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ALGEBRAIC WEYL SYSTEM AND APPLICATION

YOUNGHO JANG

Ann. Math. Blaise Pascal, Vol. 4, N° 2, 1997, pp.27-40

ABSTRACT. -In order to define an I-sheaf due to [BZ 76] on the finite-dimensional p-adic
symplectic space, we define an algebraic Weyl system, and its properties are investigated. In
particular, we prove some necessary and sufficient conditions for Weyl system to be irreducible.
As application, we give another proof of the Ston-Von Neumann Theorem of the p-adic
Heisenberg group. From the Schrodinger representation associated to a selfdual lattice, we
construct a Weyl system depending on a selfdual lattice and a p-adic valued function.

1. Introducton. First we begin with the notations: Let No, Z, Q, R, C and T be
the set of non-negative integers, the ring of integers, the rational number field, the real
number field, the complex number field and the set of complex numbers of modulus 1,
respectively. The field of p-adic numbers Qp are constructed as follows: For a fixed prime
number p, the p-adic valuation ) . |p on Q is defined in the following way. At the first, we
define it for natural numbers. Every natural number n can be represented as the product
of prime numbers n = 2v23v3...pvp .... Then we define |n|p = we set |0|p = 0 and
I - nip = We extend the definition of p-adic valuation ] to all rational numbers
by setting for m # 0, = |n|p/|m|p. The completion ofQ with respect to the metric
dp(x, y) = y|p is a locally compact field Qp. The p-adic valuation satisfies the strong
triangle inequality

(1.1) |x + y|p ~ max(|x|p, |y|p).

Any x E Qp can be expressed as x = p~ ~~° o with v E Z and a~ E Z satisfying
0 ~ aj ~ P 2014 1) O. ,To define the Fourier transform, an additive character ~p(03BBx) =
exp(203C0i{03BBx}p) for every fixed A E Qp on Qp is used. Here = pv03A3-v-1j=0 ajpj is the
fractional part of x. 

’

In the Hilbert space L2(Qp) of C-valued square integrable functions on Qp, we introduce
the standard inner product and the norm

(1.2) 
(03C8,03C6)=~Qp03C8(x)03C6(x)dx, ~03C8~2=(03C8,03C8),

where dx is the Haar measure on Qp such that the volume of the ring of p-adic integers
Zp is 1. .
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The n-dimentional p-adic space Qnp has the standard norm = max1~j~n|xj|p, x =
(x1, x2, ’ ’ ’ , xn) E Qnp. The Fourier transform is defined with respect to the character

~p((k,x))=03A0nj=1 ~p(kjxj), where (k, x) = 03A3nj=1 kjxj .

It is well known that, traditionally, we use ordinary real numbers in theoretical and
mathematical physics, since lengths of segments and angles etc. from Archimedean axiom
should be measured precisely. However in quantum gravity and in string theory it was
proved that a measurement of distances smaller than the Planck length (it is the smallest
distance that can be measured, approximately 10-33cm) is impossible. Vladimirov and
Volovich [VV 84] proposed to consider the superanalysis and corresponding supersymmet-
ric field theories not only over the field R but also over the field Qp and other locally
compact fields. The interest in physics of n.a. quantum models is based on that the
structure of space-time for very small distances less than Planck length might conveniently
be described by n.a. numbers. There are different mathematical ways to describe this
violation of the Archimedean axiom. One of them is given by p-adic analysis.

Vladimirov and Volovich [VV 89] proposed a formalism of the p-adic quantum mechanics
with C-valued functions (cf. see also [FO 88], [RTVW 89] and [VVZ 94]). This formalism
is based on a triple (L2(Qp), W (z), U(t)). Here, L2(Qp) is the Hilbert space of C-valued
square integrable functions on Qp, W (z) is the Weyl representation of the commutation
relations, z is a point in the classical phase space and U(t) is the time evolution operator
where the time t is a p-adic number. The proposed formalism was extended, by Zelenov
[Zel 91,92,93,94], to the case of many- and infinite-dimensional quantum mechanics, in
which notion of Weyl system (H, W ) on the p-adic symplectic space (V, B) was used, and
the representation theory of the p-adic Heisenberg group was investigated (cf. see also
~Nleu 91]).
We recall that the definition of I-sheaf on the I-space by Bernshtein and Zelevinskii

[BZ 76, pp. 6-9] which is an introduction to the representation theory of p-adic groups:
A topological space X is said to be an I-space if it is Hausdorff, locally compact, and
zero-dimensional. Denote by C~(X) and S(X) the space of all locally constant C-valued
functions on X and the space of Schwartz-Bruhat functions on X, respectively. We say
that an l-sheaf is defined on X if with each x E X there is associated a C-vector space Fx
and there is defined a family .~’ of cross-sections (that is, mappings cp defined on X such
that E .~x for each x E X) such that the following conditions hold:

(1) F is invariant under addition and multiplication by functions in C~(X).

(2) If y~ is a cross-section that coincides with some cross-section in ~’ in a neighbourhood
of each point, then c~ E ~’.

(3) If cp E E X, and = 0, then ~p = 0 in some neighbourhood of x.

(4) For any x E X and ~ E there exists a c~ such that = ~.

The I-sheaf on X is denoted by (X, .~’). The spaces are called stalks, and the elements
of F cross-sections of the sheaf. We call the set supp 03C6 = {x E X : 03C6(x) ~ 0} the support
of the cross-section 03C6 E J’. Condition (3) guarantees that supp 03C6 is closed.
A cross-section 03C6 E F is called finite if supp 03C6 is compact. We denote the space of finite
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cross-sections of (X,F) by Fc. It is clear that Fc is a S(X )-module, and that = Fc.
It turns out that this property can be taken as the basis for the definition of an I-sheaf.

Proposition 1.1 (cf. [BZ 76, Proposition 1.14]). Let M be a S(X)-module such that
S(X)M = M. Then there exists one and up to isomorphism only one I-sheaf (X, ~’) such
that M is isomorphic as an S(X)-module to the space of finite cross-sections Fc.

Proposition 1.1 means that defining an I-sheaf on X is equivalent to defining an S(X)-
module M such that S(X)M = M.

In this paper, in order to define an I-sheaf on the finite-dimentional p-adic sym-
plectic space (V, B), we define an algebraic Weyl system (H, W ) on (V, B), and its prop-
erties are investigated, and we give an application.

This paper is organized as follows: In §2, we summerize the general properties of Weyl
systems {H, W ) on (V, B). In §3, we introduce the concept of an algebraic Weyl system
(H, W ) on (V, B), and prove some necessary and sufficient conditions for Weyl system
(H, W ) to be irreducible. In §4, as application, we prove the Stone-Von Neumann theorem.
In §5, we construct a Weyl system depending on a selfdual lattice and a Qp-valued function.
When it is irreducible, our construction coincides with the one of Zelenove [Zel 94].

The author thanks the referee for pointing out an error in the proof of Lemma 4.1 in
an earlier version of the paper.

Finally, thanks are due to Professor Yasuo Morita for invaluable advice.

2. The general properties of Weyl systems. We review some of well-known
results of Weyl systems (H, W ) on the finite dimensional p-adic symplectic space (V, B).
For proofs and more details, see [Zel 91] and [VVZ 94] (cf. for the co-dimensional case, see
[Zel 92] and [Zel 94]).

For simplicity we assume that p 7~ 2. By the definition of a p-adic symplectic space
is the pair (V, B), where V is a finite demensional Qp-vector space and B is a nonde-
generate antisymmetric Qp-bilinear form on V. Then dimQp V = 2n is even (cf. for the
oo-dimensional case, see [Zel 94, p. 423]).

Given 0 ~ ei E V, there must exist a x E V for which jS(ei,2-) ~ 0, since B is
nondegenerate. We choose a a E Qp so that = be1+ax, and B(ei = aB(el, x) =

1. Then the hyperbolic plane hy = span{e1, en+1} has matrix -(0 -1 1 0) with respect
to the basis {e1, en+1}. Since hy is nondegenerate (i.e., the pair (hy, hy) is p-adic
symplectic space), we have V = hy ® h, where h~ is also nondegenerate. Hence, we
repeat the preceding construction in to obtain an orthogonal decomposition of V of
the form

(2.1) 

where each hy is a hyperbolic plane. Thus there is a basis {e~ : : 1  j  2n) for V for

which the matrix of the form is ( - E’~ , where E~ is the n x n unit matrix and 0
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is the n x n null matrix. Also the map V --> hy, j = 1,... , , n, which is defined by the
formula 

(2.2) Pjx = B(ej, x)en+j + x E V,

is the orthogonal projection map on hy.
Let Xo be a Zp-span of the symplectic basis : 1  j  2n~. Then Xo is an open

compact Zp-submodule of V and has the following properties:

(2.3) B(x, y) E Zp ~x,y E Xo , dx E V,Xo, ~y E Xo such that B(x, y) E QpBZp.
Zelenov [Zel 91] defined a Weyl system on (V, B) as a pair (H, W ) of a complex Hilbert

space H and a continuous map W : x ’-)- W(x) from V to the family of unitary operators
on H satisfying the condition (the Weyl relation)

(2.4) W(x)W(y) = + y)~

Two Weyl systems (H, W ) and (H‘, W’) on (V, B) are unitary equivalent if there exists
an intertwining unitary operator U : H -~ H’. I.e. U is an unitary operator such that

(2.5) W’(x), x E V.

A Weyl system (H, W ) is said to be irreducible if there exists no non-trivial subspace of
H invariant under the W(x), x E V. . We say that (H, W ) can be represented as a direct
sum ~j~I(Hj, W ) of Weyl systems (Hj, W ) if H can be written as a direct sum ~j~IHj
of subspaces HJ which are invariant under the action of operators W(x).
We denote by Vo = {2: E V : : 1 ~ the open compact subgroup of V. Let (H, W)

be a Weyl system on (V, B). A vector 03C60 E H is called a vacuum vector of (H, W ) if the
condition = c~o is satisfied for all x E Vo. The set of vacuum vectors of (H, W)
forms the vacuum subspace Hoof H.

Every Weyl system (H, W ) on (V, B) is, in a certain sense, determined by its restriction
(II, on (Vo, Since Vo is a compact abelian group, all irreducible unitary
representations of Vo are one-dimensional. Let Vo = Hom(Vo, T) be the group of characters
of Then we have

(2.6) V/V0 3 * E Vo , a*(x) ;; ~p((03B1, x)), x E vo,

where a is a representative of the coset & E VIVo. By the theory of unitary representations
of compact groups, the representation space H can be expressed as an orthogonal sum

(2.7) H = ~~V/V0H,
where Ha is the maximal subspace on which Vo acts as a multiple of a*.

Let us choose an element a from each coset & E V /Vo and denote the family of such
elements by Jo. Let

(2.8) ~ _ = E H : a E Jo}.
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If al and a2 belong to the same coset a E then, using (2.4), the definition of the
vacuum vector and (2.8), we obtain

03C603B11 = W(03B11)03C60 = W (a2 + (03B11 - 03B12))03C60 = 

Therefore, a change of the element a in â induces only a scalar multiplication of We
call E the system of coherent states of (H, W ).

The investigation of Weyl systems on p-adic symplectic spaces is essentially based on
the notions of vacuum vector and the system of coherent states as follows:

Theorem 2.1 (cf. [Zel 91]). Weyl systems has the following properties:
(i) For any Weyl system, there exists the vacuum vector.

(ii) A Weyl system (H, W) is irreducible if and only if its vacuum subspace Ho is one-
dimensional. Otherwise, if we choose some orthonormal basis in Ho (.H, W ) can
be represented as a direct sum ~i~I(Hi, W) of irreducible Weyl systems (Ht, W), where
subspace Hi is the span of the vectors = W(03B1)03C6i0 : o: J0}i~I.

(iii) If (H, W ) is irreducible Weyl system with the vacuum vector then the system
of coherent states E of (H, W ) forms the orthonomal basis in H.

(iv) All irreducible Weyl systems are unitary equivalent.
Example 2.2 (cf. ~VV 89] and [Zel 89, in case of p = 2]). For 2-dimensional case, an
irreducible Weyl system is constructed as a pair (L2(~r), W ) on (~~, B), where the unitary
operator W(z) is defined by

W (z)~(x) = + q)~ z = (q~p) E ~p, 4~ E 

the symplectic form B : : Q2p x Q2p ~ Qp is given by B(z, z’) = qp’ - q’p (z’ = (q’, p’) E Q2p).
The vacuum vector has the form = where f2(x) is 1 if 0  x  1 and 0 if
2: > 1.

Example 2.3 (cf. [VVZ 94, p. 243]). We denote the tensor product of n
irreducible Weyl systems of Example 2.2 by (L2((~~ ), on (~p~‘, B). Hence

W(n)(z) = W(zj), z - (z1,..., zn) E Q2np
and the vacuum vector has the form

n .

= = (xl, ~ .. E Q~.
j=1 

On the group V, we normalize the Haar measure d.r by the condition ~V0 dx = 1. In
the Hilbert space L2 (V ) of C-valued square integrable functions on V, the standard inner
product and the norm are given by (1.2).
We define a Hilbert subspace of L2 (V ) by

(2.9) = {f E L2(V) : f(x + y) = y)/2)f(x) dy E V0},
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and an operator W(x ) by

(2.10) W(x)f(y) = ~p(B(x,y)/2)f(y - x) (x E va f E L~p2(V0)).
Example 2.4 (cf. [Zel 91] and (VVZ 94, p. 243]). The pair is an irreducible
Weyl system on (V, B), and the vacuum vector has the form 03C60(x) = 

Let Sp(2n, Qp) be the group of automorphisms of the space (V, B) that preserve the
symplectic form B. We fix a basis of V and express any g E Sp(2n, Qp) by a matrix(9jk) E Let

(2.I1) ~g~’ " max1~j,k~2n|gjk|p.
Then G = {g E Sp(2n, ~P) : =1} forms a maximal compact subgroup of Sp(2n, Qp). .
Theorem 2.5 (cf. [Zel 91J). Let (H, W ) be an irreducible Weyl system on (V, B). Then
a family of operators {!7(~) : ~ E G} satisfying
(2.12) U(g)W(x) = z G V

forms an unitary representation of G in H, and any vacuum vector of (H, W ) is an eigen-
vector of the U(g).

3. Algebraic Weyl system. In this section, in order to define an /-sheaf (V, .~’)
on (V, B), we define an algebraic Weyl system, and prove some necessary and sufficient
conditions for Weyl systems (H, W) on (V, B) to be irreducible.

Let (H, W ) be a Weyl system on (V, B) with a vacuum vector ~po E Ho and S(V) the
space of Schwartz-Bruhat functions on V. Then the convolution product

(3.1) fg(x) = y)/2)f(y)g(x - y)dy
makes S(V) an associative C-algebra without the unit element. For each f E S(V), we
define a linear endomorphism Ew( f) of H by

(3.2) EW(f)03C6 =~vf(x)W(x)03C6 dx, 03C6 ~ H.

Since f is locally constant on V with compact support, this integral is well-defined. It is
easy to see that EW(fg) = Ew( f)Ew(g). Indeed, for f , g E S(V) and 03C6 E H, using the
Weyl relation (2.4) and (3.2), we get

EW(fg)03C6 = / v / v y)W(x)03C6 dxdy

= ~ ~ + dtdy

= 9’(t) f / dt

= EW(f)EW(g)03C6.
Hence H is a S(V)-module.
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Definition 3.1. a) Weyl system (J7,~) is said to be algebraic if there exists an open
compact subgroup K of V such that for all 03C6 H and x 6 K. For some open
compact subgroup K of V, let F~ = {~ 6 H : V~ ~} be the subspaceof K-invariant vectors in H. Then it is clear that W) is an algebraic Weyl systemcalled the algebraic part of W. In particular, (Ho = W~) is the algebraic part of W.

b) Weyl system (H, W) is said to be admis.sible. if it is algebraic and if for each open
compact subgroup K of V, HK is finite dimensional.

Algebraic Weyl system gives an I-sheaf on (V, B) as follows:
Proposition 3.2. Weyl system (H, W) is algebraic if and only if S(V)H = H.
Proof. Let (H, W) be an algebraic. I.e. any 03C6 ~ H is fixed by some open compact
subgroup, say K, of V. Let 03BEK = volume(K)-1  characteristic function of K. Then

= p. Conversely, let = H. We can construct an open compact subgroupK of V such that W(x)03C6=03C6 for all y ~ H and a: ~ K as follows: Let p 6 H. Then 03C6
can be written as y = ~;, E~(/.)~,. Then, using the linearity of W, (3.2) and the Weylrelation (2.4), we have

= = 03A3W(x)EW(fi)03C6i
 !

= W(x)~Vfi(y)W(y)03C6i dy = ~Vfi(y)W(x)W(y)03C6i dy

= ~Vfi(y)~p(B(x,y)/2)W(x+y)03C6i dy

= E/ dt.

Since /, is Schwarz-Bruhat function, there exists a positive integer / sufliciently large suchthat supp fi c p-lX0 and for any t 6 supp fi, /,( - j:) = |x|p ~ p-l, where Xo is a
Zp-span of the symplectic basis of V (see §2). Let K = plX0. Then K is an open compact
subgroup of V and for all t and T, B(.r, t) 6 Zp. Thus we have = ~ for all w e H
and .r 6 A’, t

Let K be an open compact subgroup of V. Then ~ n Xo is also an open compact
subgroup of V. Let 0 = {~ n Xo : ~ is an open compact subgroup of V} and Y 6 0,
and let 03BEY = volume(Y)-1  characteristic function of Y. Then 03BEY is an idempotent in
S(V) and S(Y) = is an associative C-algebra with the unit element ~y.

Let /(x) and r(a-) be a translations of S(V) given by

(3.3) = !/)/2)/(~ - ~), = !/)/2)/(t/ + r).
The following is easily proved.
Proposition 3.3. . We have the following properties:

(i) = for all 3- 6 V and / e S(V).
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(ii) f *(l(x)9) = (r(-x)f )*9~ (r(x)f )*9 = for all f ~ 9 E s(v).
(iii) = (l(x)f)g, r(x)(fg) = f(r(x)g) for all f, , 9 E S(V).
(iv) l(x)03BEY = = 03BEY for all x E Y..

By (iv) of Proposition 3.3, S(Y) is the space of elements f of S(V) such that l(x) f =
r(x) f = f for all x E Y. Clearly, the image EW(03BEY)H coincides with the subspace HY
of Y-invariant vectors in H. It follows, inparticular, that for any exact sequence of S(V)-
modules 0 -t Hi -t H2 -+ H3 -t 0 the sequence 0 ~ HY1 ~ HY2 ~ Hi ~ 0 is also
exact.

Let Hw(Y) = {03C6 E H : = 03C6 Vy E y}, Then the kernel of EW(03BEY) is the
space H(Y) spanned by all vectors of the form Hw(Y). For
it is clear that = 0 and that Y act trivially on H/H(Y) since .H’~H(Y) ^-_’

Im(EW(03BEY)) = HY, so that EW(03BEY) is the identity map on H/H(Y).
Theorem 3.4. Let (H, W ) be a Weyl system on (V, B). Then (H, W ) is irreducible if
and only if for any open compact subgroup Y E 0 of V either HY = 0 or (HY, W ) is
irreducible.

Proo f. Suppose that for any open compact subgroup Y E d of V, HY ~ 0 and W )
is reducible. Then there exists a non-trivial S(Y)-submodule a of HY that is invariant
with respect to the action of the operators W(x), x e V. . Let b be a S(V)-submodule of
H generated by a. Since a C b, b is non-trivial. Every ~o E b is represented in the form

s t

03C6 = 03A3 EW(fi)ai + (s, fi E S(V), ai, bj E a, n J j ~ Z). .
i=I j=I

Then, using (i) of Proposition 3.3, we have for x E V,
s t s t

= L W(x)EW(fi)ai + + °

’=1 j=I ~~1 j=I 
_

Since i E S(V ) and E a, W(x)03C6 E 6. Hence (H, W ) is reducible. Conversely,
suppose that b C H is a non-trivial S(V)-submodule of (H, W ). For any open compact
subgroup Y E 0 of V, the sequence 0 ~ HY --> (H/b)Y ~ 0 is exact. Hence for
Y E 0 with 0, 6Y is a non-trivial S(Y)-submodule of 

Let (H, W) be an algebraic Weyl system on (V, B) and H* = HomC(H, C) the dual
space of H. We define a Weyl system (H.*, W*) on (V, B) by

(3.4) 03C6, W*(x)03C6* _ W(-x)03C6, 03C6*,
for x E E H, c~* E H* and (, ) is the natural pairing between H and H*. This
Weyl system (H*, W *) is not algebraic, so we take its algebraic part. More precisely, let
H*al = UYEo(H*)Y and = W*(x)IH* , x E V. Then (H*al, W*al) is an algebraic
Weyl system on (V, B). Clearly, EW*al (f)03C6* = for f E S(V) where

= f (‘x). 
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Proposition 3.5. Let (H, W ) be an admissible Weyl system on (V, B). Then we have:
(i) (H*al, W*al) is also admissible.

(ii) (H, W) is irreducible if and only if (H~j, is.

Proof. (i) We show that for all Y e 0, is finite dimensional. Let p* E (H*al)Y.
Then we have for cp E H,

~SP, ~*~ _ = = 
.

This show that (H:1)Y = (HY)*. I.e. (H:1)Y is finite dimensional, since (H,W) is an
admissible.

(ii) If a is a non-trivial S(V )-submodule of H, then = ~y~* E Ha~ : : (a, c~*~ = 0} is a
non-trivial S(V )-submodule of Hence (H*al, W*al) is reducible. The converse follows
from that H -- is an isomorphism, i.e., = W. !
Proposition 3.6 (Schur’s Lemma). If (H, W ) is an irreducible Weyl system on (V, B),then D = HomS(V)(H, H) is a division ring. In other words, D = C, i.e., if o : H ~ H is
a S(V)-module homomorphism, then o- is a scalar multiple of the identity morphism.
Proof. Clearly, any non-zero cr E D is bijective, hence is invertible. Consequently, every
non-zero element of D is a unit and thus D is a division ring. Also, if 0’ is not a scalar
multiple of the identity map Id, then 03C3 - 03BB . Id is invertible for any A E C. Let 0 ~ 03C6 E H.
If a sequence (a - 03BB1 . Id)-103C6, (a - a2 03C6,..., for a; ~ C distinct, of elements in H is
linearly dependent, then there exists a sequence z~ , z2, ~ ~ ~ of elements in C such that not
all the z=, say zi and z2, are equal to 0 and 03BB1 . Id)-lcp + z2(o - 03BB2 . Id)-lcp = 0.
It implies (z~ + z2 ) o -- zl-~ ~ Id) p = 0, which contradicts the fact that (1 - A . Id is
invertible for any A E C. Thus (c- - A . Id)-103C6 (A E C) are linearly independent. But,
indeed, by (iii) of Theorem 2.2.1 H is spanned by a E Jo, which is countable.
So H can not contain uncountablly many linearly independent vectors. Therefore 7 is a
scalar multiple of the identity morphism.

4. Application. In this section, using Theorem 3.4 we give another proof of the
Stone-Von Neumann Theorem of p-adic Heisenberg group.
The Stone-Von Neumann Theorem. Heisenberg group N =1V (V, B) of a p-adic

smplectic space (V, B) is the set of pairs (t, x) e Qp x V with the multiplication law

(~~ x) ~ (t’? x’) _ (t + t’ + ~’)l ~f x + ~’),
and it satisfies an exact sequence 0 --~ Qp --‘-~ N(V, B) ~ V - 0, where c and r~ are
given by = (t, 0) and = x, respectively.

The group Im(~) == {(t, o) : t E Qp} is the center and the commutator subgroup of 1V.
Thus a character ~ of Im() is given by the formula ~((t)) = ~p(03BBt) for some a E Qp.
From now we assume A == 1. Let l be a Lagrangian subspace of V. Then L = Qp  l is an
abelian subgroup of lV, and there exists a unique character w of L such that w induces r~
on Im() and w induces the identity map on l. Explicitly, such w is given by
(4.1) = (t E Qp, x E ~).
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We denote by (F~,T~) = the unitary representation of N induced by the
character ~ of L. Hence, the Hilbert space is the completion of the space of all functions
~ : TV 2014~ C such that

(4.2) = (n 6 N, h L),

(4.3) p 6 for the Haar measure dfi on N/L,

and the unitary operator T03C9(n0) on H03C9 (n0 ~ N) is the left multiplication of n-10:

(4.4) ’ 

We have the Stone-Von Neumann Theorem (in case of real, see [Car 66, p. 368]):
Theorem 4.1 (The Stone-Von Neumann Theorem).

(a) (.H~.T~) is an irreducible unitary representation ofN.

(b) For any Hilbert space H every unitary representation (H, T) of N satisfying

(4.5) T(t, 0) = ~p(t) . IdH for (t, 0) E Im()

is a multiple of T(.ù.

Remark 4.2. It can be seen from [Per 81, pp. 371-372] that the Stone-Von Neumann
Theorem is connected with Weil [Wei 64] as follows: If V == ~ (B ~ is a decomposition of
(V, J5) into a sum of two Lagrangian subspaces, then we can define a map

H03C9 3 p ~ 03C6|l’ L2(l’).

This is an intertwining unitary operator for the unitary representation and the
irreducible unitary representation (Ir2(~),~) of N, where $ is given by

(~)/)(~) = + (u,~) - (u,~)/2)/(~ ~ u~)

for x = (u, u* ) V and f e L2(l’) if l’ ~ l* (Pontrjagin dual of l) and ( , ) is the canonical
bilinear form on V.

Let us consider also the subgroup A = {(t,0) : t 6 Zp} of the center Im() of N. Thus
all unitary representations of N satisfying (4.5) are trivial on A. Hence we may consider
them as representations of = /0394. We can identify N with T x V via (t, x) ~ (03B1,x).
Then the multiplication law of N is given by

(4.6) (c~ 2~). (/?, ?/) = + ~/).

We call ./V the p-adic Heisenberg group of (V, B). The center of TV consists of the

elements
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is a subgroup of the commutative group L. Let w’ be a character of L extending the
character (a, 0) ~ a of the subgroup C(N). We can consider w’ as a character of L
satisfying (4.1).
Remark 4.3. If (H, W ) is a Weyl system on (Y, .8), then the family of operators
T(t,x) = ~p(t)W(x), (t, x) E N (resp. T(a,x) = 03B1W(x), (a, x) E N), forms an
unitary representation of N (resp. N) on H. Conversely, if T(t,x), (t, x) E N (resp.
T (a, x), (a, x) E N), is some unitary representation of N (resp. N) on the Hilbert space
H satisfying the condition T(t, o) = IdH (resp. T{a, 0) = a ~ IdH), then the pair
(H, W), W(x) = xp(--t)T (t, x) (resp. W(x) = T (1, x)), x E V, is a Weyl system on (V, B).
Another proof of the Stone-Von Neumann Theorem. Let (hr~,, be the unitary
representation of the Heisenberg group N. Each element of the Heisenberg group N is
written uniquely as (t, x) - (0,~) . ~ (t, o). Hence, if ~ E H~,, (4.2) implies =

x) ~ (t, o)) = x). Thus ~ is determined by its restriction to V. Hence the
mapping

H03C9 03C6  03C6/V ~ L2(V)
is an intertwining unitary operator. The unitary representation T(n) = RTW(n)R"1 acts
on L2(V ) by the following formula: For n = (t, x) EN,

= = 

= B(x~ y)I2~ y - x)
= x) ~ (-~ - B(x, y)I2~ ~))
= y)/2)03C6|V(y - x).

Let W(x) = Xp(-t)T(t, x). It does not depend on t and satisfies the Weyl relation (2.4).
Thus (L2 (V ), W ) is a Weyl system on (V, B). In particular, if 03C6|V E then

(L2(V), W ) = (vo ), W ) is an irreducible Weyl system on (V, B) (see Example 2.4).
To complete proof, we must show that (L2(V), W ) is an irreducible. Let H = L2 (V ) and
Y E 0. Then HY = 5’(V) ~ 0, since = ~p = W(x)cp for all x Let fo be a
vaccum vector of (S(Y), W). Then we have for x E Vo and y E ~) ,

/o(2/) = W(x)f0(y) = x).

Since f o E S(Y), for any point y E V there exists an integer 1 such that f o(y - x) =
f0(y), |x|p  pj. Thus supp f0 C Br = {x E V : |x|p  r = and f0(y) =
constant, y E Br. Therefore fo(Y) = , c E C. It follows from (ii) of Theorem
2.1 and Theorem 3.4 that (L2(V ), W) is an irreducible Weyl system on (v: B). I

5. A Weyl system depending on a selfdual Zp-lattice and a Qp-valued func-
tion. Let £ be a lattice in (V, B). The dual lattice ,~* is defined by

(5.1) ,~* = {x E V : B(x, y) E Zp for all y E ,~}.
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If £ = £* , then £ is called selfdut. From now we consider only case where £ is a selfdual
lattice. We consider a commutative subgroup F = ((t, z) : : t e Qp, °z e £) of N. Let.
I°’ be the image of the group F in N. The fact that the lattice £ is selfdual is equivalent
to the fact that I°’ is a maximal commutative subgroup of N. Let T be a character of
I°’ extending the character (a, 0) F-+ a of the subgroup T. By the Stone-Von Neumann
Theorem, (Hr , Tr ) = Ind(N, F; T) is an irreducible unitary representation of N.

Theorem 5.I (cf. [LV 80, p. 143] ). There exists a canonical isomorphism between
H03C9 and Hr intertwining the representations T03C9 and Tr : 

’

(5°2) (e2,1%’)16’~) ~ £ ’ (°’ ’~ ))°
x~/(~l)

For any p e Hr, z e V and y e £, we have

+ v) " k’( (° ’ ~~’ ) ° ( ~B( ~~" v )/2> Y) ) " ~ ~ ~ ( 
= xp(B(z , y) /2)T ~~ (0, y)p(0, z).

Let H(£, a) be the Hilbert space obtained by completing the space of continuous func-
tions f : V - C satisfying the following two conditions

(5.3) f(z + y) = ~p(B(x, y) /2 - a(y)) f(z) (z E V, y E £),

where a is a Qp-valued function on V satisfying (a(z + y) - u(z) - e Zp ;

(5.4) f e L2 (V/£) for the Haar measure di on V/.

We define a unitary operators W£,a(z) by

5.5) W,03C3(x)f(y) ’ Xp(B(Z> l/)/2 - 03C3(x))f (y- x), V E v> f E H(,03C3).

Example 5.2. The pair (H(£, a), W£,a) is a Weyl system over (V, B). Indeed, the
unitarity of the W£,a(z) is obvious. It is sufficient to check the Weyl relation. We have

w£,uZ)w£,u(Y),f(Z) = W,03C3(x)~p(B(y,z)/2- 03C3(y))f(z - V)
= a(z))xp(B(y, z - z)/? - a(y))f(z - z - y)
~ + l/> ~)/2 ~ ~(~°) ~ ~ (~ + Y))
= ~p(B(x,y)/2)~p(B(x + y, z)/2 - u(z + ,y)) f(z - (z + y))
= ~p(B(x,y)/2)W,03C3(x + °
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Theorem 5.3. The Weyl system (H(, 03C3), W,03C3) is irreducible if and only if 03C3() C Zp.
Proo f . Let Ho be the vacuum subspace of (H(,~, ~), and let f ~ E Ho (by Theorem
2.1, such a vector exists). Then, using (5.3) and (5.5) we obtain

= = for z ~ .

Thus it satisfies supp fo C {x E V ~ Xg(B(z, x)) = 1 Vz E ,~} _ ,~. By (5.3), we have
f( x + y) = Thus

(H(,~, ~), is irreducible

~=====~ the vacuum subspace Ho is one-dimensional
~===~ f ( x ) - constant, x E ,~
4====~ 

Remark 5.4. (i) We denote by (H(,~), W,~) the irreducible Weyl system of Theorem 5.3.
Then an irreducible unitary representation of the Heisenberg group T x is defined
as a pair (H(), T), where = 03B1W(x). This representation is a p-adic analogue
of the Cartier representation [Car 64] of the real Heisenberg group.

(ii) For the Heisenberg group T x V of a p-adic symplectic space (V, B) of arbitrary
dimension, £-representation corresponding Weyl £-system, which is analogues of Fock
representations of commutation relations, was constructed by Zelenov [Zel 94].
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