the subspace of W1,2([0, ~[; l2) constitued by the functions null at zero.
(The notation W1,2 comes from the theory of Sobolev spaces).

Let us notice that,

for every x = (xn) and every t E [0, oo[ :

~ xn Bn(t) exists (almost surely)
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and that

t 03A3 xn Bn(t) is a real Brownian motion with variance t~x~2l2.

Now we give an important property of the infinite dimensional Brownian motion which
will permit us to define the Brownian motion of an abstract Wiener space.

Lemma : Let on IRIN the canonical normal measure and let K be a compact, disked

(= convex, balanced) of IRIN such that > 0 and let F be the vector subspace of

generated by K. . Then P-almost surely the paths of1B are contained in F :

IBt(03C9) E F ~t} = l.

Before proving this result let us make the following remarks :

a) If > 0, then = 1. This results from the zero-one law. Therefore :

: P{cv, IBt (W) E F~ =1

(a result weaker than the conclusion of the lemma). 
’

b) There exists disked compacts of with positive measure. Actually, if K is an

arbitrary compact, its disked hull is compact (since m.JN is complete).

Proof :

Let us suppose t continuous (this does not loss generality) and let qK be the
gauge of K : :

qK(x) = inf{03BB, a > 0 x E 03BBK};

qK is convex, lower semi-continuous, with values in [0, oo].
Then t +- q2K(IBt) is a sub-martingale with values in [0, ~], l.s.c. ( but not d. l.à g. in

general ) : it is a composition of continuous function with l.s.c. function.

Let T  oc and D C [0, T], denumerable, dense in [0, T] and such that T E D. Then :

Vt E [0,T] : : ~ lim inf sup q2K(IBt)
tED

Therefore

sup qK (Bt) = sup q~ (Bt)
tT tED
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and

IE{sup q2K (1Bt)  IE{sup q2K(IBt)} ~ 4IE{ q2K(IBT)}
(by Doob’s inequality). Now :

4IE{q2K(IBT)} = 4T IE{q2K(IB1) ~ 4T IRIn q2K d03B3~IN1.

But, by Fernique’s theorem we have :

where denotes the induced measure on F (which carries 

Finally, for almost every w, (Bt) stays in an homothetic of K when t E [0, ~’~. T being
arbitrary : :

- the lemma is proven. -

Example 9 : : Brownian motion in an abstract Wiener space

Let (E, H, P) a Wiener space. We shall suppose fulfilled the following condition :

"There exists a compact disk K of E such that P(K) > 0".

Now let 7r : a linear continuous injection of E into IRIN mapping P on 03B3~IN1,
and let L = where K is as above.

The vector subspace generated by L (v.s.(L)) carries 03B3~IN1 as we just saw and it is

clearly contained in 7r(E). Moreover, we know that, almost surely the paths of the canonical

Brownian motion with values in are contained in v.s. (L). Then = Wt has

sense, and defines a E-valued process.

Now we can see easily that if fEE’, there exists an x associated to it such that

= ~x~l2

and that :

f o Wt is a Brownian motion (real)

with variance

t~f~2E’2(P).
This result remains true if f E E2(P).

Therefore we proved the following theorem :
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THEOREM 3 : : Let E be a Lusin l.c.s. and let P be a Gaussian probability on E satisfying
the above condition. There exists a process (Wt)t~IR+ with values in E such that, for every
f E (f a Wt)t~IR+ is a real Brownian motion with variances 

(Wt) is called the "canonical Brownian motion" associated to P, or to (E, P).

Remark : The condition of the theorem is automatically fulfilled when E is Banach, or

complete, or more generally quasi-complete.

Now let us end by a characterization of a Gaussian probability which will
be used in several places :

A Borelian probability P on a Lusin I.c.s. E is Gaussian if and only if it satisfies the

following property :

"If X and Y are E-valued random variables (defined on a same probability
space) independent and having the common law P, then for every 8 E IR, the
E-valued random variable X cos03B8 + Y sin03B8 has the law P ".

This property is immediately deduced from the corresponding characteristics of a real
centered Gaussian law.

This property was used by Fernique to define a Gaussian probability on a general
topological vector space (not necessarily locally convex).



91

CHAPTER TWO

Measurable linear operators

1- Generalities

Let us recall some fundamental notions.

Let X be a Hausdorff completely regular topological space and let  be a Borelian

probability on X. . Let Y be another Hausdorff topological space. Then we have three

kinds of measurability of a linear application f : X --~ Y : :

a) the "Borel-measurability" (does not depend of 
i.e. the measurability with respect to the Borelian a-fields ~i~ and By,

b) the "Lusin-measurability" :

f : X --~ Y is said p-Lusin measurable if it satisfies the following condition :
for every E > 0 there exits a compact K~ C X such that :

B Ke)  ~ and f|K~ is continuous,

c) the " -measurability", or "Lebesgue-measurability" : :

f : X ~ Y is said -measurable if it is measurable with respect to B X (the -completed
03C3-field of Bx) and By.

Clearly :
a) ==~ c) and b) ~ c).

Moreover :

if JL is Radon, then c) ====> b).

Actually this fact is well known if X is locally compact.
In the general case we can do the following reasoning :

Let L~ be a compact such that :

 ~/2.

By the Egoroff’s theorem there exists a compact Ke C Lg such that :

B K~)  :/2 and f|K~ = (f|L~)|K~ be continuous.
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Then

~CX1~~) ~,

and the result is proven.

Let us suppose now that Y is a Hausdorff l.c.s.; we can then define three kinds of
scalar measurability :

f : X --~ Y is said scalarly measurable (resp. p-measurable, resp. Lusin-measurable)
if : for every linear continuous form y’: y’ o f is measurable (resp. p-measurable, resp.
Lusin-measurable).

Lemma 1 : : Let (X,~c) as above, with ~c Radon and let Y be a Lusin l.c.s. (Hausdorff).
If f : X -~ Y is scarlarly p-measurable, then it is p-measurable.

(Therefore we have the equivalence : p-measurability ~ scalar -measurability).

Proof :

Let j be a linear continuous injection of Y into IR~, then :

j (Y) is a Borel set of IRIN

and :

j : : Y -~ j (Y) is bi-measurable

(with respect to the Borel 03C3-fields).
Let then g is p-measurable by the definition of the topology of

1R IN. Therefore :

is -measurable

since j-1 is Borelian.

- Lemma 1 is proven. -

We have a similar result for Lusin-measurability.

In what follows X and Y will be Hausdorff locally convex spaces ( "l.c.s." ) and f will
be linear (often denoted T).
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Lemma 2 : : Let E be a Hausdorff l.c.s., ~c be a Radon probability on E and T : E --~ F

linear Lusin-measurable (where F is a topological vector space~. Then there exists a Borel
subspace Eo of E, carrying  and such that T|E0 is Borelian.

Proof :

Let ~ > 0 and K~ be a compact (not necessarily convex) such that :

(K~) > 1- ~ and T|K~ be continuous,

and let E~ be the vector subspace generated by K~.
I assert that EE is Borelian and T|E~ is a Borelian map. In fact,let us fix n E N and

let : .
i=n

Kf := {x E E, x = 03A3 03BBixi, | 03BBi |~ 1, xi ~ K~, ~i}.
i=0

First K f is compact because : if (xa)a is an ultrafilter on K~ , it converges to x E K~ .
Actually :

z=n

~03B1 = 03A3 03BB03B1ix03B1ij~,, i i

i=0

then :

~a’_’~~i~ , {~  2  n
a

since ~-I, +l~ is a compact of IR and

a

since KE is compact.

Moreover : T|Kn~ is continuous, therefore :

i=n i=~t

T(x03B1) = 03A303BB03B1iT(x03B1i) ~ 03A3 03BBiT(xi).

Let us notice that KE is not necessarily convex, but it is balanced.
Then :

T|UmKn~ is Borelian,
m
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and :

~!U Borelian too. °
n m

We can write

.

n m

then Eë is Borelian and it is a vector subspace.

Now let t = lip, (p E 1N*~. We may choose the sequence increasing. Then :

Eo= E1/p
p~IN*

satisfies the condition of the lemma.

- Lemma 2 is proven. -

Remark 1 : The proof of Lemma 2 can be simplified if we know that p is almost carried
by compact convex sets. In this case : :

U mK~ is a vector space
m

if is disked.

Remark 2 : If E and F are l.c.s. and  a Radon-measure on J5, the Lusin-measurable
functions from E into F form a vector space (it is obvious by the definition). If E and F
are Lusin, the Borel functions from E into F form a vector space. It is obvious since :

BE ~ BF = BExF

and :

BRxE = BIR ~ BE .

In the sequel, unless the contrary is specified, we shall assume that the vector spaces
we consider are Lusin.
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Lemma 3 : : Let (E1, 1) and (E2, 2) be two (Lusin) l.c.s. with (Radon) probabilities.
Let F be another Lusin t. c. s, and T : El x E2 -~ F linear, ~1 ~ p2 -measurable. Then for
every x2 E .E2, , the map T(., x2 ) is ~1-measurable.

Proof :

By Fubini’s theorem :

for p2-almost every x2 E E2 : T(., x2 ) is 1-measurable ,

there exists ~c~ E E2 such that :

T (., x2) is ~1-measurable.

By the remark preceding the lemma :

T(~ 0) = - [ ( ~ + r(., -~)j is J.L1-measurable.

Now for each x2 E E2 :

T(., x2) = T(., o) + T(0, x2 ). .

- Lemma 3 is proven. -

Remark : Let E be a l.c.s. with the Borel probability p on it and let Eo be a Borel

subspace of E, carrying Let F another l.c.s. and To : E’o ~ F linear, Borelian. Every
linear extension of To from Eo to E (easily obtained by considering an Hamel basis of
E which completes an Hamel basis of Eo) is clearly p-measurable, but not necessarily
Borelian.

This fact should be kept in mind.

2 - Measurable linear mappings from a Wiener space

In the sequel, E will denote a Lusin I.c.s. (and Hausdorff),  a Gaussian centered

probability on E whose reproducing kernel Hilbert-space will be denoted by H or H( ).
We shall suppose that Supp {~c) = E, then H is dense in E. Otherwise there exists xa in
E’ such that

xo ~ 0, 0 for each h in H.
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Therefore :

o = x’0(Sx’0) = / E|x’0(x)|2 d (x).

Then :

x~ (x) = 0~ = 1

which contradicts Supp (/~) = E.

The results that follow are true, but trivial, if:

E==~=IR/B ,

so we shall exclude this case in our proofs and we shall suppose : dim H = +oo.

Let F be another Lusin l.c.s., let T : E -i F, and T’ : E -~ F be two p-measurable linear

maps. Let us suppose that : T = T’ p-almost surely. Then :

{x, = T’(x)~~

is a subspace carrying ~c and :

H C {T = T’}.

In other words:

Two linear measurable maps, equal almost surely, coincide on H.

(The converse is true, see below).
Then we can speak about the value at a point of H, of a -equivalence class of linear

~-measurable maps.

On the other hand, by using the caracterization of a Gaussian measure given at the end

of chapter one : is again a Gaussian measure if T is -measurable and linear.

Let us give a consequence from Lemma 2 .
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THEOREM 1 : : Let F be a Banach and T : E -~ F linear p-measurable. Then we have : :

E~ T(x) ~2 (dx)  oo.

Proof :

By Lemma 2, there exists a Borelian subspace, Eo, carrying  such that T|E0 is

Borelian. Then Eo is a Lusin-space for the induced topology and

BEoxEo = BE0 ~ BE0

Now let us consider the Borelian semi-norm on Eo :

x  ~Tx~F

By the Fernique’s theorem (see chapter one) we have :

E0 ~ Tx 0(dx)  ~

where 0 = |E0 and therefore :

~E~Tx ~2F (dx)  ~

- Q.E.D. -

~ First we examine the case : F = JR, i.e. we shall consider the p-measurable linear
forms.

Let us notice that we have met such linear forms : the linear forms defined by an
element of fact such an element is an almost sure limit of a sequence of linear

continuous forms, whose the convergence set is a Borelian vector space carrying ~c. Then
we extend it outside of this vector subspace with preservation of the linearity, and we
obtain a linear p-measurable form .

Now we shall see that there are not other p-measurable linear forms. Actually let

f : E --~ IR linear p-measurable, therefore defining an element of L2 (E, and let us

denote by v its orthogonal projection on E’2( ).
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I assert that :

f = v,

because : f - v is orthogonal to each ic E Eg (~c). .

Actually, let (en)" be a sequence of elements in E’, which constitues an orthonormal basis
of E2 (~c), the family of random variables on E :

{ e’n,. >, n E IN} U { f - } is Gaussian ;

(it defines a -measurable linear mapping from E to m.JN Q9 IR).
Since f -- v is orthogonal to the  e~,. >, (n E IN), it is independent from the  e~,. >
and therefore it is independent from BE = r{ e’n, . >, , n E IN}.
Therefore :

f - v is a constant (almost surely)

and this constant is null, since f -- v is centered.

The announced result is established.

From what we saw in the chapter one, we can see that the restriction of f to H is
continuous. This last fact can be seen otherwise as follows :

if Eo is a Borel subspace of E carrying ~c and such that flEo be Borelian then, since :

H C Eo with continuous injection

(Eo being equipped with the induced topology, H with the Hilbertian topology) we have : :

f|H Borelian and therefore continuous

(all Borelian linear forms on a Banach space being continuous).
Summing up that precedes, we have obtained the following theorem :

THEOREM 2 : : Let (E, H, J-L) be an abstract Wiener space. Then there is an identity
between : :

(i) : the p,-equivalence classes of linear -measurable forms,

(ii) : the almost sure limits of sequences of linear continuous forms.
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Moreover all linear continuous forms on H (with its topology) admit a linear -

measurable extension to E and two such extensions belong to the same class. If g is a
linear continuous form, we shall call " -essential extension of g" whatever extension.

Let us notice the equality:

~g~2H’~E|f(x) |2 (dx)

if f extends g . .

Remark 1 : We have no more the ~-unicity of the extension if we do not suppose the

..t-measurability of extensions, as we can see :
let f be a linear form on E, not ~,-almost surely equal to zero and vanishing on H (we

can build such a linear form by mean of a suitable Hamel basis).

Remark 2 : The -measurable linear forms, obviously separate the elements of E.

Now let us give a criterion for an element of E to belong to H.

Proposition 1 : : Let a E E. The following properties are equivalent : :

(i) : aEH

(ii) : there exists C E [0,oo[ such that : ~ I(a) Is C ~~ f for each p-measurable
linear form f .

Proof :

(i) ~ (ii) : it is trivial, we have C =~ a ~H,

(ii) ==~ (i) : let us notice that if f = g almost surely ( f and g linear p-measurable )
then, by condition (ii),

f(a) = g(a).
Therefore we can define a linear mapping E’2( ) -> IR by:

.f ’.~f(a)~

This linear form is continuous (with norm  C). So there exists u E H such that :

for every f in EZ(~) : f(a) = I(u) = (S f, u) H . .

Therefore

for every f E E~~) : : f (u - a) = 0.

And u = a since the f are separating.
- Q.E.D.-
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Corollary : : Let a E E, the following properties are equivalent : :

(i): : aEH
: for every sequence ( fri) of p-measurable linear forms converging almost surely to
zero, we have bigl(fn(a)) ~ 0.

Proof :

(i) =~ (it) : if f n -; 0 almost surely then :

f n --~ 0 in L2 (E, ~)

(since the InC.) are Gaussian random variables).
Therefore

f n (a) --~ 0 by Proposition 1 .

(ii) => (i) : suppose (ii) realized and suppose that a ~ H. Then there exists a

sequence of p-measurable linear forms converging to zero in L2 such that (In(a))
does not converge to zero.

So there exists a subsequence such that :

fnk ~k0 in L2

and

(fnk (a))k converges in IR to a # 0.

From this we deduce the existence of a subsequence of denoting by (ge)~ converging
almost surely to zero, but such that :

(ge (a) ) ~ does not converge in R to zero,

- The Corollary is proven.-

Now let us fix some notations :

If ( f n )n is a sequence of linear -measurable forms converging almost surely to zero.
we shall denote the set of convergence of ( f n)n by: C{ ( f ~, )n }. This is a vector subspace
carrying So :

H C .
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Proposition 2 : H is equal to the intersection of the where ( fn)n is a sequence
of elements in converging almost surely to zero.

Proof :

Let us denote by D the intersection of the C{(fn)~,}.
Clearly :

HCD.

Let us suppose that there exists a E DBH. Since a ~ H, by the preceding Corollary there
exists ( fn )n --~ 0 almost surely such that :

~ f~, (a)~ ~ does not converge to zero.

There is a contradiction.

- Q. E. D. -

As an immediate consequence we have the following theorem :

THEOREM 3 : H is the intersection of the Borel vector subspaces carrying ~,.

0 Now let us come back to the general case of a p-measurable linear mapping
between two Lusin spaces.

Let T : E --j F linear and ~-measurable. As when T is continuous we have the relation

for every f E : T(Ef(x)x (dx)) = J E f(x)T(x) (dx)

where the right member is a "weak integral" :

~g ~ F’ : :  g, Ef(x)T(x) (dx) >:= Ef(x)g o T(x) (dx).b’g E F’ .  g, J E .f (x)T(x) (dx) >:= J E f (x)g ° T(x) (dx).

(Let us notice that the last integral has a sense since : g o T is a -measurable linear

functional on E ). In fact :

g, T(Ef(x)x (dx))>E’,E = g o T(E f(x)x (dx))
= Eg o T(x)f(x) (dx) (since g o T E E’2( ))

= g, Ef(x)T(x) (dx) > ( g being continuous ).
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Proposition 3 : : Let 03BD = T(p) and let K be the Cameron-Martin space of v. Then

T(H) = K. Moreover, T induces a linear continuous function from H into K.

(This result was already proven in chapter one, when T was continuous ).

Proof :

S" : g -.~.~ F g(y)ydv is an isometry from onto K.

Let G := E Let g E so goT E By the remark

preceding this proposition :

= 

= f F g(y)y03BD(dy)
So

K = T(G) CT(H).

Now we prove that T(G) = T(H) : :
Let û E E’2( ), orthogonal to the g o T, with g E F2(v) and let u be the barycenter of û. I
claim that :

T(u) = 0.

In fact for g E F’ : :

 g,T(u) >F’,F = g o T(E û(x)x (dx))

= ~E ~~~)9 o = o

This equality being true for every g E F’, then = 0. So :

T(G) = r(~f).

Now the continuity of T|H is obvious : T|H is the transpose of the isometry: g  g o T
from F2(v) into as we can see :
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let v E F2 (v) with barycenter v, then

(T(Eg o T(x)x (dx)); 03BD) 
K 

- (Eg o T(x)T(x) (dx);03BD) K

= ( Fg(y) y03BD(dy); 03BD)K
- F9(y)(y)03BD(dy)F

- 9 ° T (~)v ° 
r (9 ° ~’~ v ° T )E2(~) ~

- Q.E.D. -

We have seen that if T1 = T2 -almost surely, then their restrictions to H coincide.
The converse is true.

Proposition 4 : : Let T1 and T2 be two p-measurable linear maps , f rom E to F such that
= 

, then Tx = ?’2 -amost surety.

Proof :

The result is true if F = IR, (linear measurable functionals) as we have seen above.

Therefore the proposition remains true if F = IRIN.

For the general case, let us consider a continuous linear injection j from F into 1R~
and the functions j o Ti, (i =1, 2). .

- Q.E.D.-

3 - Comparison of the Cameron-Martin spaces.

THEOREM 4 : : Let (E, Hl, 1) and (E, H2, 2) be two Wiener spaces (with the same

E); we suppose that every subspace carrying 2 carries 1, then : :

(i) : every linear form 2-measurable is 1-measurable and we can determine a linear

continuous f unction from E2 (~c2 ) into EZ 
(ii) : Hi C H2 with continuous injection.
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Proof :

(i) : : Let f E --> IR, linear and p2-measurable. Then there exists a Borelian subspace
F of E such that :

is Borelian and = 1’

Since 1 (F) =1, then

f is 1-measurable.

Now let us suppose that f1 = f 2, p2-almost surely (f1 and f 2 linear, p2-measurable).
Then { f 1= f 2 ~ is a subspace carrying ~2 and therefore This means

fi = f 2, 1-almost surely.

So we have defined a canonical injection

E’2( 2) ~ E’2( 1).

The continuity of this injection follows from the closed-graph theorem :
if fn ---; f in E’2( 2) and fn --i g in E2 then there exists a subsequence ( f nk )

converging p2-almost surely to f.
Therefore

g = f, , 1-almost surely.

There exists C E [0, oo such that :

C d f E 

and (i) is proven.

(ii) : : The inclusion HI C H2 follows immediately from Theorem 3 and the continuity
of this inclusion follows from the closed-graph theorem.

- Q.E.D.-

Remark : If 1 and satisfy the condition of the Theorem 4, for every F Lusin l.c.s.,
we have :

T : E --~ F, linear, p2-measurable ==~ T pi-measurable

(by Lemma 1).
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Now we shall be given with two Wiener spaces (Ei, Hi, (i =1, 2) and T E2
linear and 1-measurable. Then we can easily prove the following theorem :

THEOREM 5 : : Let us suppose that every vector subspace of E2 carrying 2 carries

. Then T (H1 ) C H2 and T|H1 : H1 ~ H2 is continuous.

Proof :

Let vi = We have noticed that vi is Gaussian. Let Kl be the Cameron-
Martin space of vl. We know that T maps continuously H1 into K1 (with their Hilbertian

topology).
By the hypothesis every subspace carrying 2 carries 03BD1, therefore Ki C H2 with

continuous injection. So

T : H 1 --~ H2 is continuous.

- Q.E.D.-

Corollary 1 : : Under the hypothesis of the Theorem 5, the restriction of T to H1 is

continuous f rom Hl into E2 .

Next we shall be concerned with the inverse problem : let T H2 linear and

continuous, does there exist an extension T : E1 --~ E2 linear and pi-measurable ? The
answer is affirmative.

( Let us notice that if such an extension exists, it is unique up-to a 1-equivalence by
Proposition 4 ).

THEOREM 6 : : Let T : H1 ~ H2 linear and continuous. Then there exists an extension

T : El -; E2 of T, linear and 1-measurable.

Proof : :

Let us suppose first that T is unitary and surjective.

Let jE2 a continuous linear injection of E2 into IRIN mapping 2 onto 03B3~IN1. To this
injection we associate an orthonormal basis of H2, namely fn : fn = j-1E2(en), where (en)n
denotes the canonical basis of ~2. .
Let g~ = T-1 ( f n ) : by the hypothesis, (gn) is an orthonormal basis of Hi which defines
a (equivalence class of) linear 1-measurable injection of Ei into IRIN, let jEl , , and jEl
maps onto 03B3~IN1 but it is neither continuous, nor injective in general.
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Let G = jEi (Ei) njE2 (E2) C IRIN. G is a vector subspace of 03B3~IN1-probability equal to one.
Now let us consider

j-1E2 o jE1 : j-1E1(G) ~ E2.

It is a linear map, extending T.
Now we can extend

j-1E2 o jEl to .El.
and obtain a linear 1-measurable extension of T to Ei. It is clear that :

= ~.L2 .

In the general case :

We may clearly suppose that ]] T ~~  1.
Let Ei x E2 with the Gaussian probability ~cl ® ~u2, whose Cameron-Martin space is equal
to H1 ~ H2.
Let

A = TT * , A : H2 -~ H2

I claim that :

T B = AT and T * A = .BT * .

To see this fact, it is sufficient to consider the binomial expansion of

(IH2 - and (IHl - T*T) 2 .
Moreover : let U : H1 ~ H2 ~ H1 ~ H2 defined by :

taking account of the commutation relations above, we can easily verify that U is unitary
surjective, with the inverse equal to U.

By the first part of the proof there exists an extension

U : Ei x E2 -~ Ei x E2

linear and 1 0 2-measurable.
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Next define :

+ 2 U(x~ -y) ,
v is linear and 1 ~ 2-measurable from EI x E2 into E2 extending T. Moreover :

v(x, y) = v(x, 0), d~.

By Lemma 3, v(., o) is 1-measurable and : T(.) = v(., o) satisfies the property of the
theorem.

- Q. E. D. -

T is called a " 1-essential extension of T ".

Now we give a particular case which will be useful in the sequel.

THEOREM 7 : : Let us suppose that, in addition with the hypothesis of Theorem 6, T is

Hilbert-Schmidt. Then T has 1 -almost surely its values in H2 and we have : :

~E1 ~ Tx ~2H2 1(dx)  ~.

Conversely, if T is a linear 1-measurable map from El into H2 satisfying the above
condition, its restriction T to Hl is Hilbert-Schmidt. We have the equality :

~ T ~2H,S= E1 ~ Tx ~2H2 1(dx).

Proof :

Let T u = 03A303BBn(u, en,)H1 fn be a spectral decomposition of T , 03A303BB2n  oo, (en) and
( f ~, ) be orthonormal basis in H1 and H2 respectively. Let us define :

= 03A3 03BBnen(x)fn

E (Ei)2 is such that S’(en) = en).
This series converges in L2(E1, 1,H2) and T is an extension of T.
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Moreover :

~E1 ~ Tx ~2H2 1(dx) = 03A3 03BB2n,

= ~T~2H,S .
Conversely let T : H2 linear, 1-measurable with

~E1 ~Tx ~2H2 1(dx)  ~ ;

2 = is a Gaussian measure on H2 with reproducing kernel Hilbert space T (Hl )
where T = T Hl .

By Minlos’ theorem :

T H2 is Hilbert-Schmidt.

- Q.E.D. -

Remark : every 1-measurable linear function from Ei into the Hilbert H2 is an almost
sure limit of linear continuous mappings from Ei into H2.

Actually if Hi denotes the Cameron-Martin space of ~cl and if z : : Ei is the

canonical injection, then To I : : H1 ~ H2 is Hilbert-Schmidt :

n

T o i(u) = lim03BBk(ek,u)fk .

Therefore T(.) is a L2-limit of mappings :

n

.

k=0

But such a mapping is a L2-limit of continuous mappings with finite rank, since the

continuous linear functionals are dense in (E1)’2.
Therefore each linear measurable function from Ei into H2 is a L2-limit of continuous
linear mappings.

By extracting some subsequence : we have the announced result.
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4 - Some applications

a) . . Quantization of a linear measurable operator

Let {E, H, be a Wiener space, let T : H linear, continuous with (~ T 1

and let B = (7 - T*T)1 2 . The -essential extensions of T* and B will be denoted by T *

and by B respectively (T * is the adjoint of T). Let us set

T(T)f(x) = ~Ef(T*x) + By) (dy)

where f is a Borelian (or -measurable) positive function.
Then T(T)f does not depend from the extensions chosen. Moreover :

~p ~ 1, r(T) : : LP(E, ~ LP(E, is contracting.

Actually if f is Borelian, r(T)j is well defined since

(x, y) T * x + By is  ® -measurable

and we have seen that :

for every x : y - T* x + B y is ~-measurable.

Moreover the functions

(x~ y) 1’‘’ + By)
and

x ~’‘’f(~)
have the same law and therefore :

~ Np(f )~ 1 _ p - oc.

b) . . Linear measurable functions on E = Co ( ~0,1~ ) with the Wiener-measure,
denoted P

The dual of E is isomorphic to the space ,~IA {J 0,1 J ) of real Borel measures on 0,1~ .
If cp E L2 (J0,1J, dt), the random variable :

1003C6(t)d03C9(t) (Wiener-Itô integral)

is a P-measurable linear form. Actually it is a L2-limit of random variables from the form

I

which are linear and continuous.
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We shall see that all P-measurable functionals L are of this form.

First let L be a continuous linear form :

Then there exists an unique (signed) measure ~c on ]0,1] such that :

~03C9 E C0(]0, 1]), L(cv) # ~]0,1]03C9(t) (dt)

= ]0,1] 03C9(t) dF (t).

But by the stochastic integration by parts formula, we obtain :

~]0,1] 03C9(T) dF (t) = - 10F (t) d03C9(t) + [F (t) 03C9(t)]10

(The integral in the right member is a Wiener-Ito integral).

Therefore

L(03C9) = 10 (]t, 1]) d03C9(t).

In the general case :

We approach L ( in the E’2(P)-topology) by linear continuous forms and it suffices to notice
that the functions

s ~ ~c(~s,1~) , (~c : real measure on ~0, 1~)

are dense in LZ((0, 

Remark : In the case of the Brownian motion indexed by ]R~.
we can prove by absolutely the same way that every linear measurable form on Co([0, oo[, R),
equipped with the Wiener measure is the Ito integral of an (unique) element of L2([0,~[, dt).
The converse is also true. ..

c) . . Infinite dimensional Brownian motion

Let ( IBt (( be an infinite-dimensional Brownian motion

with parameter set IR+ or [0,1].
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Then it corresponds to it the following (abstract) Wiener space :

E = H = ~[, l2), P = ( 1)~IN

where 1 is the ordinary Wiener measure.
As above we see that every linear measurable functional is a stochastic integral with respect
to (1Bt) of an element of L2 ( ~D, oo ~, l2 ) . This means :

L . --  f(t), dIBt > .- 03A3fn(t)dIBn(t).~ 
n 

"

The conclusion remains true for a Brownian motion with values in the abstract Wiener

space (F, H, (see chapter one) : every linear measurable functional is the stochastic

integral of an element of L2(~0, oo[, H).

d) . Expansions in "Fourier series"

Let (E, H, ) be an abstract Wiener space and j : E --> IRIN a continuous linear

injection from E into IRIN such that j( ) = 03B31~IN.
Let en the (continuous ) linear form on E defined as

en(x) := (j(x))n

and let en = S(en), the barycenter ;we have :

enEH.

I claim that :
00

x = ~ en(x) . en , almost surely.
n=0

Actually let ( f ~, ) the canonical "basis" of 1RIN . .
Then

fn = j(en).

In IRIN we have the expansion : :

y = 03A3ynfn

(if y = (yn)n)
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Now let Ke be a compact set in IR1N, contained in j (E) and such that :

> ~ - ~

and let

Then j defines an homeomorphim from Le onto K~, and we have the equivalence :

(x EKe, 03A3en(x)en = x ~ y E Le, y = 03A3ynfn).
Therefore : :

x = Len(x)en, , for every x in Ke .

Finally on U ( a Borel set carrying  ), we have : :
m>1

and the result is proven for (en) = 

Now let (e~) be an orthonormal basis of E2 (~c), not necessarily contained in E’. We
set as before

en = ’S1 en ~.

Let en and (en) as above, (en = To this change of basis, we associate an unitary

operator A : H ~ H. Let A a linear -measurable extension of A, A : : E - E ; ; we
have A(~c) _ ~c.
Let K e; C E be a compact such that :

. > 

. ~x ~ K~

. the restriction of A to Ke is continuous.

Then : :

x E Ke ~ 03A3n(x)Ã(en) = Ã(x).

Therefore

= A(x) for every x 
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But

= e~(~) almost surely.

In fact the two measurable forms on E : :

x n(x) and x  (Aen, Ac) = Aen(Ãx)

coincide on jFf since A is unitary, therefore coincide almost everywhere on E. We can
therefore suppose that :

n(x) = 1n(Ãx), ~x,~n

and this means that :

4 ~ y for y E Ã(K~).

Since carries ~ up to 6- , we have the announced result.


