S.V. Ludkovsky

Properties of quasi-invariant measures on topological groups and associated algebras

Annales mathématiques Blaise Pascal, tome 6, nº 1 (1999), p. 33-45 http://www.numdam.org/item?id=AMBP 1999 6 1 33 0>

© Annales mathématiques Blaise Pascal, 1999, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Math. Blaise Pascal, Vol. 6, N° 1, 1999, pp. 33-45

Properties of quasi-invariant measures on topological groups and associated algebras.

S.V. Ludkovsky

Mathematics subject classification (1991 Revision) 22A10, 43A05. Permanent address: Theoretical Department, Institute of General Physics, Str. Vavilov 38, Moscow, 117942, Russia.

Abstract

Properties of quasi-invariant measures relative to dense subgroups are considered on topological groups. Mainly non-locally compact groups are considered such as

(i) a group of diffeomorphisms Diff(t, M) of real or non-Archimedean manifold M in cases of locally compact and nonlocally compact M, where t is a class of smoothness,

(ii) a Banach-Lie group over a classical or non-Archimedean field,

(iii) loop groups of real and non-Archimedean manifolds.

Recently quasi-invariant measures on a group of diffeomorphisms were constructed for real locally compact M in [8, 24] and for non-locally compact real or non-Archimedean manifolds M in [10, 12, 14, 18, 20, 21]. Such groups are also Banach manifolds or strict inductive limits of their sequences. Then on a real and non-Archimedean loop groups and semigroups of families of mappings from one manifold into another they were elaborated in [13, 15, 16, 17]. On real Banach-Lie groups quasi-invariant measures were constructed in [3].

This article is devoted to the investigation of properties of quasi-invariant measures that are important for analysis on topological groups and for construction irreducible representations [8, 23]. The following properties are investigated:

(1) convolutions of measures and functions,

(2) continuity of functions of measures,

(3) non-associative algebras generated with the help of quasi-invariant measures. The theorems given below show that many differences appear to be between locally compact and non-locally compact groups. The groups considered below are supposed to have structure of Banach manifolds over the corresponding fields.

1. Definitions. (a). Let G be a Hausdorff separable topological group. A real (or complex) Radon measure μ on $Af(G, \mu)$ is called left-quasi-invariant (or right) relative to a dense subgroup H of G, if μ_h (or μ^h) is equivalent to μ for each $h \in H$, where Bf(G) is the Borel σ -field of G, $Af(G, \mu)$ is its completion by μ , $\mu_h(A) := \mu(h^{-1}A)$, $\mu^h(A) := \mu(Ah^{-1})$ for each $A \in Af(G, \mu)$, $d_{\mu}(h, g) := \mu_h(dg)/\mu(dg)$ (or $\tilde{d}_{\mu}(h, g) := \mu^h(dg)/\mu(dg)$) denote a left (or right) quasi-invariance factor. We assume that the uniformity τ_G on G is such that $\tau_G | H \subset \tau_H$, (G, τ_G) and (H, τ_H) are complete. We suppose also that there exists an open base in $e \in H$ such that their closures in G are compact (such pairs exist for loop groups and groups of diffeomorphisms and Banach-Lie groups). We denote by $M_l(G, H)$ (or $M_{\tau}(G, H)$) the set of left-(or right) quasi-invariant measures on G relative to H with a finite norm $\||\mu\|| := \sup_{A \in Af(G,\mu)} |\mu(A)| < \infty$.

(b). Let $L_{H}^{p}(G, \mu, \mathbf{C})$ for $1 \leq p \leq \infty$ denotes the Banach space of functions $f: G \to \mathbf{C}$ such that $f_{h}(g) \in L^{p}(G, \mu, \mathbf{C})$ for each $h \in H$ and

$$||f||_{L^p_H(G,\mu,\mathbf{C})} := \sup_{h\in H} ||f_h||_{L^p(G,\mu,\mathbf{C})} < \infty,$$

where $f_h(g) := f(h^{-1}g)$ for each $g \in G$. For $\mu \in M_l(G, H)$ and $\nu \in M(H)$ let

$$(\nu * \mu)(A) := \int_H \mu_h(A)\nu(dh)$$
 and $(q\tilde{*}f)(g) := \int_H f(hg)q(h)\nu(dh)$

be convolutions of measures and functions, where M(H) is the space of Radon measures on H with a finite norm, $\nu \in M(H)$ and $q \in L^{s}(H, \nu, \mathbb{C})$, that is

$$(\int_{H} |q(h)|^{s} |\nu| (dh))^{1/s} =: ||q||_{L^{s}(H,\nu,C)} < \infty \text{ for } 1 \le s < \infty.$$

2. Lemma. The convolutions

$$*: M(H) \times M_l(G, H) \rightarrow M_l(G, H)$$
 and

 $\tilde{*}: L^1(H, \nu, \mathbb{C}) \times L^1_H(G, \mu, \mathbb{C}) \to L^1_H(G, \mu, \mathbb{C}).$

are continuous C-bilinear mappings

Proof. It follows immediately from the definitions, Fubini theorem and because $d_{\mu}(h, g) \in L^{1}(H \times G, \nu \times \mu, \mathbb{C})$. In fact one has,

 $\|\nu * \mu\| \le \|\nu\| \times \|\mu\|, \ \|q \tilde{*}f\|_{L^{1}_{H}(G,\mu,\mathbf{C})} \le \|q\|_{L^{1}(H,\nu,\mathbf{C})} \times \|f\|_{L^{1}_{H}(G,\mu,\mathbf{C})}.$

3. Definition. For $\mu \in M(G)$ its involution is given by the following formula: $\mu^*(A) := \overline{\mu(A^{-1})}$, where \overline{b} denotes complex conjugated $b \in \mathbf{C}$, $A \in Af(G, \mu)$.

4. Lemma. Let $\mu \in M_l(G, H)$ and G and H be non-locally compact with structures of Banach manifolds. Then μ^* is not equivalent to μ .

Proof. Let $T: G \to TG$ be the tangent mapping. Then μ induces quasiinvariant measure λ from an open neighbourhood W of the unit $e \in G$ on a neighbourhood of the zero section V in T_eG and then it has an extension onto the entire T_eG . Let at first T_eG be a Hilbert space. Put $Inv(g) = g^{-1}$ then $T \circ Inv \circ T^{-1} =: K$ on V is such that there is not any operator Bof trace class on T_eG such that $\tilde{M}_{\lambda} \subset B^{1/2}T_eG$ and $KT_eG \subset \tilde{M}_{\lambda}$, where $Re(1 - \theta(z)) \to 0$ for $(Bz, z) \to 0$ and $z \in T_eG$, $\theta(z)$ is the characteristic functional of λ , \tilde{M}_{λ} is the set of all $x \in T_eG$ such that λ_x is equivalent to λ (see theorem 19.1 [25]). Then using theorems for induced measures from a Hilbert space on a Banach space [2, 9], we get the statement of lemma 4.

5. Lemma. For $\mu \in M_l(G, H)$ and $1 \leq p < \infty$ the translation map $(q, f) \to f_q(g)$ is continuous from $H \times L^p_H(G, \mu, \mathbb{C})$ into $L^p_H(G, \mu, \mathbb{C})$.

Proof. For metrizable G in view of the Lusin theorem (2.3.5 in [5]) and definitions of τ_G and τ_H for each $\epsilon > 0$ there are a neighbourhood $V \ni e$ in H and compacts K_1 and K in G such that the closure $cl_G V K_1 =: K_2$ is compact in G with $K_2 \subset K$, the restriction $f|_{K_2}$ is continuous and $(|\tilde{\mu}| + |\mu|)(G \setminus K_2) < \epsilon$, where $\tilde{\mu}(dg) := f(g)\mu(dg)$.

6. Proposition. For a probability measure $\mu \in M(G)$ there exists an approximate unit, that is a sequence of non-negative continuous functions $\psi_i : G \to \mathbf{R}$ such that $\int_G \psi_i(g)\mu(dg) = 1$ and for each neighbourhood $U \ni e$ in G there exists i_0 such that $supp(\psi_i) \subset U$ for each $i > i_0$.

Proof follows from the Radon property of μ and the existence of countable base of neighbourhoods in $e \in G$.

7. Proposition. If $(\psi_i : i \in \mathbb{N})$ is an approximate unit in H relative to a probability measure $\nu \in M(H)$, then $\lim_{i\to\infty} \psi_i * f = f$ in the $L^1_H(G, \mu, \mathbb{C})$ norm, where $\mu \in M_l(G, H)$, $f \in L^1_H(G, \mu, \mathbb{C})$.

Proof follows from lemma III.11.18 [6] and lemmas 2, 5.

8. Lemma. Suppose $g \in L^q_H(G, \mu, \mathbb{C})$ and $(g^x|_H) \in L^q(H, \nu, \mathbb{C})$ for each $x \in G$, $f \in L^p(H, \nu, \mathbb{C})$ with 1 , <math>1/p+1/q = 1, where $g^x(y) := g(yx)$ for each x and $y \in G$. Let μ and ν be probability measures, $\mu \in M_l(G, H)$, $\nu \in M(H)$. Then $f \tilde{*} g \in L^1_H(G, \mu, \mathbb{C})$ and there exists a function $h : G \to \mathbb{C}$ such that $h|_H$ is continuous, $h = f \tilde{*} g \ \mu$ -a.e. on G and h vanishes at ∞ on G.

Proof. In view of Fubini theorem and Hölder inequality we have

$$\begin{split} \|f\tilde{*}g\|_{L^{1}_{H}(G,\mu,\mathbf{C})} &= \sup_{s\in H} \int_{G} \int_{H} |f(y)| \times |g(z)|\nu(dy)\mu((ys)^{-1}dz) \leq \\ \sup_{s\in H} (\int_{G} \int_{H} |g(z)|^{q} \nu(dy)\mu((ys)^{-1}dz))^{1/q} \times (\int_{G} \int_{H} |f(y)|^{p} \nu(dy)\mu((ys)^{-1}dz)^{1/p} \leq \\ \|f\|_{L^{p}(H,\nu,\mathbf{C})} \times \|g\|_{L^{q}_{H}(G,\mu,\mathbf{C})} \times \nu(H)\mu(G). \end{split}$$

The equation $\alpha_f(\phi) := \int_H f(y)\overline{\phi(y)}\nu(dy)$ defines a continuous linear functional on $L^q(H,\nu, \mathbb{C})$. In view of lemma 5 the function $\alpha_f(g^{(sx)^{-1}}) =: \tilde{h}((sx)^{-1}) =:$ w(s,x) of two variables s and x is continuous on $H \times H$ for $s, x \in H$, since the mapping $(s,x) \mapsto (sx)^{-1}$ is continuous from $H \times H$ into H. By Fubini theorem (see §2.6.2 in [5])

$$\begin{split} \int_{G} h(y)\psi(y)\mu(dy) &= \int_{G} \int_{H} f(y)g(yx)\psi(x)\nu(dy)\mu(dx) = \\ &\int_{H} f(y)[\int_{G} g(yx)\psi(x)\mu(dx)]\nu(dy) \end{split}$$

for each $\psi \in L^p(G, \mu, \mathbf{C})$, since

$$\int_G \int_H |f(y)g(yx)\psi(x)| \ |\nu|(dy) \ |\mu|(dx) < \infty,$$

where $|\nu|$ denotes the variation of the real-valued measure ν , $h(y) := \tilde{h}(y^{-1})$. Here ψ is arbitrary in $L^p(G, \mu, \mathbb{C})$, from this it follows, that $\mu(\{y : h(y) \neq (f \tilde{*}g)(y), y \in G\}) = 0$, since h and $(f \tilde{*}g)$ are μ -measurable functions due to Fubini theorem and the continuity of the composition and the inversion in a topological group. In view of Lusin theorem (see §2.3.5 in [5]) for each $\epsilon > 0$ there are compact subsets $C \subset H$ and $D \subset G$ and functions $f' \in L^p(H, \nu, \mathbb{C})$ and $g' \in L^q_H(G, \mu, \mathbb{C})$ with closed supports $supp(f') \subset C$, $supp(g') \subset D$ such that cl_GCD is compact in G,

$$||f' - f||_{L^p(H,\nu,\mathbf{C})} < \epsilon \text{ and } ||g' - g||_{L^q_H(G,\mu,\mathbf{C})} < \epsilon,$$

since by the supposition of §1 the group H has the base B_H of its topology τ_H , such that the closures $cl_G V$ are compact in G for each $V \in B_H$. From the inequality

$$|h'(x) - h(x)| \le (||f||_{L^p(H,\nu,\mathbf{C})} + \epsilon)\epsilon + \epsilon ||g||_{L^q_H(G,\mu,\mathbf{C})}$$

it follows that for each $\delta > 0$ there exists a compact subset $K \subset G$ with $|h(x)| < \delta$ for each $x \in G \setminus K$, where $h'(x^{-1}) := \alpha_{f'}(g'^x)$.

9. Proposition. Let $A, B \in Af(G, \mu)$, μ and ν be probability measures, $\mu \in M_l(G, H)$, $\nu \in M(H)$. Then the function $\zeta(x) := \mu(A \cap xB)$ is continuous on H and $\nu(yB^{-1} \cap H) \in L^1(H, \nu, \mathbb{C})$. Moreover, if $\mu(A)\mu(B) > 0$, $\mu(\{y \in G : yB^{-1} \cap H \in Af(H, \nu) \text{ and } \nu(yB^{-1} \cap H) > 0\}) > 0$, then $\zeta(x) \neq 0$ on H.

Proof. Let $g_x(y) := ch_A(y)ch_B(x^{-1}y)$, then $g_x(y) \in L^q_H(G, \mu, \mathbb{C})$ for $1 < q < \infty$, where $ch_A(y)$ is the characteristic function of A. In view of propositions 6 and 7 there exists $\lim_{i\to\infty} \psi_i * g_x = g_x$ in $L^1_H(G, \mu, \mathbb{C})$. In view of lemma III.11.18 [6] and lemma 8, $\zeta(x)|_H$ is continuos. There is the following inequality:

$$1 \geq \int_{H} \mu(A \cap xB)\nu(dx) = \int_{H} \int_{G} ch_{A}(y)ch_{B}(x^{-1}y)\mu(dy)\nu(dx).$$

In view of Fubini theorem there exists

$$\int_{H} ch_B(x^{-1}y)\nu(dy) = \nu((yB^{-1}) \cap H) \in L^1(G,\mu,\mathbf{C}), \text{ hence}$$
$$\int_{H} \mu(A \cap xB)\nu(dx) = \int_{G} \nu(yB^{-1} \cap H)ch_A(y)\mu(dy).$$

10. Corollary. Let $A, B \in Af(G, \mu), \nu \in M(H)$ and $\mu \in M_l(G, H)$ be probability measures. Then denoting Int_HV the interior of a subset V of H with respect to τ_H , one has

(i) $Int_H(AB) \cap H \neq \emptyset$, when

$$\mu(\{y \in G : \nu(yB \cap H) > 0\}) > 0;$$

(ii) $Int_H(AA^{-1}) \ni e$, when

$$\mu(\{y \in G : \nu(yA^{-1} \cap H) > 0\}) > 0.$$

Proof. $AB \cap H \supset \{x \in H : \mu(A \cap xB^{-1}) > 0\}.$

11. Corollary. Let G = H. If $\mu \in M_l(G, H)$ is a probability measure, then G is a locally compact topological group.

Proof. Let us take $\nu = \mu$ and $A = C \cup C^{-1}$, where C is a compact subset of G with $\mu(C) > 0$, whence $\mu(yA) > 0$ for each $y \in G$ and inevitably $Int_G(AA^{-1}) \ni e$.

12. Lemma. Let $\mu \in M_l(G, H)$ be a probability measure and G be non-locally compact. Then $\mu(H) = 0$.

Proof. This follows from theorem 19.2 [25] and theorem 3.21 and lemma 3.26 [19] and the proof of lemma 4, since the embedding $T_eH \hookrightarrow T_eG$ is a compact operator in the non-Archimedean case and of trace class in the real case (see also the papers about construction of quasi-invariant measures on the groups considered here [3, 8, 10, 12, 13, 14, 16, 17, 18], [20, 21, 24]). Indeed, the measure μ on G is induced by the corresponding measure ν on a Banach space Z for which there exists a local diffeomorphism $A: W \to V$, where W is a neighbourhood of e in G and V is a neighbourhood of 0 in Z. The measure μ on G is quasi-invariant relative to H. Therefore, the measure ν on U is quasi-invariant relative to the action of elements $\psi \in W' \subset W \cap H$ due to the local diffeomorphism A, that is, ν_{ϕ} is equivalent to ν for each $\phi :=$ $A\psi A^{-1}$, where $AW'A^{-1}U \subset V$, W' is an open neighbourhood of e in H and U is an open neighbourhood of 0 in Z, $\nu_o(E) := \nu(\phi^{-1}E)$, ϕ is an operator on Z such that it may be non-linear. The quasi-invariance factor $\rho_{\nu}(\phi, v)$ has expression through $|det(\phi')|$ and the quasi-invariance factor $q_{\nu}(z,x)$ relative to linear shifts $z \in Z'$ given by theorems from §26 [25] in the real case and theorem 3.28 [19] in the non-Archimedean case:

$$\nu_{\phi}(dx)/\nu(dx) = |det\{\phi'(\phi^{-1}(x))\}|q_{\nu}(x-\phi^{-1}(x),x),$$

where $x \in U$, $\phi = A\psi A^{-1}$, $\psi \in W'$. Then $(A\psi A^{-1}v - v) \in Z'$ for each $v \in V$ and $\psi \in W'$, where ν on Z is quasi-invariant relative to shifts on vectors $z \in Z'$ and there exists a compact operator in the non-Archimedean case and an operator of trace class in the real case of embedding $\theta : Z' \hookrightarrow Z$ such that $\nu(Z') = 0$. 13. Theorem. Let (G, τ_G) and (H, τ_H) be a pair of topological non-locally compact groups G, H (Banach-Lie, Frechet-Lie or groups of diffeomorphisms or loop groups) with uniformities τ_G, τ_H such that H is dense in (G, τ_G) and there is a probability measure $\mu \in M_l(G, H)$ with continuous $d_{\mu}(z, g)$ on $H \times G$. Also let X be a Hilbert space over \mathbb{C} and U(X) be the unitary group. Then (1) if $T : G \to U(X)$ is a weakly continuous representation, then there exists $T' : G \to U(X)$ equal μ -a.e. to T and $T'|_{(H,\tau_H)}$ is strongly continuous;

(2) if $T : G \to U(X)$ is a weakly measurable representation and X is separable, then there exists $T' : G \to U(X)$ equal to T μ -a.e. and $T'|_{(H,\tau_H)}$ is strongly continuous.

Proof. Let $R(G) := (I) \cup L^1(G, \mu)$, where I is the unit operator on L^1 . Then we can define

$$A_{(\lambda e+a)_h} := \lambda I + \int_G a_h(g)[d(h^{-1},g)]T_g\mu(dg),$$

where $a_h(g) := a(h^{-1}g)$. Then

$$|(A_{(\lambda e+a)_h} - A_{\lambda e+a}\xi, \eta)| \leq \int_G |a_h(g)d_\mu(h,g) - a(g)| \ |(T_g\xi,\eta)|\mu(dg),$$

hence A_{a_h} is strongly continuous with respect to $h \in H$, that is,

$$\lim_{h \to e} |A_{a_h}\xi - A_a\xi| = 0.$$

Denote $A_{a_h} = T'_h A_a$ as in §29 [22], so $T'_h \xi = A_{a_h} \xi$, where $\xi = A_a \xi_0$, $a \in L^1$. Whence

$$(T'_h\xi, T'_h\xi) = (A_{a_h}\xi_0, A_{a_h}\xi_0) =$$
$$\int_G \bar{a}_h(g)(T_g\xi_0, T_{g'}\xi_0)d_\mu(h^{-1}, g)d_\mu(h^{-1}, g')a_h(g')\mu(dg)\mu(dg')$$
$$= \int_G \bar{a}(z)a(z')(U_z\xi_0, U_{z'}\xi_0)\mu(dz)\mu(dz') = (\xi, \xi).$$

Therefore, T'_h is uniquely extended to a unitary operator in the Hilbert space $X' \subset X$. In view of lemma 12, $\mu(H) = 0$. Hence T' may be considered equal to $T \mu$ -a.e. Then the space $span_{\mathbb{C}}[A_{a_h} : h \in H]$ is evidently dense in X, since

$$(A_{a_h}\xi_1, A_{x_q}\xi_0) = (\int_G a_h(g)T_g d(h^{-1}, g)\mu(dg)\xi_1, \int_G x_q(g')T_{g'}d(q^{-1}, g')\mu(dg')\xi_0) = (T_h \int_G a(g)T_g\mu(dg)\xi_1, T_q \int_G x(g')T_{g'}\mu(dg')) = (T_{q^{-1}h}A_a\xi_1, A_x\xi_0).$$

For proving the second statement let $R := [\xi : A_a \xi = 0 \text{ for each } a \in L^1(G, \mu)].$ If

$$(A_a\xi,\eta) = \int_G a(g)(T_g\xi,\eta)\mu(dg) = \int_G a(g)(T'_g\xi,\eta)\mu(dg)$$

for each $a(g) \in L^1(G, \mu, \mathbb{C})$, then $(T_g\xi, \eta) = (T'_g\xi, \eta)$ for μ -almost all $g \in G$. Suppose that $\{\xi_n : n \in \mathbb{N}\}$ is a complete orthonormal system in X. If $\xi \in X$, then

$$\int_G \mathbf{a}(g)(T_g\xi,\xi_m)\mu(dg) = 0$$

for each $g \in G \setminus S_m$, where $\mu(S_m) = 0$. Therefore, $(T_g\xi,\xi_m) = 0$ for each $m \in \mathbb{N}$, if $g \in G \setminus S$, where $S := \bigcup_{m=1}^{\infty} S_m$. Hence $T_g\xi = 0$ for each $g \in G \setminus S$, consequently, $\xi = 0$. Then $(T_g\xi_n,\xi_m) = (T'_g\xi_n,\xi_m)$ for each $g \in G \setminus \gamma_{n,m}$, where $\mu(\gamma_{n,m}) = 0$. Hence $(T_g\xi_n,\xi_m) = (T'_g\xi_n,\xi_m)$ for each $n,m \in \mathbb{N}$ and each $g \in G \setminus \gamma$, where $\gamma := \bigcup_{n,m} \gamma_{n,m}$ and $\mu(\gamma) = 0$. Therefore, $\mathbb{R} = 0$.

14. Definition and note. Let $\{G_i : i \in \mathbf{N_o}\}$ be a sequence of topological groups such that $G = G_0$, $G_{i+1} \subset G_i$ and G_{i+1} is dense in G_i for each $i \in \mathbf{N_o}$ and their topologies are denoted τ_i , $\tau_i|_{G_{i+1}} \subset \tau_{i+1}$ for each i, where $N_o := \{0, 1, 2, ...\}$. Suppose that these groups are supplied with real probability quasi-invariant measures μ^i on G_i relative to G_{i+1} . For example, such sequences exist for groups of diffeomorphisms or loop groups considered in previous papers [10, 12, 13, 15, 16, 17, 18], [20, 21]. Let $L^2_{G_{i+1}}(G_i, \mu^i, \mathbf{C})$ denotes a subspace of $L^2(G_i, \mu^i, \mathbf{C})$ as in §1(b). Such spaces are Banach and not Hilbert in general. Let $\tilde{L}^2(G_{i+1}, \mu^{i+1}, L^2(G_i, \mu^i, \mathbf{C})) := H_i$ denotes the subspace of $L^2(G_i, \mu^i, \mathbf{C})$ of elements f such that

$$\begin{split} \|f\|_{i}^{2} &:= [\|f\|_{L^{2}(G_{i},\mu^{i},\mathbb{C})}^{2} + \|f\|_{i}^{\prime 2}]/2 < \infty, \text{ where} \\ \|f\|_{i}^{\prime 2} &:= \int_{G_{i+1}} \int_{G_{i}} |f(y^{-1}x)|^{2} \mu^{i}(dx) \mu^{i+1}(dy). \end{split}$$

Evidently H_i are Hilbert spaces due to the parallelogram identity. Let

$$f^{i+1} * f^i(x) := \int_{G_{i+1}} f^{i+1}(y) f^i(y^{-1}x) \mu^{i+1}(dy)$$

denotes the convolution of $f^i \in H_i$.

15. Lemma. The convolution $* : H_{i+1} \times H_i \rightarrow H_i$ is a continuous bilinear mapping.

Proof. In view of Fubini theorem and Cauchy inequality:

$$\begin{split} &\int_{G_{i+1}} \int_{G_i} |f^{i+1} * f^i(z^{-1}x)|^2 \mu^i(dx) \mu^{i+1}(dz) = \\ &\int_{G_{i+1}} \int_{G_i} \int_{G_{i+1}} f^{i+1}(y) f^i(y^{-1}z^{-1}x) \mu^{i+1}(dy) \int_{G_{i+1}} \bar{f}^{i+1}(q) \bar{f}^i(q^{-1}z^{-1}x) \mu^{i+1}(dq) \mu^i(dx) \mu^{i+1}(dz) \\ &\leq \int_{G_i} \int_{G_{i+1}} (\int_{G_{i+1}} |f^{i+1}(y)|^2 \mu^{i+1}(dy))^{1/2} (\int_{G_{i+1}} |f^{i+1}(q)|^2 \mu^{i+1}(dq))^{1/2} \mu^i(dx) \mu^{i+1}(dz) \leq \\ &(\int_{G_{i+1}} |f^i(y^{-1}z^{-1}x)|^2 \mu^{i+1}(dy))^{1/2} (\int_{G_{i+1}} \int_{G_{i+1}} |f^i(q^{-1}z^{-1}x)|^2 \mu^{i+1}(dq))^{1/2} \mu^i(dx) \mu^{i+1}(dz) \leq \\ &\|f^{i+1}\|_{L^2(G_{i+1},\mu^{i+1},C)} \int_{G_i} (\int_{G_{i+1}} \int_{G_{i+1}} |f^i(y^{-1}z^{-1}x)|^2 \mu^{i+1}(dy) \mu^{i+1}(dz))^{1/2} \mu^i(dx) \\ &= \|f^{i+1}\|_{L^2(G_{i+1},\mu^{i+1},C)} \int_{G_i} \int_{G_{i+1}} \int_{G_{i+1}} |f^i(y^{-1}z^{-1}x)|^2 \mu^{i+1}(dy) \mu^{i+1}(dz) \mu^i(dx) \\ &= \|f^{i+1}\|_{L^2(G_{i+1},\mu^{i+1},C)} (\int_{G_i} \int_{G_{i+1}} \int_{G_{i+1}} |f^i(z^{-1}x)|^2 \mu^{i+1}(dz) \mu^i(dx), \text{ since} \\ &\int_{G_i} \int_{G_{i+1}} d_{\mu^i}(z^{-1},\gamma) \mu^i(d\gamma) \mu^{i+1}(dz) = \int_{G_{i+1}} \mu^{i+1}(dz) \int_{G_i} \mu^i(zd\gamma) = 1. \text{ Then} \\ &\|f^{i+1} * f^i\|_{L^2(G_{i,\mu^i},C)}^2 = \int_{G_i} |\int_{G_{i+1}} |f^i(z^{-1}x)|^2 \mu^{i+1}(dz) \mu^i(dx). \text{ Therefore,} \\ &\|f^{i+1} * f^i\|_{L^2(G_{i+1},\mu^{i+1},C)} \int_{G_i} \int_{G_i} \int_{G_{i+1}} |f^i(z^{-1}x)|^2 \mu^{i+1}(dz) \mu^i(dx) + \|f^i(z^{-1}x)|^2 \mu^{i+1}(dz) \mu^i(dx) + \|f^i(z^{-1}x)|^2 \mu^{i+1}(dz) \mu^i(dx) + \|f^i(z^{-1}x)|^2 \mu^i(dx)|^2 \|f^i(z^{-1}x)|^2 \mu^i(dx)|^2 \|f^i(z^{-1}x)|^2 \mu^i(dx)|^2 \|f^i(z^{-1}x)|^2 \|f^i(z^{-1$$

16. Definition. Let $l_2({H_i : i \in \mathbf{N_o}}) =: H$ be the Hilbert space consisting of elements $f = (f^i : f^i \in H_i, i \in \mathbf{N_o})$, for which

$$||f||^2 := \sum_{i=0}^{\infty} ||f^i||_i^2 < \infty.$$

For elements f and $g \in H$ their convolution is defined by the formula: $f \star g := h$ with $h^i := f^{i+1} \star g^i$ for each $i \in \mathbb{N}_0$. Let $\star : H \to H$ be an involution

such that $f^* := (\bar{f}^{j^{\wedge}} : j \in \mathbf{N}_{\mathbf{o}})$, where $f^{j^{\wedge}}(y_j) := f^j(y_j^{-1})$ for each $y_j \in G_j$, $f := (f^j : j \in \mathbf{N}_{\mathbf{o}}), \bar{z}$ denotes the complex conjugated $z \in \mathbf{C}$.

17. Lemma. H is a non-associative non-commutative Hilbert algebra with involution *, that is * is conjugate-linear and $f^{**} = f$ for each $f \in H$.

Proof. In view of Lemma 15 the convolution $h = f \star g$ in the Hilbert space H has the norm $||h|| \leq ||f|| ||g||$, hence is a continuous mapping from $H \times H$ into H. From its definition it follows that the convolution is bilinear. It is non-associative as follows from the computation of i-th terms of $(f \star g) \star q$ and $f \star (g \star q)$, which are $(f^{i+2} \star g^{i+1}) \star q^i$ and $f^{i+1} \star (g^{i+1} \star q^i)$ respectively, where f, g and $q \in H$. It is non-commutative, since there are f and $g \in H$ for which $f^{i+1} \star g^i$ are not equal to $g^{i+1} \star f^i$. Since $f^{j^{\wedge}}(y_j) = f^j(y_j)$ and $\overline{z} = z$. one has $f^{**} = (f^*)^* = f$.

18. Note. In general $(f \star g^*)^* \neq g \star f^*$ for f and $g \in H$, since there exist f^j and g^j such that $g^{j+1} \star (f^j)^* \neq (f^{j+1} \star (g^j)^*)^*$. If $f \in H$ is such that $f^j|_{G_{j-1}} = f^{j+1}$, then

$$((f^{j-1})^* * f^j)(e) = \int_{G_{j+1}} \bar{f}^{j+1}(y^{-1}) f^{j+1}(y) \mu^{j+1}(dy) = \|f^{j+1}\|_{L^2(G_{j+1},\mu^{j+1},\mathbb{C})}^2,$$

where $j \in \mathbf{N}_{\mathbf{o}}$.

19. Definition. Let $l_2(\mathbf{C})$ be the standard Hilbert space over the field \mathbf{C} be considered as a Hilbert algebra with the convolution $\alpha \star \beta = \gamma$ such that $\gamma^i := \alpha^{i+1}\beta^i$, where $\alpha := (\alpha^i : \alpha^i \in \mathbf{C}, i \in \mathbf{N_o})$, α, β and $\gamma \in l_2(\mathbf{C})$.

20. Note. The algebra $l_2(\mathbf{C})$ has two-sided ideals $J_i := \{\alpha \in l_2(\mathbf{C}) : \alpha^j = 0 \text{ for each } j > i\}$, where $i \in \mathbf{N}_0$. That is, $J \star l_2(\mathbf{C}) \subset J$ and $l_2(\mathbf{C}) \star J = J$ and J is the C-linear subspace of $l_2(\mathbf{C})$, but $J \star l_2(\mathbf{C}) \neq J$. There are also right ideals, which are not left ideals: $K_i := \{\alpha \in l_2(\mathbf{C}) : \alpha^j = 0 \text{ for each } j = 0 \dots, i\}$, where $j \in \mathbf{N}_0$. That is, $l_2(\mathbf{C}) \star K_i = K_i$, but $K_i \star l_2(\mathbf{C}) = K_{i-1}$ for each $i \in \mathbf{N}_0$, where $K_{-1} := l_2(\mathbf{C})$. The algebra $l_2(\mathbf{C})$ is the particular case of H, when $G_j = \{e\}$ for each $j \in \mathbf{N}_0$. We consider further H for non-trivial topological groups outlined above.

21. Theorem. If F is a maximal proper left or right ideal in H, then H/F is isomorphic as the nonassociative noncommutative algebra over C with $l_2(C)$.

Proof. Since F is the ideal, it is the C-linear subspace of H. Suppose, that there exists $j \in \mathbf{N}_{o}$ such that $f^{j} = 0$ for each $f \in F$, then $f^{i} = 0$ for each $i \in \mathbf{N}_{o}$, since the space of bounded complex-valued continuous functions $C_{b}^{0}(G_{\infty}, \mathbb{C})$ on $G_{\infty} := \bigcap_{i=0}^{\infty} G_{j}$ is dense in each $H_{j} := \{f^{j} : f \in H\}$

and $C_b^0(G_{\infty}, \mathbb{C}) \cap F_j = \{0\}$ and $C_b^0(G_j, \mathbb{C})|_{G_{j+1}} \supset C_b^0(G_{j+1}, \mathbb{C})$. Therefore, $F_j \neq \{0\}$ for each $j \in \mathbb{N}_{\mathbf{o}}$, consequently, $\mathbb{C} \hookrightarrow F_j$ for each $j \in \mathbb{N}_{\mathbf{o}}$. Since \mathbb{C} is embeddable into each F_j , then there exists the embedding of $l_2(\mathbb{C})$ into F, where $H_j := \{f^j : f \in H\}, \pi_j : H \to H_j$ are the natural projections.

The subalgebra F is closed in H, since H is a topological algebra and F is a maximal proper subalgebra. The space $H_{\infty} := \bigcap_{j \in \mathbb{N}_{0}} H_{j}$ is dense in each H_{j} and the group $G_{\infty} := \bigcap_{j \in \mathbb{N}_{0}} G_{j}$ is dense in each G_{j} .

Suppose that $F_i = H_i$ for some $i \in \mathbf{N}_o$, then $F_j = H_j$ for each $j \in \mathbf{N}_o$, since $C_b^0(G_\infty, \mathbf{C})$ is dense in each H_j and $C_b^0(G_j, \mathbf{C})|_{G_{j+1}} \supset C_b^0(G_{j+1}, \mathbf{C})$. The ideal F is proper, consequently, $F_j \neq H_j$ as the C-linear subspace for each $j \in \mathbf{N}_o$, where $F_j = \pi_j(F)$.

There are linear continuous operators from $l_2(\mathbf{C})$ into $l_2(\mathbf{C})$ given by the following formulas: $x \mapsto (0, ..., 0, x^0, x^1, x^2, ...)$ with 0 as *n* coordinates at the beginning, $x \mapsto (x^n, x^{n+1}, x^{n+2}, ...)$ for $n \in \mathbf{N}$; $x \mapsto (x^{kl+\sigma_k(i)} : k \in \mathbf{N_o}, i \in$ (0, 1, ..., l-1)), where $\mathbf{N} \ni l \ge 2$, $\sigma_k \in S_l$ are elements of the symmetric group S_l of the set (0, 1, ..., l-1). Then $f \star (g \star h) + l_2(\mathbf{C})$ and $(f \star g) \star h + l_2(\mathbf{C})$ are considered as the same class, also $f \star g + l_2(\mathbf{C}) = g \star f + l_2(\mathbf{C})$ in $H/l_2(\mathbf{C})$, since $(f + l_2(\mathbf{C})) \star (g + l_2(\mathbf{C})) = f \star g + l_2(\mathbf{C})$ for each f, g and $h \in H$. For each $f, g, h \in F$: $f \star (g \star h) + l_2(\mathbf{C})$ and $(f \star g) \star h + l_2(\mathbf{C})$ are considered as the same class, also $f \star g + l_2(\mathbf{C}) = g \star f + l_2(\mathbf{C})$ in $F/l_2(\mathbf{C})$, since $(f + l_2(\mathbf{C})) \star (g + l_2(\mathbf{C})) = f \star g + l_2(\mathbf{C}) \subset F$ for each f and $g \in F$. Therefore, the quotient algebras $H/l_2(\mathbf{C})$ and $F/l_2(\mathbf{C})$ are associative commutative Banach algebras.

Let us adjoint a unit to $H/l_2(\mathbf{C})$ and $F/l_2(\mathbf{C})$. As a consequence of the Gelfand and Mazur theorem we have, that $(H/l_2(\mathbf{C}))/(F/l_2(\mathbf{C}))$ is isomorphic with **C** (see theorem V.6.12 [6] and theorem III.11.1 [22]). On the other hand, as it was proved above $F_j \neq H_j$ for each $j \in \mathbf{N}_o$, hence there exists the following embedding $l_2(\mathbf{C}) \hookrightarrow (H/F)$ and $(H/F)/l_2(\mathbf{C})$ is isomorphic with $(H/l_2(\mathbf{C}))/(F/l_2(\mathbf{C}))$. Therefore, H/F is isomorphic with $l_2(\mathbf{C})$.

References

- [1] N. Bourbaki. Lie groups and algebras (Moscow: Mir, 1976).
- [2] Yu.L. Dalecky, S.V. Fomin. Measures and differential equations in infinite-dimensional space (Kluwer: Dordrecht, The Netherlands, 1991).
- [3] Yu.L. Daletskii, Ya.I. Shnaiderman. Diffusion and quasi-invariant measures on infinite-dimensional Lie groups. Funct. Anal. and its Applications. 3 (1969), 156-158.
- [4] R. Engelking. General topology (Moscow: Mir, 1986).
- [5] H.Federer. Geometric measure theory (Berlin:Springer-Verlag, 1969).
- [6] J.M.G. Fell, R.S. Doran. Representations of *-algebras. locally compact groups, and Banach *-algebraic bundles (Acad. Pr.: Boston, 1988).
- [7] E. Hewitt and K.A. Ross. Abstract harmonic analysis. Second edition (Berlin: Springer-Verlag, 1979).
- [8] A.V. Kosyak. Irreducible Gaussian representations of the group of the interval and circle diffeomorphisms. J. Funct. Anal. 125 (1994), 493-547.
- [9] H.-H. Kuo. Gaussian measures in Banach spaces (Springer, Berlin, 1975).
- [10] S.V. Ludkovsky. Measures on groups of diffeomorphisms of non-Archimedean Banach manifolds, Usp. Mat. Nauk. 51(1996), 169-170 $(N^{2} 2)$.
- [11] S.V. Ludkovsky. Measurability of representations of locally compact groups. Math. Sb. 186 1995, 83-92 (N² 2).
- [12] S.V. Ludkovsky. Measures on groups of diffeomorphisms of non-Archimedean manifolds, representations of groups and their applications. Theoret. i Mathem. Phys., 1999.
- [13] S.V. Ludkovsky. Quasi-invariant measures on non-Archimedean semigroups of loops. Usp. Mat. Nauk, 53 (1998), 203-204 (N² 3).

- [14] S.V. Ludkovsky. Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional real manifold and induced irreducible unitary representations. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. Nuova Serie. 26 pages, is accepted for publication, 1999.
- [15] S.V. Ludkovsky. Quasi-invariant measures on loop groups of Riemann manifolds. Dokl. Ross. Acad. Nauk, to appear.
- [16] S.V. Ludkovsky. Gaussian quasi-invariant measures on loop groups and semigroups of real manifolds and their representations. IHES, Bures, France, preprint IHES/M/97/95.
- [17] S.V. Ludkovsky. Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. IHES/M/98/36.
- [18] S.V. Ludkovsky. Quasi-invariant measures on groups of diffeomorphisms of Schwarz class of smoothness for real manifolds. IHES/M/97/96.
- [19] S.V.Ludkovsky. Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space. Intern. Centre for Theoret. Phys. Trieste, Italy. Preprint (http://www.ictp.trieste.it) IC/96/210, October 1996.
- [20] S.V. Ludkovsky. Quasi-invariant measures on a non-Archimedean group of diffeomorphisms and on a Banach manifold. ICTP. IC/96/215, October, 1996.
- [21] S.V. Ludkovsky. Quasi-invariant measures on groups of diffeomorphisms of real Banach manifolds. ICTP. IC/96/218, October, 1996.
- [22] M.A. Naimark. Normed rings (Moscow: Nauka, 1968).
- [23] Yu.A. Neretin. Representations of the Virasoro algebra and affine algebras. in: Itogi Nauki i Tech. Ser. Sovr. Probl. Math. Fund. Napravl(Moscow: Nauka) 22(1988), 163-230.
- [24] E.T. Shavgulidze. About one measure quasi-invariant relative to an action of a diffeomorphisms group of a finite-dimensional manifold. Dokl. Akad. Nauk SSSR. 303(1988), 811-814.
- [25] A.V. Skorohod. Integration in the Hilbert space (Moscow: Nauka, 1975).