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SOME MORE STEINHAUS TYPE THEOREMS

OVER VALUED FIELDS

by P.N. Natarajan

Ann. Math. Blaise Pascal, Vol. 6. N° 1. 1999, pp.47-54

1. Preliminaries :

Throughout this paper, K denotes IR (the field of real numbers) or C (the field of

complex numbers) or a complete, non-trivially valued, non-archimedean field. In the rele-
vant context, we mention explicitly which field is chosen. Entries of infinite matrices and

sequences, which occur in the sequel, are in K. If X, Y are sequence spaces over K, by

(X, Y) we mean the class of all infinite matrices A = (ank), n, k = 0,1,2,... such that
Ax = {(Ax)n} ~ Y whenever x = {xk} E X, where

00

(Ax)n = 03A3ankxk, n = 0,1,2,...,
k=0

it being assumed that the series on the right converges. Whenever there is some notion
of limit or sum in X, Y, we denote by (X, Y; P) that subclass of (X, Y) consisting of
infinite matrices which preserve this limit or sum. Whatever be K, the sequence spaces
l, 7, co, c, l~, 03B3~ are defined as :
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rxJ

fl = ((zk) : £ |Ik| converges );
k=0
rxJ

q = ((zk) : £ rk converges );
k=0

co = ( (rk ) : hm zk = 0 ) ;k~~

c = ((zk) : hm zk exists );k~~

l~ = ((zk) : sup |xk|  ~};~>o~ 
k

03B3~ = ( (zk) : {sk} ~ l~, sk = 03A3 xi, k = 0, 1 , 2, ... ) .
i=o

We note that fl c q c co C c c l~ and 03B3~ C l~.
oo

(fl, q; P) denotes the class of all infinite matrices A = (ank) in (fl, q) such that £ (Az)n =
n=o

cx~

03A3xk,x = {xk} E fl.
k=0

2. The case K = IFl or C

When K = IR or C, the following result is well-known (see [6] , 48, p.7).

Theorem 2. I A matrix A = (ank) is in (f, q) if and only if

m

sup 03A3ank  ~ ; ( i )
m>k n=o

and
«

03A3ank converges , k = 0, 1 , 2, .... (2)
n=0 

’

We now prove the following result when K = Ill or C.

Theorem 2.2 A matrix A = (ank) is in (f, q; P) if and only if it satisfies (I ) and

oo

03A3ank = I , k = 0, 1 , 2, .... (3 )
n=o
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Proof. If A is in P) then (1) holds. For k = 0, I. 2, ... , each ek = {0,..., o,1, o, ... },

(1 occurring at the kth place), lies in f and so = 1, i.e. , ank = 1, k =

n=0 n=0

0,1, 2, .... i.e., (3) holds.

Conversely, let (1) and (3) hold. It follows that ~-~ is in (~, ~y) in view of Theorem 2.1.
Let B = (bmk) where

m

bmk = ~ ank. m, k = o,1, 2, ....
n=0

Using (1) and (3), we have

sup |bmk|  oo ; (4)
m,k

and

lim bmk =1, k = 0,1. ?..... (5)
m~~

Thus B is in (f, c ; P’) (see [5]). Let, now , E ~. So

00 00

lim bmkxk exists and is equal to xk,

0o m B o0

i.e., lim ( ank ) xk = xk.

i.e., lim (ank xk) = xk,
~ 00 

B 
00

> Lr 
n=0 k=0 / k=0

00 00

i.e., ~ = ~ xk.
n=0 k=0

In other words, A is in P), which completes the proof of the theorem.
Maddox [3] proved that (~, ~y; P) n (~r~, y) = ~. In this context, it is worthwhile to

note that the identity matrix (i.e., I = (ink) where ink = 1, if k = n and ink = 0, if k ~ n)
is in P) n (03B3~,03B3) so that (l,03B3; P) n (03B3~,03B3) ~ 0. Since (03B3,03B3) ~ (03B3~,03B3), it follows

that (~, ~y; P) n (~y, ~) ~ ~. We note that ~y, ~y; P) c (~. ~y; P) and (co, ~y) C (~y, ~y). Having
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"enlarged" the class (03B3,03B3; P) to (l,03B3; p) , , we would like to "contract" the class (y, y) to
(eo, ’Y) and attempt a Steinhaus type theorem involving the classes (l, y; P) and (c0, 03B3).

Theorem 2.3 (e; ;~: P) n = 0.

Proof. Let A = (ank) be in (~, ~y; P) n (co, ~) . Since A is in (co. ~),
o m

ank _ M  oo . (6)
’n 

k=0 n=0

(see [6], 43, p.6). Now, for L = 0,1, 2, ... , m = 0,1, 2....,
L m 00 m

|ank | ~ |ank  M.

Taking limit as m ~ oo, we have,

L oo

03A3|03A3ank| _ ll, L = 0.1. 2, ....
k=0 n=0

Taking limit as L -; oo, we get ,

ank  M.
k=0 n= 0

oo

which is contradiction, since ank =1, k = 0,1, 2 ... in view of (3). This establishes our
claim.

Corollary. Since co C c C C (c; 03B3) C (c0, 03B3) so that (l, 03B3; P) n (X,03B3) = 0
for X = Co, c, ,

3. The case when K is a complete, non trivially valued, non-archimedean field.

When K is a complete, non-trivially valued, non-archimedean field, we note that
03B3 = co and 03B3~ = l~. In this case, it is easy to prove the following results.

Theorem 3.1 (l,03B3) = = (co, c0). A matrix A = (ank) is in (f,co) if and only if
it satisfies
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sup |ank ]  cxJ (7)
n,k 

.

and
hm ank = 0, k = 0, 1 , 2, .... (8)
n-o*

Theorem 3.2 (1, q; P) = (I, co; P) = (co,co;P) = (q, q; P). A matrix A = (ank) is in

(I, co; P) if and only if it satisfies (3 ), (7) and (8 ).

Theorem 3.3 A matrix A = (ank) is in (c, c0) if and only ij it satisfies (7), (8) and

oo

lim 03A3ank = 0. (9)
k=0

Remark 3.4 Theorem 2.3 fails to hold when K is a complete, non-trivially valued, non

archimedean field since (I, co) = (c0, co). We also have

(I, co ; P) n (c, co) # S,

as the following example illustrates. Consider the infinite matrix

i.e., ank = n + 1 if k = n;

- -(n + 1)~ if k = n + 1;
= 0, otherwise.

Then (3) , (7) , (8) and (9) hold so that A is in (~, co; P) n (c, co). These remarks

point out significant departure from the case K = IR or C.

The following lemma is needed in the sequel. ,

Lemma 3.5 The following statements are equivalent :

(a) A matrix A = (ank) is in co) ;
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(b) (i) lim ank = 0 ; i (10)
and

(ii) lim sup |ank| = 0 : (11)k>Q 
.

(c) (i) (8) holds
and

(ii) lim sup |ank| = 0 . (12)
n>o

Proof. For the proof of ’"(a) is equivalent to (b)", see ([4], 422). We now prove that (b)
and (c) are equivalent. Let us suppose that (b) holds. For every fixed k = 0,1,2,...,

|ank| ~ sup |ank’|.
k’~0

Now (8) follows in view of (b) (ii). Again by (b) (ii), given ~ > 0, we can choose a positive
integer N such that

sup |ank|  > .N . (13)
b>0

In view of (b) (i), for n = 0. l, 2.... , ~1’. ne can find a positive integer L such that

|ank|  £, k > L. (14)

(13) and (14) imply that

|ank|  ~, n = 0,1, 2, ... , k > L.

i.e., sup |ank|  > L
n>o

Le., lim sup lank! = 0,
k~~ n>0 

,

so that (c) (ii) holds. Similarly we can prove that (c) implies (b). This establishes the

lemma.

We now prove the following Steinhaus type result.

Theorem 3.6 When K is a complete. non trivially valued, non-archimedean field, then

Proof. Let A = (ank) be in ~~, co; P) n co). In view of (3), we have,
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I = |~ ank I _ sup |ank|.n=o n>o

Taking limit as k --> oo and using (12), we get 1  0, which is absurd. This proves the

theorem.

In view of Theorem 3.2 and Theorem 3.6 we have the following.

Corollary. (co, co ; P) n co) = 0.
We shall now take up an application of Theorem 3.6 to analytic functions. For the the-

ory of analytic functions in non-archimedean fields, one can refer to [2]. Consider the space
of bounded analytic functions inside the disk d(0,1-) (usually denoted by Ab(d(0,1-))),
provided with the topology of uniform convergence in each disk d(0, r), r  1 and the

space of analytic elements in the disk d(O,l) (usually denoted by H(d(0,1))), provided
with the topology of uniform convergence on d(0,1). Thanks to Lemma 3.5, one can check
that co) represents the space of continuous linear mappings from .Ab(d(0,1-)) into

H(d(0,1)). We now have the following result, which follows from Theorem 3.6.

Theorem 3.7 There e.xists no continuous linear mapping ~ from into

H(d(0,1)) satisfying ~( f ) (1) = f (1) for all f E Ab(d(0,1-~).

I thank the referee for his useful and helpful suggestions which enabled me to present
the material in a much better form.
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