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Abstract

In the present paper we obtain a few inclusion theorems for the convolution
of Nörlund methods in the form (N, rn) C * (N, qn) in complete, non-
trivially valued, non-archimedean fields.

Throughout the present paper K denotes a complete, non-trivially valued, non-
archimedean field. Infinite matrices and sequences, which are considered in the sequel,
have entries in K. If A = (ank), ank E K, n, k = 0,1, 2, ... is an infinite matrix, the
A-transform j4~ = of the sequence 2: = = 0,1, 2, ... is

defined by
00

= 03A3 ankxk, n = 0, 1, 2,...,
k~a

where it is assumed that the series on the right converge. If == s, we say

that is A-summable to s, written as 2:~ --~ s(A) or A-lim 2:~ = s. If = s

whenever lim xk = s, we say that A is regular. The following result is well-known

(see [2], [4]).
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Theorem 1 A = (ank) is regular if and only if

sup |ank|  ~; ( I )
n,k

lim ank = 0, for every fixed k; (2)
and 

lim ank = 1. (3)
k=0

Any matrix A for which (1) holds is called a Kr-matrix. If A and B are two infinite
matrices such that s(A) implies xk -; s(B), we say that A is included in B,
written as A C B. A is said to be row-finite if for n = 0,1,2,..., there exists a

positive integer kn such that ank = 0, k > kn.
Given two infinite matrices A and B, their convolution is defined as the matrix

C = where
k

Cnk = L anibn,k-i, > n,k = 0,1,2,.... (4)
i=0

In such a case we write C = A * B.

The following properties of the convolution can be easily proved.

1. . If A and B are both row-finite or both Kr, then their convolution C is row-finite
or Kr respectively and their row sums satisfy

Cnk = ( ank) (bnk), > n=0,1,2,.... (5)
k=0 k=0 / k=0 /

2. If A, B are both regular, then C is regular too.

The Norlund method of summability i.e., (N,Pn) method in K is defined as follows
(see [5]): (N,pn) is defined by the infinite matrix (ank) where

ank = pn-k Pn, k ~ n;

=0, k > n,

n

where p0 ~ 0, |p0| > |pj|, j = 1, 2, ... and Pn = 03A3 pk, n = 0, 1, 2, .... It is to be
k=0

noted that |Pn| = |p0| ~ 0 so that Pn ~ 0, n = 0,1, 2, ....
The following result is very useful in the sequel.

Theorem 2 (See [5], Theorem 1.) (N, pn) is regular if and only if

pn --.> 0, n - oo. (6)
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The purpose of the present paper is to prove a few inclusion theorems for the
convolution of Nörlund methods in the form (N, rn) C * (N, qn).

We need to define by

p0p0 =1 , p0pn + p1pn-1 + ... + pnp0 = 0, n ~ 1 (7)

i.e., - x = £ pnxn = 
1 

= 1 assuming that these series converge
03A3 pnxn p( ) 

°

~,=o

The following result is an easy consequence of Kojima-Schur theorem (see ~2~, ~4~). .

Lemma 1 Let A = (ank) be a row-finite matrix and (N, pn) be a regular Nörlund
method. Then A-lim xk exists whenever (N,pn)-lim xk exists if and only if

kn

sup ankpk-03B3 I = O(1), n --, ~; (8)
0~03B3~kn k-’Y

kn

lim ankpk-03B3 = 03B403B3, for every fixed 03B3; (9)
k=7

and
kn

lim ~ ank = b. (10)
k=0

. Corollary 1 (N, pn) C A if and only if (8), (9) and (10) hold with b~, = 0, ~y =

0,1, 2, ... and6= l. .

Corollary 2 If (N, pn) and (N, qn) are regular Nörlund methods, then (N, pn) C_
(N, qn) if and only if hn -~ 0, n - oo where

m

h(x) - hnx n _ qnxn pnxn =

q(x) p(x)

n=o

(see ~5~ ) .

Let (N,pn), (N, qn), (N, rn) be regular Nörlund methods. Let pn(x) = it pixi,
i=n

p0(x) = p( x) with similar expressions for qn (x), rn(x). Let

p(x)q(x)  
- f 03B803B3x03B3;

r(x) ’~ ’

pn+1(x)q(x) r(x) = 03B1n03B3x03B3; (11)

p(x)qn+1(x) r(x) =  03B2n03B3 x03B3,
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andand 
1 
( - pn+1 (x)q(x) - p(x)qn+1 (z) I = 

°° 

03C6n03B3x03B3. (12)lp(x)qlx) ’- pn+1(x)q(x) - pCx)qn+1(x)} _ 03C6n03B3x03B3. (12)

It now follows that

03C6n03B3 = 03B803B3 - any - 03B2n03B3 (13)
and

any = 03B2n03B3 = 0, 0 ~ 03B3 ~ n. (14)

Taking C = (N,pn) * (N, qn), C is a row-finite matrix with

i min(k,n)

Cnk = 
n 

pn-iqn-k+i with kn = 2n. (15)

We write
2n

fny ‘ Cnkrk+03B3-2n, n, 03B3 ~ 0. (16)
k=max(0,2n--y)

Lemma 2

PnQnfn03B3 = 03C6n03B3, 0 ~ 03B3 - 2n + 1. (17)
Proof. The result follows as in ~6~.

Theorem 3 (N, pn) * (N, qn)-lim xk exists whenever (N,rn)-lim xk exists if and only
if

sup |R2n-03B303C6n03B3| = O(1), n ~ ~; (18)
0~03B3~2n

and
lim = by, , for every fixed ~y. ( 19)

n n
Proof. Let (N, pn) * (N, qn)-lim xk exist whenever (N, rn)-lim xk exists. Applying
Lemma 1 with (N,pn) = (N, rn) and A = (N, pn) * (N, qn) = (cnk), we have,

2n

|R03B3 Cnkrk-03B3| = C(1), n ~ °° (20)

and
2n

Cnkrk-03B3 = for every fixed 03B3. (21)

Using (16) and (20), we get

sup |R2n-03B3fn03B3| = 0(1), , n ~ oo. (22)
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Using (17), we note that |fn03B3| = |03C6n03B3| |p0||q0| since |Pn| = |p0| and |Qn| = |q0|. Conse-

quently, in view of (22), we get

sup = D(1), n ---, oo.
0~03B3~2n

In view of (16) and (21), we have

lim = b.~, , for every fixed ~.

Now, using (17), we get

lim = 03B403B3, for every fixed,.

Thus (18) and (19) hold. Conversely (18) and (19) imply (20) and (21) respectively.
2n

Using (5), we have, cnk == 1. Using Lemma 1, the result follows, completing
the proof of the theorem.

Corollary 3 (N, rn) C (N,pn) * (N, qn) if and only if (18) and (19) hold with 03B403B3 = 0.

Corollary 4 If rn = 0, then (N, Tn) C (N,pn)* (N, qn) if and only if (18) holds.

Proof. The result follows using (9) and the fact that * (N, qn) is regular.

Theorem 4 If

= 0(1), n ~ oo, for every fixed 03B3, (23)

and either

0(1), n, ’Y ---~ ~~ (24)
or

03B803B3, 03B1n03B3, 03B2n03B3 = O(1), > n,’Y ~ ~, (25)
then

Tn) C (N, Pn) * (N, qn).
Proof. Using (23), (19) follows with by = 0 since |Pn| = |p0| and |Qn| = |q0|. Because
of (13) and (25), (24) holds. So if (24) or (25) holds, (18) holds since Rn = O(1),
n --~ oo, (N, rn) being a regular method. The result now follows from Corollary 3.

We shall now take up an a.pplication of Theorem 4.
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Theorem 5 Let ~ 0, n ~ oo and tn = p0qn + p1qn-1 + ... + pnq0, n =

0,l,2,....rAe~

and

(N,~)C(~V,~).
Proof. We apply Theorem 4 with 7’n = tn. With the usual notation we have

(a:) = and = Since -~ 0, n -~ oo, in -~ 0, n -~ oo (see
[3], Theorem 1). Consequently (23) follows using (9). In view of (11), we have,

- 03B803B3x03B3 = p(x)q(x) t() = i
~ ’ 

’

so that

and 03B803B3 = 0, 03B3 ~ 1;

03B1n03B3x03B3=pn+1(x)q(x) t(x)=pn+1(x)p(x) ,

so that

03B1n03B3 = E , 03B3 ~ n+1;
A=0

= 0, 0~~.

Consequently 03B1n03B3 = 0(1), n,03B3 ~ oo. Similarly 03B2n03B3 = 0(1), -+ oo. In view

of Theorem 4, (N,tn) ~ (N,pn) * (N,qn). Now t(x) p(x) = q(x) and qn ~ 0, n ~

~, (N,qn) being regular, by (6). So by Corollary 2, (N, pn) C (N, tn). Similarly
(N, qn) C (N, tn). The proof of the theorem is now complete.
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