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Approximation Results in the
Strict Topology

João B. Prolla and Samuel Navarro*

Ann. Math. Blaise Pascal, Vol. 4, N° 2, 1997, pp.61-82

Abstract: In this paper we prove results of the Weierstrass-Stone type for

subsets W of the vector space V of all continuous and bounded functions from a

topological space X into a real normed space E, when V is equipped with the strict

topology /3. Our main results characterize the 03B2-closure of W when (1) W is 03B2-
truncation stable; (2) E and W is a subalgebra; (3) E = 1R and W is the
convex cone of all positive elements of some algebra; (4) W is uniformly bounded;
(5) X is a completely regular Hausdorff space and W is convex.

§1. Introduction and definitions

Let X be a topological space and let E be a real normed space. We denote by
B(X; E) the normed space of all bounded E-valued functions on X, equipped with
the supremum norm

~f~X = sup{~f(x)~; x ~ X}

* Partially supported by FONDECYT grant 1950546 and DICYT-USACH
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for each f E B(X; E). We denote by Bo(X;E) the subset of all f E E) that
vanish at infinity, i.e., those f such that for every e > 0, the set

K = {t E X; [ > ~} is compact (or empty). And we denote by Boo(X; E)
the subset of all f E B(X; E) which have compact support. We denote by C(X; E)
the vector space of all continuous E-valued functions on X, and set

Cb(X; E) = C(X; E) n B(X; E),

Co(X; E) = C(X; E) n Bo(X; E),

Coo(X; E) = C(X ; E) n .Boo(X; E)

We denote by leX) the set of all p E B(X; IR) such that 0   1, for all

x E X. . We then define

= 

Do(X) = Bo(X; n I(X).

The strict topology ;Q on Cb(X; E) is the locally convex topology determined

by the family of seminorms

= sup{03C6(x)~f(x)~; x E X }

for f E Cb(X; E), when c~ ranges over Clearly, given ~p E Do(X) there is a

compact subset jf~ such that  ~ for all x ~ K. Therefore, our strict topology is

coarser than the strict topology introduced by R. Giles [3]. To see that they actually
coincide, let ’r/J. E B(X; ~R) be such that, for each e > 0 there is a compact subset K

such that ~(:r)  e for all x ~ K. We may assume  1. Choose compact sets

Kn with § = Ko C K1 C K2 C ... such that |03C8(x)|  2-n, for all x ~ Kn.
Let E Bo(X; R) be the characteristic function of Kn multiplied by ?-n, i.e.,

co

= 2-n, if x E kn; and = 0 if x ~ Kn. Let 03C6 = For each e > 0,
7t=l

we claim that the set K = {x EX; > ~} is compact (or empty). If ~ > 1, then

K = 03C6. If ê = 1, then K = K1, because = 1 precisely for t E If ~  1,
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let n > 0 be such that 2"~+~  6  2"". Then K = Hence p Do(X).
We claim now that  for all x 6 X. We first notice that = 0 if,

00 00

and only if x ~ UKn. Indeed, if the point x ~ ~ Kn, then = 0 for all
~=1 n=i

n = 1,2,3,..., and so = 0. Conversely, if y(z) = 0, then = 0 for all
00

n = 1,2,3,... and therefore ~ ~ ~ for all n = 1,2,3,... Hence ~ ~ Let
Tt=l

now x ~ X. If 03C6(x) = 0, then x ~ Kn for all n = 1,2,3,... and so |03C8(x)|  2’"

for all n = 1,2,3,.... Hence = 0 and so = ~(~). Suppose now > 0.
00

Then ~ Let N be the smallest positive integer ~ ~ 1 such that 2- 6 Kn. It
n=i 

°

N = 1, then 2: K1 and so = 1 > If N > 1, then .c C KN and x % KN-1.
Hence

= E ~" = ~’~"~
~=7V

and  2’"~"~, since ~ ~ Therefore  ~(~), whenever > 0.

Given any non-empty subset S C C(X; E) we denote by j: = y (mod. S) the

equivalence relation defined by = f(y) for all f S. For each x ~ X, the

equivalence class of 2: (mod. S) is denoted by {~]~, i.e.,

== {t  X ; 3: ~ t(mod. S)}

For any non-empty subset J~ c X and any / : X 2014~ E, we denote by /~ its
restriction to K. If S C C(X; E) and K C X, then for each x ~ K one has

= K ~ [x]S.

If S c Cb(X; H), we define S+ by

~ = {/ ; f > 0}.

If S = R), we write S+ = R).
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Definition 1. Let S C Cb(X;IR) and let W C Cb(X; E) be given. We say that
W is ,a-localizable under S if, for every f E Cb(X; ; E), the following are equivalent:

(1) f belongs to the ~3-closure of W;
(2) for every ~ E Do(X ), every ~ > 0 and every ~ E X,there is some gx E W

such that  ~ for all t E [x]S.

Remark. Clearly, (1) =~ (2) in any case. Hence a set W is Q-localizable under S

if, and only if, (2) ~ (1). Notice also that if W is 03B2-localizable under S and T C S,
then W is 03B2-localizable under T. . Indeed, T C S implies C [x]T.

Definition 2. We say that a set W C Cb(X, E) is 03B2-truncation stable if, for

every f E H~ and every M > 0, the function TM o f belongs to the ~3-closure of W,
where TM : E ~ E is the mapping defined by

TM(v) = v, if ~v~  2M;

TM(v) = v ~v~.2M, if ~v~ ~ 2tyl
Notice that, when E = jR, the mapping TM : IR -~ ~R is given by

TM(r) = r, if ~r~  2M;

TM(r) = 2M, if r > 2M;

TM(r) = -2M, if r > -2M.

Remark that, for every f E Cb(X; E), one has o  2M.

Notice that when W C C+b (X; IR), then W is 03B2-truncation stable if, for every

f E W and every constant M > 0, the function PM o f belongs to the 03B2-closure of

W, where PM : 1R ~ R+ is the mapping defined by PM = max(0, TM), i.e.,

PM(r) = 0, if r  0;

= r, if 0 ~ r ~ 2M;

PM(r) = 2M, if r > 2M.
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Definition 3. Let W C Cb(X; E) be a non-empty subset. A function § E D(X) is
called a multiplier of W if 03C8f + ( 1- belongs to W, for each pair, f and g, of
elements of W.

Definition 4. A subset S C D(X ) is said to have property V if

(a) ~ E S implies (1 - ~) E S;
(b) the product belongs to S, for any pair, 03C6 and 03C8, of elements of S.

Notice that the set of all multipliers of a subset W~ C Cb(X; E) has property V.
Indeed, condition (a) is clear and the equation

+ (1 - 03C603C8)g = + + (1 - 03C6)g

show that (b) holds as well.
When X is locally compact, R.C. Buck [1] proved a Weierstrass-Stone Theorem

for subalgebras of Cb(X; R) equipped with the strict topology. This result was

extended and generalized by Glicksberg [4], Todd [7], Wells [8] and Giles [3]. See

also Buck [2], where modules are dealt with, and Prolla [5], where the strict topology
is considered as an example of weighted spaces.

Our versions of the Weierstrass-Stone Theorem are analogues of Chapter 4 of
Prolla [6] for arbitrary subsets of C(X E) equipped with the uniform convergence
topology, X compact. Whereas the previous results dealt only with algebras or

. vector spaces which are modules over an algebra, our results now go much further:
we are able to cover the case of convex sets (when X is completely regular) or /3-
truncation stable sets (when X is just a topological space). The latter case cover
both algebras and the convex cones obtained by taking the set of positive elements
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of an algebra.

§2. 03B2-truncation stable subsets

Theorem 1. Let W C Cb(X; E) be a 03B2-truncation stable non-empty subset,
and let A be the set of all multipliers of W. . Then W is 03B2-localizable under A.

Proof. Let f E Cb(X; E) be given and assume condition (2) of Definition l, with
S = A. Let 03C6 E Do(X) and ê > 0 be given. Without loss of generality we may
assume that ~ is not identically zero. Choose M > 0 so big that M > > ~

and the compact set ~’~’ = .x; ~(t) > E is non-empty. Consider the non-

empty subset WK C C(I~; E). Clearly, the set AK C D(K) is a set of multipliers
of Take a point x E K. By condition (2) applied to ~2/(12M), there exists
gx E W such that  ~zI (12M) for all t E ~~jA. Let M C D(I~) be

. the set of all multipliers of WR- C C(K; E). Then M has property V. Now AK C M

implies
C n ~~.

Hence - ~  ~2/(12M) holds for all t E K such that t E [x]M.
Now ~/(6M) for all t E .K and therefore

- 9x(t)11  ~/2

for all t E [x]M. By Theorem 1, Chapter 4, of Prolla [6] applied to WK C C(K; E)
and to the set M C D(K), there is g~ E W such that

g1(t)~  EI2

for all t E h. Let h = TM o g1. By hypothesis, h belongs to the (3-closure of W ,
and there is g E W such that g)  E/2. We claim that h)  c/2. Let
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t K. Then

~g1(t)~ ~ !)/() - g1(t)~ + ~f(t)~  e/2 + M  2M

and so h(t) = = Hence

1 = 

 )!/()-FiM!!«=-/2.

Suppose now t ~ IT. Then

~)!!/()-~)!!~-t!/(~-~)!) l

because 2M, and  M.

This establishes our claim that 2014 h)  -. Hence g)  s, and f

belongs to the 03B2-closure of !V. a

Theorem 2. Let W C Cb(X; E) be a 03B2-truncation stable non-empty subset, and let
B be any non-empty set of multipliers of w. Then W is 03B2-localizable under B.

Proof. Let A be the set of all multipliers of W. By Theorem 1 the set W is /?-
localizable under A. Now B C A, so tV is also 03B2-localizable under B. o

§3. The case of subalgebras

Lemma 1. If B C Cb(X; 2R) is a uniformly closed subalgebra, and T : IR ~ JR is a

continuous mapping, with T(0) = 0, then To f belongs to B, for every f 6 B.
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Proof. Let f E B and e > 0 be given. Choose k > ~ By Weierstrass’ Theo-

rem, there exists an algebraic polynomial p such that p(t) ~  ~ for all t E R
with It  k, and we may assume p(0) = T(0) = 0. Hence, for every x E X, we have

p( f (~)) ~  ~, because (  k. Now p o f belongs to B, and therefore
T o f belongs to the uniform closure of B, that is B itself. 0

Corollary 1. Every subalgebra W C Cb(X; IR) is 03B2-truncation stable.

Proof. Let f E W and M > 0 be given. Let B be the ~-closure of W in Cb(X; R).
We know that B is then a uniformly closed subalgebra. By Lemma 1 applied to

T = we see that o f belongs to the ~3-closure of W as claimed. c

Corollary 2. Every uniformly closed subalgebra of Cb(X; IR) is a lattice.

Proof. Since

max(/~) = ~+~Lf-~]
miR(/~) = ~[/+~-t/-~!]

it suffices to show that E B, for every f E B. This follows from Lemma 1, by

taking T : IR ~ R to be the mapping T(t) = for t E R. o

Theorem 3. Every subalgebra W C Cb(X; IR) is {3-1ocalizable under itself.

Proof. Let f E Cb(X; lR) and assume that condition (2) of Definition 1 holds with
S = W. Notice that for every x E X one has

= [x]B

where B is the .8-closure of Let now

~03C8~X ~ 1} and 0 ~ 03C8 ~ 1}.
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It is easy to see that

[x]B = [x]V C [x]A ,

for each x EX. Notice that, by Corollary 2, every § E V can be written in the

form 03C8 = 03C8+ - 03C8-, with 03C8+ and 03C8- in A. Hence (xJA C [x]V is also true. Hence
f satisfies condition (2) of Definition 1 with respect to S = A. Now A is a set of
multipliers of B, and the algebra B, by Corollary 1, is {3-truncatian stable. Hence,
by Theorem 3, the function f belongs to the ~3-closure of B, that is B itself. We
have proved that f belongs to the ~3-closure of W . Hence W is /3-I.ocalizable under

o

Corollary 3. Let W C Cb(X; ~) be a subalgebra, and let f E be given.
Then f belongs to the 03B2-closure of W if, and only if, the following conditions are

satisfied:

(1) for each pair, x and y, of elements of X such that f(x) ~ f(y), there is
some g E W such that g(x) ~ g(y);

(2) for each x E X such that f(x) ~ 0 there is some g E W such that
9(x) ~ ~.

Proof. Clearly, if f E then ( 1 ) and (2) are satisfied. Conversely, assume that
conditions ( 1 ) and (2) are verified.

Let x E X be given. By condition (1) the function f is constant on [x]W. Let
f(x) be its value. If f(x) = 0, then gx = 0 belongs to Wand f(t) = f(x) = 0 = gx(t)
for all t E [x]W. If f(x) ~ 0, by condition (2) there is g E W such that g(x) ~ 0.
Define gx = Then gx E Wand gx(t) = f(x) = J(t) for all t E [x]W.
Hence f satisfies condition (2) of Definition 1 with respect to S = W. By Theorem
3, we conclude that f belongs to the ,~-closure of W . o

Corollary 3 implies the following results.
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Corollary 4. Let A be a subalgebra of Cb(X; IR) which for each x E X contains

a function g with g(x) ~ 0, and let f E be given. Then f belongs to the

03B2-closure of A if, and only if, for each pair, x and y, of elements of X such that

f(x) ~ fey), there is some g E A such that g(x) ~ g(y).

Corollary 5. Let A be a subalgebra of Cb(X;1R) which separates the points of X and

for each x E X contains a function g with g( x) ~ 0. Then A is /3-dense in Cb(X; IR).

Corollary 6. If X is a locally compact Hausdorff space, then C00(X; R) is (3-dense
in Cb(X; IR).

Lemma 2. Let f : ~ --~ 1R be a continuous function such that f (t) > 0 for all t E 1R

and f(O) = 0. If k > 0 and E > 0 are given, there is a real algebraic polynomial

p such that p(t) > 0 for all 0  t  k, p(0) = 0 and f (t) ~ _ ~ for all 0  t  k.

Proof. Define g : ~0,1~ --~ .~ by setting g(u) = f(ku), for each u E (0,1~. Clearly,

g(u) > 0, for all 0  u _ 1 and g(4} = 0. Now, given ~ > 0, choose n so that the

n-th Bernstein polynomial of g, written Bng, is such that

9(’a)~  E

for all 0  u  1. For t E ~R, define p(t) = (Bng)(t/k). Since Bng >_ 0 in (0,1J, it

follows that p(t) > 0, for t E [0, k]. Since (Bng)(0) = g(0) = f (0} _ 0, we see that

p(0) = 0. It remains to notice that, for any 0  t  k we have 0 _ tlk  ~ and

f (t}~ =  £ o

Lemma 3. If A C is a subalgebra, then A+ is ~-truncation stable.
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Proof. Let f E A+ and M > 0 be given. We claim that PM o f belongs to the

~3-closure of A+. Let k > 0 be such that 0  f(x)  k for all x E X . Let p E Do(X)
and e > 0 be given. By Lemma 2 above there exists a polynomial p : JR -+ JR such
that p(t) > 0 for all 0  t  k,p(0) = 0 and |p(t) - PM(t)|  ~ for all 0  t  k.

Let x E X. Then c~(x)  1 and so  E. Now p o f belongs
to A (since p(0) = 0) and p( f (x)) > 0 for all x E X, since 0  f(x)  k. Hence

p o f E A+. This ends the proof that PM o f , belongs to the ~-closure of A+ as
claimed. c

Theorem 4. If A C a subalgebra, then A+ is localizable under itself.

Proof. Let f E Cb(X; be given satisfying condition (2) of Definition 1 with re-

spect to S = A+. Define B = { f E A; 0  f  1}. It is easy to see that [x]S = [x]B,
for every x E X. . Hence f satisfies condition (2) of Definition 1 with respect to

B, which is a set of multipliers of A+. By Lemma 3, the set A+ is ~-truncation
stable. Therefore A+ is /?-localizable under B, by Theorem 2. Hence f belongs to
the /3-closure of A+.

. Theorem 4. Let A C Cb(X; IR) be a subalgebra and let f E be given.
Then f belongs to the 03B2-closure of A+ if, and only if, the following two conditions
hold:

(1) for each pair, x and y, of elements of X such that f(x) ~ fey), there is
some g E A+ such that g(x) 7~ g(y);

(2) for each x E X such that f(x) > 0 there is some g E A+ such that
g(x) > 0.

Proof. If f belongs to the ~-closure of A+ the two conditions (1) and (2) above
are easily seen to hold. Conversely, assume that conditions (1) and (2) above hold.
Let x E X be given. By condition (1), the function f is constant on where

S = A+. Let f( x) > 0 be its constant value. If f( x) = 0, then gz = 0 belongs to
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A+ and J(t) = f(x) = 0 = gx(t) for all t E (xjs. If f (x) > 0, then by condition (2)
there is gx E A+ such that g(x) > 0. Let gx = ( f (x)/g(x)jg. Then gx E A+ and

gx(t) = f(x) = J(t) for all t E f xjs. Hence f satisfies condition (2) of Definition I
with respect to W = A+ and S = A+. By Theorem 4, we conclude that f belongs
to the ,~-closure of A+. o

§4. The case of uniformly bounded subsets

Theorem 5. Let W be a uniformly bounded subset of Cb(X; E) and let A be the set

of all multipliers of W. Then W is 03B2-localizable under A.

Proof. Let f E Cb(X; E) be given and assume that condition (2) of Definition
1 holds with S = A. Let E > 0 and cp E Do(X) be given. Choose VI > 0 so

big that M > and M > k = sup{~g~X; g E W }, and the compact set
K = {t E X; p(t) > ~/(2M)} is non-empty. (Without loss of generality we may
assume that ~ is not identically zero). Consider the non-empty set WK C C(K; E).
Clearly, the set AK is a set of multipliers of WK. Take a point x E l~. By condition

(2) applied to there exists some g~ E W such that

 ~2/(2M)

for all t E Hence ~f(t) - gx(t)~  ê for a.ll t E since > ~/(2M)
for all t E l~. Let now M be the set of all multipliers of WK C C(K; E). Since

AK C :v, it follows that C and so -  E for all t E Cx~;~. By
Theorem 1, Chapter 4 of Prolla [6] there is g E W such that  ~ for

all t E K. We claim that - g)  ê. Let x E X. . If x E K, then  1 and

- 9(x) I I ~ 9(x) I  ~.

If x ~ K, then

03C6(x)~f(x) - g(x)~ ~ ~ 2M[~f~X + ~g~X]  ~.
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Hence f belongs to the ~-closure of W and so W is a-localizable under A. o

Theorem 6. Let W be a uniformly bounded subset of Cb(X; E) and let B be any
non-empty set of multipliers of W . Then W is 03B2-localizable under B.

Proof. Let A be the set of all multipliers of W. Since B C A and by Theorem
5 the set W is 03B2-localizable under A, it follows that W is also 03B2-localizable under B.a

Theorem 7. Let A be a non-empty subset of D(X) with property V and let f E

D(.X’). Then f belongs to the ,~-closure of A if, and only if, the following two
conditions hold:

(1 ) for every pair of points, x and y, of X such that f(x) ~ fey), there
exists 9 E A such that g(x) 7~ g(y) ;

(2) for every x E X such that 0  f(x)  l, there exists g E A such that
0  g(x)  1.

Proof. It is easy to see that conditions (1) and (2) are necessary for f to belong to
the ~-closure of A. Conversely, assume that f satisifes conditions (1) and (2).

Let cp E Do(X) and 6’ > 0 be given. Without loss of generality we may assume

that 03C6 is not identically zero. Choose 6 > 0 so small that 26  ~ and the compact set
li = {t E > 6} is non-empty. Clearly, AK has property V. Since conditions

(1) and (2) hold, we may apply Theorem 1, Chapter 8, Prolla [6] to conclude that
f K belongs to the uniform closure of AK. Hence there is some g E A such that

g(t)f  E for all t E K. We claim that p~,( f - g)  ê. Let x E X. . If x E K,
then  1 and ~)) ( ~ (f (x) - 7~)f  E.

If K, then  ~ and

03C6(x)|f(x) - 

g(x)|  03B4[~f~X + ~g~X] ~ 203B4  ê.

Hence f belongs to the 03B2-closure of A. a

Remark. We say that a subset A C D(X ) has property V N if f g + (1- f)h E A
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for all f g, h E A. Clearly, if A has property VN and contains 0 and 1, then A has

property V.

Corollary 6. Let A be a non-empty subset of D(X) with property V, and let W be
its (~-closure. Then W has property VN and W is a lattice.

Proof. (a) W has property VN: : Let f, g, cp belong to W, and let h = 03C6f + (I - 03C6)g.
Assume h(x) ~ h(y). Then at least one of the following three equalities is necessarily
false: 03C6(x) = p(y), f(x) = fey) and g(x) = g(y). Since p, f and g belong all three
to W, there exists a E A such that a(y). Hence h satisfies condition (1) of
Theorem 7. Suppose now that 0  hex)  1. If 0  cp(x)  1, then 0  a(x)  1

for some a E A, because cp belongs to the Q-closure of A. Assume that = 0.

Then hex) = g(x) and so 0  g(x)  1. Since g E W, it follows that 0  a(x)  1

for some a E A. Similarly, if = 1 then hex) = f(x) and so 0  f(x)  1. Since

f E W, there is a E A such that 0  a(x)  1. Hence h satisfies condition (2) of
Theorem 7. By Theorem 7 above, the function h belongs to W.

(b) W is lattice : Let f and g belong to W. Let h = max( f , g). Let x and y be
a pair of points of X such that h(x) ~ h(y). Then at least one of the two equalities
f(x) = f(y),g(x) = g(y) must be false. Since f and g both belong to the 03B2-closure
of A, there exists a E A such that a(x) ~ a(y). On the other hand, let x E X be
such that 0   1. If f(x) > g(x), then h(x) = f(x) and so 0  f(x)  1.

Since f E W, there exists a E A such that 0  a(x)  1. Assume now f(x)  g(x).
Then h( x) = g( x) and so 0  g( x)  l. Since g E W, there exists a E A such that

0  a(x)  1. By Theorem 7 above, the function h belongs to W. Similarly, one

shows that the function min( f g) belongs to W. o

Corollary 7. Let A be a 03B2-closed non-empty subset of D(X) with property V. . Then
A has property V N and A is a lattice.
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Proof. Immediate from Corollary 6. 0

§5. The case of convex subsets

In this section we suppose that X is a completely regular Hausdorff space. We

denote its Stone-Cech compactification by /?~, and by (3 : : Cb(X R) --; R)
the linear isometry which to each f E Cb(X; IR) assigns its (unique) continuous

extension to ~3X. Since /? is an algebra (and lattice) isomorphism, the image of

any subset A C Cb(X, IR) with property V is contained in D(3X) and has property
V. If B = ~i(A), then for each x E X one has

= n X.

If Y denotes the quotient space of (3X by the equivalence relation x ~ y if and

only if = 03C6(y), for all 03C6 E B, then Y is a compact Hausdorff space.
If x E X and Kx C X is a compact subset disjoint from then 03C0(Kx)

is a compact subset in Y which does not contain the point (Here we have

denoted by 03C0 the canonical projection 03C0 : 03B2X --3 Y. Indeed, if E 03C0(Kx),
then = for some y E Now y E because that y E ~x~A. But

Kx ~ [x]A = 03C6, and we have reached a contradiction. Hence 03C0(Kx). We will

apply these remarks in the proof of the following lemma.

Lemma 4. Let A C D(X) be a subset with property V and containing some con-

stant 0  c  l. . Let x E X and let Kx C X be a compact subset, disjoint from [x]A.

Then, there exists an open neighborhood W(x) of [x]A in X, disjoint from Kx and

such that given 0  ~  1 there is c~ E A such that

(1) 03C6(t)  03B4, for all t ~ Kx;
(2) 03C6(t) > 1- 03B4, for all t E liV(x).

Proof. Let N(x) be the complement of ~ix in ,~X. Then is an open neigh-
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borhood of in We know that is a compact subset of Y which

does not contain the point y = 1r(x). Let f E C(Y; R) be a mapping such that
o  f  l, fey) = 0 and J(t) = 1 for all t E Let g - f o ~r. By
Theorem 1, Chapter 8, Prolla [6], the function g belongs to the uniform closure
of B in D(~iX ). Notice that a(x) = 0 and g(u) = 1, for all u E Define

= 03B2X; g(t)  1/4}. Clearly, C N(x), since g(t) = 0 for all t E [x]B.
It is also clear that N(x) is disjoint from Let us define W(x) = Then

W(x) is an open neighborhood of [X]A in X, which is disjoint from Kx.
Given 0  6  1, let p be a polynomial determined by Lemma 1, Chapter 1,

Prolla [6], applied to a = 1/4 and b = 3/4, and ~ = 6/2. Let h(t) = p(g(t)), for all
t E Since B has property V, it follows that h E B. If t E Kx, then = 1

and so h(t)  6/2. If t E W(x), then get)  1/4 and so h(t) > f - b~2. Choose now
03C8 E B with ~03C8 - h~X  6/2, and let 03C6 E A be such that 03B2(03C6) = 03C8. Then cp E A
satisfies conditions (1) and (2). a

Theorem 8. Let W C Cb(X; E) be a non-empty subset and let A be a set of multi-
pliers of H~ which has property V and contains some constant 0  c  1, . Then W

is 03B2-localizable under A.

Proof. Assume that condition (2) of Definition 1 is true with S = A. For each

x E X, there is some gx E W such that, for all t E [x]A, one has J 
e /2. Consider the compact subset Kx of X defined by

_ ~t E .~’~ - ( ? ~ }.
Clearly, Kx is disjoint from Now for each x E X, select an open neighbor-

hood W(x) of (x~.9, disjoint from Kx, according to Lemma 4.
Select and fix a point x1 E X. Let K = By compactness of 7~, there exists

a finite set ~x2, ... , xm} C I~ such that

h’ C W(X2) U U ... U W(xm)
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m

Let k = and let 0  b  1 be so small that 6k  ë/2.
i=l

By Lemma 4, there are ~p2, ... , pm E A such that
(a) 03B4, for all t E Kxi i

(b) 03C6i(t) > 1 - 03B4, for all t E W(xi)
for i = 2, ... , m. Define

~2 = ~P~
03C83 = (1 - 03C62)03C63
.....

Y’m = (1 - ,?2)(1 - 03C63) ... (1 - 03C6m-1)03C6m.

Clearly, ~; E A for all i = 2, ... , m. Now

~2 + ... + ~- = 1 - (1 - ~2)(1 - ~3) ... (1 - ~,)

for all j E {2,..., m}, can be easily seen by induction. Define

03C81 = (1 - 03C62)(1 - 03C63)...(1 - 03C6m)

then E A and ~~I + ~2 + ... + = 1. .

Notice that

(c)  b for all t E Kx;
for each i = 1,2,..., m. Indeed, if i > 2 then (c) follows from (a). If i == 1, then for
t E 7B", we have t E for some j = 2,..., m. By (b), one has 1-  ~ and

so

= (1 - ~P;(t))  b~.
t~J

Let us write 9i = gx; for i = 1, 2, ... , m.

Define g = 03C81g1 + 03C82g2 + ... + 03C8mgm.
Notice that

9 = ~292 + (1 - ~2) ~~3g3 ‘~’ ~ 1 " ~3 ) l~’494 ’~’ ... +

+(1 - 03C6m-1)[03C6mgm + (1 - ...]].
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Hence g E W. Let x E X be given. Then
m

03C6(x)~f(x) "’ g(x)~ - "_ gi(x))~
i=1
m

 03C6(x)~ 03A3 03C8i(x)~(f(x) ‘_ gi(x))~
i-1

If i E I, then x ~ ,h’x; and

r 9~ (x) ~ ~  ~ 2
and therefore

 ~ 2. ~ ~i(~) ~ ~ ~
i~I i~I

Ifi E J, then by (c),  S and so

- gi(x) ~( _ bk  ~ 2 .

i~J

From (*) and (**) we get -  ~. o

Theorem 9. Let W C Cb(X; E) be a non-empty convex subset and tet A be the set

of all multipliers of W . Then W is 03B2-localizable under A.

Proof. The set A has property V and, since W is convex, every constant 0  c  I

belongs to A. o

Theorem 10. Let W C Cb(X; E) b a non-empty convex subset and det .B be any

non-empty set of multipliers of W . Then W is 03B2-localizable under B.

Proof. Similar to that of Theorem 6, using now Theorem 9 instead of Theorem 5.
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D

Corollary 8. Let W C Cb(X; E) be a non-empty convex subset such that the set
of all multipliers of W separates the points of X. . Then, for each f E Cb(X;IR) the
following are equivalent:

(1) f belongs to the ~3-closure of W;
(2) for each ~ > 0 and each x E X, there is some g E W such that

Ilf(x) --g(~)Il  ~.

Proof. Clearly, (1) ~ (2). Suppose now that (2) holds. Let p E > 0

and x E X be given. Notice that [x]W = {x}. If = 0, for any g E W one
has - q(x) ( ! = 0  E. If cp(x) > 0, by (2) there is g E W such that

- g(x)~  Hence - q(x)~  ~, and by Theorem 9, (1) is
true. D

Corollary 9. Let S ~ X be a non-empty closed subset and let V C E be a

non-empty convex subset. Let W = ~g E Cb(X; E); g(S) C V ~. Then, for each

f E Cb(X; E) the following are equivalent:

(1) f belongs to the 03B2-closure of W;
(2) for each x E S,f(x) belongs to the closure of V in E

Hence, Wp = {f ~ Cb(X;E);j(S) C V }, where V is the closure of V in E.

Proof. Clearly, (1) ~ (~). Conversely, assume that (2) holds. Clearly, W is a con-
vex set such that D(X ) is the set of all multipliers of W. Since X is a completely
regular Hausdorff space, D(X) separates the points of X. . Let ~ > 0 and x E X

be given. If xES there is v E V such that - v~  E, and the constant

mapping on X whose value is v belongs to W and g(x) = v. If x ~‘ S, choose

03C6 ~ Cb(X; IR), 0 ~ 03C6 ~ 1, 03C6(t) = 1 for all t ~ S and 03C6(x) = 0; and let g ~ Cb(X; E)
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be defined .by g = ~ ® vo + (1- ~) ~ f (x), where vo E V is chosen arbitrarily.
Then g(t) = vo for all t E S, and therefore g E W, and g(x) = f (x), Hence (2) of
Corollary 8 is verified and so f belongs to the ~3-closure of W. o

Corollary 10. Let W C Cb(X; E) be a non-empty convex subset such that the
set of all multipliers of W separates the points of X and, for each x E X, the set

W(x) = {g(x);g E W} is dense in E. Then W is 03B2-dense in Cb(X ; E).

Proof. Apply Corollary 8. o

Corollary 11. The vector subspace W = C6(X;1R) ® E is Q-dense in Cb(X; E).

Proof. The set A of all multipliers of W is D(~’), and W(x) = E, for each x E X.
It remains to apply Corollary 10. o

Corollary 12. If X is a locally compact Hausdorff space, then ® E is

,~-dense in Cb(X; E).

Proof. Let W = Coo ( X; ® E..As in the previous corollary, the set A of all

multipliers of W is and for each x E X, W(x) = E. a

Theorem 11. Let A C be a subalgebra and let W C Cb(X; E) be a vector

subspace which is an A-module, i. e., AW C W. . Then W is 03B2-localizable under A.

Proof. Let f E E) be given. Assume that condition (2) of Definition 1
holds with S = A. Without loss of generality we may assume that A is 03B2-closed
and contains the constants. Let M be the set of all multipliers of W. We claim

that, for each x EX, one has C ~x~A. Indeed, let t E and let c~ E A.

If 03C6 = 0, then 03C6 E and = Y(x). Assume 03C6 # 0. Write p = 03C6+ - 03C6-,
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where cp+ = max(03C6, 0) and cp- = max(-03C6, 0). By Corollary 2, §3, both p+ and 03C6-
belong to A. If 03C6+ = 0, then cp+ belongs to M and 03C6+(t) = If p+ ~ 0, let
03C8 = 03C6+/~03C6+~X. Now 03C8 belongs to A and 0 ~ 03C8  1. Hence 03C8 ~ M and therefore

~(t) _ ~(~r). Consequently, one has ~+(t) = cp+(x). Similarly, one proves that

03C6-(t) = 03C6-(x). Hence = This ends the proof that [x]M C for all

x E X. . Hence condition (2) of Definition 1 is verified with S = Af. By Theorem 9,
W is Q-localizable under M. Hence f belongs to the ,~-closure of W. a

Corollary 13.Let W C Cb(X; E) be a vector subspace, and let

A = {03C8 ~ W for all g W}.

Then W is 03B2-localizable under A.

Proof. Clearly A is a subalgebra of Cb(X; IR) and W is an A-module. o
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