Annales mathématiques Blaise Pascal

P.N. Natarajan
 V. SRinivasan
 Convolution of Nörlund methods in non-archimedean fields

Annales mathématiques Blaise Pascal, tome 4, no 2 (1997), p. 41-47
http://www.numdam.org/item?id=AMBP_1997__4_2_41_0
© Annales mathématiques Blaise Pascal, 1997, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Convolution of Nörlund methods in non-archimedean fields

P.N. Natarajan
Department of Mathematics Ramakrishna Mission Vivekananda College
Chennai - 600004
India
V. Srinivasan
Department of Mathematics
V. Ramakrishna Polytechnic
Chennai - 600019
India

Abstract

In the present paper we obtain a few inclusion theorems for the convolution of Nörlund methods in the form $\left(N, r_{n}\right) \subseteq\left(N, p_{n}\right) *\left(N, q_{n}\right)$ in complete, nontrivially valued, non-archimedean fields.

Throughout the present paper K denotes a complete, non-trivially valued, nonarchimedean field. Infinite matrices and sequences, which are considered in the sequel, have entries in K. If $A=\left(a_{n k}\right), a_{n k} \in K, n, k=0,1,2, \ldots$ is an infinite matrix, the A-transform $A x=\left\{(A x)_{n}\right\}$ of the sequence $x=\left\{x_{k}\right\}, x_{k} \in K, k=0,1,2, \ldots$ is defined by

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, \quad n=0,1,2, \ldots
$$

where it is assumed that the series on the right converge. If $\lim _{n \rightarrow \infty}(A x)_{n}=s$, we say that $\left\{x_{k}\right\}$ is A-summable to s, written as $x_{k} \rightarrow s(A)$ or A - $\lim x_{k}=s$. If $\lim _{n \rightarrow \infty}(A x)_{n}=s$ whenever $\lim _{k \rightarrow \infty} x_{k}=s$, we say that A is regular. The following result is well-known (see [2], [4]).

Theorem $1 A=\left(a_{n k}\right)$ is regular if and only if

$$
\begin{gather*}
\sup _{n, k}\left|a_{n k}\right|<\infty \tag{1}\\
\lim _{n \rightarrow \infty} a_{n k}=0, \quad \text { for every fixed } k \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=1 \tag{3}
\end{equation*}
$$

Any matrix A for which (1) holds is called a K_{r}-matrix. If A and B are two infinite matrices such that $x_{k} \rightarrow s(A)$ implies $x_{k} \rightarrow s(B)$, we say that A is included in B, written as $A \subseteq B$. A is said to be row-finite if for $n=0,1,2, \ldots$, there exists a positive integer k_{n} such that $a_{n k}=0, k>k_{n}$.

Given two infinite matrices A and B, their convolution is defined as the matrix $C=\left(c_{n k}\right)$, where

$$
\begin{equation*}
c_{n k}=\sum_{i=0}^{k} a_{n i} b_{n, k-i}, \quad n, k=0,1,2, \ldots \tag{4}
\end{equation*}
$$

In such a case we write $C=A * B$.
The following properties of the convolution can be easily proved.

1. If A and B are both row-finite or both K_{r}, then their convolution C is row-finite or K_{r} respectively and their row sums satisfy

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{n k}=\left(\sum_{k=0}^{\infty} a_{n k}\right)\left(\sum_{k=0}^{\infty} b_{n k}\right), \quad n=0,1,2, \ldots \tag{5}
\end{equation*}
$$

2. If A, B are both regular, then C is regular too.

The Nörlund method of summability i.e., $\left(N, p_{n}\right)$ method in K is defined as follows (see [5]): $\left(N, p_{n}\right)$ is defined by the infinite matrix $\left(a_{n k}\right)$ where

$$
\begin{array}{rlrl}
a_{n k} & =\frac{p_{n-k}}{P_{n}}, & & k \leq n ; \\
& =0, & k>n,
\end{array}
$$

where $p_{0} \neq 0,\left|p_{0}\right|>\left|p_{j}\right|, j=1,2, \ldots$ and $P_{n}=\sum_{k=0}^{n} p_{k}, n=0,1,2, \ldots$. It is to be noted that $\left|P_{n}\right|=\left|p_{0}\right| \neq 0$ so that $P_{n} \neq 0, n=0,1,2, \ldots$.
The following result is very useful in the sequel.
Theorem 2 (See [5], Theorem 1.) (N, p_{n}) is regular if and only if

$$
\begin{equation*}
p_{n} \rightarrow 0, n \rightarrow \infty . \tag{6}
\end{equation*}
$$

The purpose of the present paper is to prove a few inclusion theorems for the convolution of Nörlund methods in the form $\left(N, r_{n}\right) \subseteq\left(N, p_{n}\right) *\left(N, q_{n}\right)$.

We need to define $\left\{\bar{p}_{n}\right\}$ by

$$
\begin{equation*}
p_{0} \bar{p}_{0}=1, p_{0} \bar{p}_{n}+p_{1} \bar{p}_{n-1}+\cdots+p_{n} \bar{p}_{0}=0, \quad n \geq 1 \tag{7}
\end{equation*}
$$

i.e., $\bar{p}(x)=\sum_{n=0}^{\infty} \bar{p}_{n} x^{n}=\frac{1}{\sum_{n=0}^{\infty} p_{n} x^{n}}=\frac{1}{p(x)}$, assuming that these series converge.

The following result is an easy consequence of Kojima-Schur theorem (see [2], [4]).
Lemma 1 Let $A=\left(a_{n k}\right)$ be a row-finite matrix and $\left(N, p_{n}\right)$ be a regular Nörlund method. Then $A-\lim x_{k}$ exists whenever $\left(N, p_{n}\right)-\lim x_{k}$ exists if and only if

$$
\begin{align*}
& \sup _{0 \leq \gamma \leq k_{n}}\left|P_{\gamma} \sum_{k=\gamma}^{k_{n}} a_{n k} \bar{p}_{k-\gamma}\right|=O(1), \quad n \rightarrow \infty \tag{8}\\
& \lim _{n \rightarrow \infty} \sum_{k=\gamma}^{k_{n}} a_{n k} \bar{p}_{k-\gamma}=\delta_{\gamma}, \quad \text { for every fixed } \gamma ; \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{k_{n}} a_{n k}=\delta \tag{10}
\end{equation*}
$$

Corollary $1\left(N, p_{n}\right) \subseteq A$ if and only if (8), (9) and (10) hold with $\delta_{\gamma}=0, \gamma=$ $0,1,2, \ldots$ and $\delta=1$.

Corollary 2 If $\left(N, p_{n}\right)$ and $\left(N, q_{n}\right)$ are regular Nörlund methods, then $\left(N, p_{n}\right) \subseteq$ (N, q_{n}) if and only if $h_{n} \rightarrow 0, n \rightarrow \infty$ where

$$
h(x)=\sum_{n=0}^{\infty} h_{n} x^{n}=\frac{\sum_{n=0}^{\infty} q_{n} x^{n}}{\sum_{n=0}^{\infty} p_{n} x^{n}}=\frac{q(x)}{p(x)}
$$

(see [5]).
Let $\left(N, p_{n}\right),\left(N, q_{n}\right),\left(N, r_{n}\right)$ be regular Nörlund methods. Let $p_{n}(x)=\sum_{i=n}^{\infty} p_{i} x^{i}$, $p_{0}(x)=p(x)$ with similar expressions for $q_{n}(x), r_{n}(x)$. Let

$$
\begin{align*}
\frac{p(x) q(x)}{r(x)} & =\sum_{\gamma=0}^{\infty} \theta_{\gamma} x^{\gamma} \\
\frac{p_{n+1}(x) q(x)}{r(x)} & =\sum_{\gamma=0}^{\infty} \alpha_{n \gamma} x^{\gamma} \tag{11}\\
\frac{p(x) q_{n+1}(x)}{r(x)} & =\sum_{\gamma=0}^{\infty} \beta_{n \gamma} x^{\gamma}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{r(x)}\left\{p(x) q(x)-p_{n+1}(x) q(x)-p(x) q_{n+1}(x)\right\}=\sum_{\gamma=0}^{\infty} \varphi_{n \gamma} x^{\gamma} \tag{12}
\end{equation*}
$$

It now follows that

$$
\begin{equation*}
\varphi_{n \gamma}=\theta_{\gamma}-\alpha_{n \gamma}-\beta_{n \gamma} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{n \gamma}=\beta_{n \gamma}=0, \quad 0 \leq \gamma \leq n \tag{14}
\end{equation*}
$$

Taking $C=\left(N, p_{n}\right) *\left(N, q_{n}\right), C$ is a row-finite matrix with

$$
\begin{equation*}
c_{n k}=\frac{1}{P_{n} Q_{n}} \sum_{i=\max (0, k-n)}^{\min (k, n)} p_{n-i} q_{n-k+i} \quad \text { with } k_{n}=2 n . \tag{15}
\end{equation*}
$$

We write

$$
\begin{equation*}
f_{n \gamma}=\sum_{k=\max (0,2 n-\gamma)}^{2 n} c_{n k} \bar{r}_{k+\gamma-2 n}, \quad n, \gamma \geq 0 \tag{16}
\end{equation*}
$$

Lemma 2

$$
\begin{equation*}
P_{n} Q_{n} f_{n \gamma}=\varphi_{n \gamma}, \quad 0 \leq \gamma \leq 2 n+1 \tag{17}
\end{equation*}
$$

Proof. The result follows as in [6].
Theorem $3\left(N, p_{n}\right) *\left(N, q_{n}\right)-\lim x_{k}$ exists whenever $\left(N, r_{n}\right) \lim x_{k}$ exists if and only if

$$
\begin{equation*}
\sup _{0 \leq \gamma \leq 2 n}\left|R_{2 n-\gamma} \varphi_{n \gamma}\right|=O(1), \quad n \rightarrow \infty ; \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi_{n, 2 n-\gamma}}{P_{n} Q_{n}}=\delta_{\gamma}, \quad \text { for every fixed } \gamma \tag{19}
\end{equation*}
$$

Proof. Let $\left(N, p_{n}\right) *\left(N, q_{n}\right)-\lim x_{k}$ exist whenever $\left(N, r_{n}\right)-\lim x_{k}$ exists. Applying Lemma 1 with $\left(N, p_{n}\right)=\left(N, r_{n}\right)$ and $A=\left(N, p_{n}\right) *\left(N, q_{n}\right)=\left(c_{n k}\right)$, we have,

$$
\begin{equation*}
\sup _{0 \leq \gamma \leq 2 n}\left|R_{\gamma} \sum_{k=\gamma}^{2 n} c_{n k} \bar{r}_{k-\gamma}\right|=O(1), \quad n \rightarrow \infty \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=\gamma}^{2 n} c_{n k} \bar{r}_{k-\gamma}=\delta_{\gamma}, \quad \text { for every fixed } \gamma \tag{21}
\end{equation*}
$$

Using (16) and (20), we get

$$
\begin{equation*}
\sup _{0 \leq \gamma \leq 2 n}\left|R_{2 n-\gamma} f_{n \gamma}\right|=O(1), \quad n \rightarrow \infty \tag{22}
\end{equation*}
$$

Using (17), we note that $\left|f_{n \gamma}\right|=\frac{\left|\varphi_{n \gamma}\right|}{\left|p_{0}\right|\left|q_{0}\right|}$ since $\left|P_{n}\right|=\left|p_{0}\right|$ and $\left|Q_{n}\right|=\left|q_{0}\right|$. Consequently, in view of (22), we get

$$
\sup _{0 \leq \gamma \leq 2 n}\left|R_{2 n-\gamma} \varphi_{n \gamma}\right|=O(1), \quad n \rightarrow \infty
$$

In view of (16) and (21), we have

$$
\lim _{n \rightarrow \infty} f_{n, 2 n-\gamma}=\delta_{\gamma}, \quad \text { for every fixed } \gamma
$$

Now, using (17), we get

$$
\lim _{n \rightarrow \infty} \frac{\varphi_{n, 2 n-\gamma}}{P_{n} Q_{n}}=\delta_{\gamma}, \quad \text { for every fixed } \gamma
$$

Thus (18) and (19) hold. Conversely (18) and (19) imply (20) and (21) respectively. Using (5), we have, $\lim _{n \rightarrow \infty} \sum_{k=0}^{2 n} c_{n k}=1$. Using Lemma 1, the result follows, completing the proof of the theorem.

Corollary $3\left(N, r_{n}\right) \subseteq\left(N, p_{n}\right) *\left(N, q_{n}\right)$ if and only if (18) and (19) hold with $\delta_{\gamma}=0$.
Corollary 4 If $\lim _{n \rightarrow \infty} \bar{r}_{n}=0$, then $\left(N, r_{n}\right) \subseteq\left(N, p_{n}\right) *\left(N, q_{n}\right)$ if and only if (18) holds.
Proof. The result follows using (9) and the fact that $\left(N, p_{n}\right) *\left(N, q_{n}\right)$ is regular.

Theorem 4 If

$$
\begin{equation*}
\varphi_{n, 2 n-\gamma}=o(1), \quad n \rightarrow \infty, \quad \text { for every fixed } \gamma \tag{23}
\end{equation*}
$$

and either

$$
\begin{equation*}
\varphi_{n \gamma}=O(1), \quad n, \gamma \rightarrow \infty \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta_{\gamma}, \alpha_{n \gamma}, \beta_{n \gamma}=O(1), \quad n, \gamma \rightarrow \infty \tag{25}
\end{equation*}
$$

then

$$
\left(N, r_{n}\right) \subseteq\left(N, p_{n}\right) *\left(N, q_{n}\right)
$$

Proof. Using (23), (19) follows with $\delta_{\gamma}=0$ since $\left|P_{n}\right|=\left|p_{0}\right|$ and $\left|Q_{n}\right|=\left|q_{0}\right|$. Because of (13) and (25), (24) holds. So if (24) or (25) holds, (18) holds since $R_{n}=O(1)$, $n \rightarrow \infty,\left(N, r_{n}\right)$ being a regular method. The result now follows from Corollary 3.

We shall now take up an application of Theorem 4.

Theorem 5 Let $\bar{p}_{n}, \bar{q}_{n} \rightarrow 0, n \rightarrow \infty$ and $t_{n}=p_{0} q_{n}+p_{1} q_{n-1}+\cdots+p_{n} q_{0}, n=$ $0,1,2, \ldots$. Then

$$
\left(N, t_{n}\right) \subseteq\left(N, p_{n}\right) *\left(N, q_{n}\right)
$$

and

$$
\left(N, p_{n}\right) \subseteq\left(N, t_{n}\right), \quad\left(N, q_{n}\right) \subseteq\left(N, t_{n}\right)
$$

Proof. We apply Theorem 4 with $r_{n}=t_{n}$. With the usual notation we have $t(x)=p(x) q(x)$ and $\bar{t}(x)=\bar{p}(x) \bar{q}(x)$. Since $\bar{p}_{n}, \bar{q}_{n} \rightarrow 0, n \rightarrow \infty, \bar{t}_{n} \rightarrow 0, n \rightarrow \infty$ (see [3], Theorem 1). Consequently (23) follows using (9). In view of (11), we have,

$$
\sum_{\gamma=0}^{\infty} \theta_{\gamma} x^{\gamma}=\frac{p(x) q(x)}{t(x)}=1,
$$

so that

$$
\begin{aligned}
\theta_{0} & =1 \text { and } \theta_{\gamma}=0, \gamma \geq 1 \\
\sum_{\gamma=0}^{\infty} \alpha_{n \gamma} x^{\gamma} & =\frac{p_{n+1}(x) q(x)}{t(x)}=p_{n+1}(x) \bar{p}(x)
\end{aligned}
$$

so that

$$
\begin{aligned}
\alpha_{n \gamma} & =\sum_{\lambda=0}^{\gamma-(n+1)} \bar{p}_{\lambda} p_{\gamma-\lambda}, \gamma \geq n+1 \\
& =0,0 \leq \gamma \leq n .
\end{aligned}
$$

Consequently $\alpha_{n \gamma}=O(1), n, \gamma \rightarrow \infty$. Similarly $\beta_{n \gamma}=O(1), n, \gamma \rightarrow \infty$. In view of Theorem $4,\left(N, t_{n}\right) \subseteq\left(N, p_{n}\right) *\left(N, q_{n}\right)$. Now $\frac{t(x)}{p(x)}=q(x)$ and $q_{n} \rightarrow 0, n \rightarrow$ $\infty,\left(N, q_{n}\right)$ being regular, by (6). So by Corollary $2,\left(N, p_{n}\right) \subseteq\left(N, t_{n}\right)$. Similarly $\left(N, q_{n}\right) \subseteq\left(N, t_{n}\right)$. The proof of the theorem is now complete.

References

[1] G. Bachman, Introduction to p-adic numbers and valuation theory, Academic Press, 1964.
[2] A.F. Monna, Sur le théorème de Banach-Steinhaus, Indag. Math. 25 (1963), 121-131.
[3] P.N. Natarajan, Multiplication of series with terms in a non-archimedean field, Simon Stevin 52 (1978), 157-160.
[4] P.N. Natarajan, Criterion for regular matrices in non-archimedean fields, J. Ramanujan Math. Soc. 6 (1991), 185-195.
[5] P.N. Natarajan, On Nörlund method of summability in non-archimedean fields, J. Analysis 2 (1994), 97-102.
[6] D.C. Russell, Convolution of Nörlund summability methods, Proc. London Math. Soc. 9 (1959), 1-20.

