Annales mathématiques Blaise Pascal

P.N. NATARAJAN
 Some more Steinhaus type theorems over valued fields

Annales mathématiques Blaise Pascal, tome 6, n 1 (1999), p. 47-54
http://www.numdam.org/item?id=AMBP_1999__6_1_47_0
© Annales mathématiques Blaise Pascal, 1999, tous droits réservés.
L'accès aux archives de la revue « Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SOME MORE STEINHAUS TYPE THEOREMS

OVER VALUED FIELDS

by P.N. Natarajan

1. Preliminaries :

Throughout this paper, K denotes \mathbb{R} (the field of real numbers) or \mathbb{C} (the field of complex numbers) or a complete, non-trivially valued, non-archimedean field. In the relevant context, we mention explicitly which field is chosen. Entries of infinite matrices and sequences, which occur in the sequel, are in K. If X, Y are sequence spaces over K, by (X, Y) we mean the class of all infinite matrices $A=\left(a_{n k}\right), n, k=0,1,2, \ldots$ such that $A x=\left\{(A x)_{n}\right\} \in Y$ whenever $x=\left\{x_{k}\right\} \in X$, where

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, n=0,1,2, \ldots
$$

it being assumed that the series on the right converges. Whenever there is some notion of limit or sum in X, Y, we denote by $(X, Y ; P)$ that subclass of (X, Y) consisting of infinite matrices which preserve this limit or sum. Whatever be K, the sequence spaces $\ell, \gamma, c_{0}, c, \ell_{\infty}, \gamma_{\infty}$ are defined as :

$$
\begin{aligned}
\ell & =\left\{\left\{x_{k}\right\}: \sum_{k=0}^{\infty}\left|x_{k}\right| \text { converges }\right\} \\
\gamma & =\left\{\left\{x_{k}\right\}: \sum_{k=0}^{\infty} x_{k} \text { converges }\right\} \\
c_{0} & =\left\{\left\{x_{k}\right\}: \lim _{k \rightarrow \infty} x_{k}=0\right\} \\
c & =\left\{\left\{x_{k}\right\}: \lim _{k \rightarrow \infty} x_{k} \text { exists }\right\} \\
\ell_{\infty} & =\left\{\left\{x_{k}\right\}: \sup _{k \geq 0}\left|x_{k}\right|<\infty\right\} \\
\gamma_{\infty} & =\left\{\left\{x_{k}\right\}:\left\{s_{k}\right\} \in \ell_{\infty}, s_{k}=\sum_{i=0}^{k} x_{i}, k=0,1,2, \ldots\right\}
\end{aligned}
$$

We note that $\ell \subset \gamma \subset c_{0} \subset c \subset \ell_{\infty}$ and $\gamma_{\infty} \subset \ell_{\infty}$.
$(\ell, \gamma ; P)$ denotes the class of all infinite matrices $A=\left(a_{n k}\right)$ in $(\ell, \gamma) \operatorname{such}$ that $\sum_{n=0}^{\infty}(A x)_{n}=$ $\sum_{k=0}^{\infty} x_{k}, x=\left\{x_{k}\right\} \in \ell$.
2. The case $K=\mathbb{R}$ or \mathbb{C}

When $K=\mathbb{R}$ or \mathbb{C}, the following result is well-known (see [6], 48, p. $\overline{\mathbf{T}}$).

Theorem 2.1 A matrix $A=\left(a_{n k}\right)$ is in (ℓ, γ) if and only if

$$
\begin{equation*}
\sup _{m, k}\left|\sum_{n=0}^{m} a_{n k}\right|<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n k} \text { converges }, k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

We now prove the following result when $K=\mathbb{R}$ or \mathbb{C}.

Theorem 2.2 A matrix $A=\left(a_{n k}\right)$ is in $(\ell, \gamma ; P)$ if and only if it satisfies (1) and

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n k}=1, k=0,1,2, \ldots \tag{3}
\end{equation*}
$$

Proof. If A is in $(\ell, \gamma ; P)$ then (1) holds. For $k=0,1,2, \ldots$, each $e_{k}=\{0, \ldots, 0,1,0, \ldots\}$, (1 occurring at the k th place), lies in ℓ and so $\sum_{n=0}^{\infty}\left(A e_{k}\right)_{n}=1$, i.e. , $\sum_{n=0}^{\infty} a_{n k}=1, k=$ $0,1,2, \ldots$. i.e., (3) holds.

Conversely, let (1) and (3) hold. It follows that A is in (ℓ, γ) in view of Theorem 2.1. Let $B=\left(b_{m k}\right)$ where

$$
b_{m k}=\sum_{n=0}^{m} a_{n k}, m, k=0,1,2, \ldots
$$

Using (1) and (3), we have

$$
\begin{equation*}
\sup _{m, k}\left|b_{m k}\right|<\infty \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} b_{m k}=1, k=0,1,2, \ldots \tag{5}
\end{equation*}
$$

Thus B is in $\left(\ell, c ; P^{\prime}\right)$ (see [5]). Let, now , $\left\{x_{k}\right\} \in \ell$. So

$$
\lim _{m \rightarrow \infty} \sum_{k=0}^{\infty} b_{m k} x_{k} \text { exists and is equal to } \sum_{k=0}^{\infty} x_{k}
$$

i.e., $\lim _{m \rightarrow \infty} \sum_{k=0}^{\infty}\left(\sum_{n=0}^{m} a_{n k}\right) x_{k}=\sum_{k=0}^{\infty} x_{k}$.
i.e., $\lim _{m \rightarrow \infty} \sum_{n=0}^{m}\left(\sum_{k=0}^{\infty} a_{n k} x_{k}\right)=\sum_{k=0}^{\infty} x_{k}$,
i.e., $\quad \sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} a_{n k} x_{k}\right)=\sum_{k=0}^{\infty} x_{k}$,
i.e., $\quad \sum_{n=0}^{\infty}(A x)_{n}=\sum_{k=0}^{\infty} x_{k}$.

In other words, A is in $(\ell, \gamma ; P)$, which completes the proof of the theorem.
Maddox [3] proved that $(\gamma, \gamma ; P) \cap\left(\gamma_{\infty}, \gamma\right)=\emptyset$. In this context, it is worthwhile to note that the identity matrix (i.e., $I=\left(i_{n k}\right)$ where $i_{n k}=1$, if $k=n$ and $i_{n k}=0$, if $k \neq n$) is in $(\ell, \gamma ; P) \cap\left(\gamma_{\infty}, \gamma\right)$ so that $(\ell, \gamma ; P) \cap\left(\gamma_{\infty}, \gamma\right) \neq \emptyset$. Since $(\gamma \cdot \gamma) \supset\left(\gamma_{\infty}, \gamma\right)$, it follows that $(\ell, \gamma ; P) \cap(\gamma, \gamma) \neq \emptyset$. We note that $(\gamma, \gamma ; P) \subset(\ell, \gamma ; P)$ and $\left(c_{0}, \gamma\right) \subset(\gamma, \gamma)$. Having
"enlarged" the class $(\gamma, \gamma ; P)$ to $(\ell, \gamma ; P)$, we would like to "contract" the class (γ, γ) to $\left(c_{0}, \gamma\right)$ and attempt a Steinhaus type theorem involving the classes $(\ell, \gamma ; P)$ and $\left(c_{0}, \gamma\right)$.

Theorem $2.3(\ell, \gamma: P) \cap\left(c_{0}, \gamma\right)=\emptyset$.
Proof. Let $A=\left(a_{n k}\right)$ be in $(\ell, \gamma ; P) \cap\left(c_{0}, \gamma\right)$. Since A is in $\left(c_{0} . \gamma\right)$,

$$
\begin{equation*}
\sup _{m} \sum_{k=0}^{\infty}\left|\sum_{n=0}^{m} a_{n k}\right| \leq M<\infty \tag{6}
\end{equation*}
$$

(see [6], 43, p.6). Now, for $L=0,1,2, \ldots, m=0,1,2 \ldots$,

$$
\sum_{k=0}^{L}\left|\sum_{n=0}^{m} a_{n k}\right| \leq \sum_{k=0}^{\infty}\left|\sum_{n=0}^{m} a_{n k}\right| \leq M
$$

Taking limit as $m \rightarrow \infty$, we have,

$$
\sum_{k=0}^{L}\left|\sum_{n=0}^{\infty} a_{n k}\right| \leq M, L=0.1,2, \ldots
$$

Taking limit as $L \rightarrow \infty$, we get ,

$$
\sum_{k=0}^{\infty}\left|\sum_{n=0}^{\infty} a_{n k}\right| \leq M
$$

which is contradiction, since $\sum_{n=0}^{\infty} a_{n k}=1, k=0,1,2 \ldots$ in view of (3). This establishes our claim.

Corollary. Since $c_{0} \subset c \subset \ell_{\infty},\left(\ell_{\infty}, \gamma\right) \subset(c, \gamma) \subset\left(c_{0}, \gamma\right)$ so that $(\ell ; \gamma ; P) \cap(X, \gamma)=\emptyset$ for $X=c_{0}, c, \ell_{\infty}$.

3. The case when K is a complete, non trivially valued, non-archimedean field.

When K is a complete, non-trivially valued, non-archimedean field, we note that $\gamma=c_{0}$ and $\gamma_{\infty}=\ell_{\infty}$. In this case, it is easy to prove the following results.

Theorem $3.1\left(\ell . \frac{\gamma}{\ell}\right)=\left(\ell, c_{0}\right)=\left(c_{0}, c_{0}\right)$. A matrix $A=\left(a_{n k}\right)$ is in $\left(\ell, c_{0}\right)$ if and only if it satisfies

$$
\begin{equation*}
\sup _{n, k}\left|a_{n k}\right|<\infty \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=0, k=0,1,2, \ldots \tag{8}
\end{equation*}
$$

Theorem $3.2(\ell, \gamma ; P)=\left(\ell, c_{0} ; P\right)=\left(c_{0}, c_{0} ; P\right)=(\gamma, \gamma ; P)$. A matrix $A=\left(a_{n k}\right)$ is in $\left(\ell, c_{0} ; P\right)$ if and only if it satisfies (3), (7) and (8).

Theorem 3.3 A matrix $A=\left(a_{n k}\right)$ is in $\left(c, c_{0}\right)$ if and only if it satisfies (7), (8) and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=0 \tag{9}
\end{equation*}
$$

Remark 3.4 Theorem 2.3 fails to hold when K is a complete, non-trivially valued, non archimedean field since $\left(\ell, c_{0}\right)=\left(c_{0}, c_{0}\right)$. We also have

$$
\left(\ell, c_{0} ; P\right) \cap\left(c, c_{0}\right) \neq \emptyset
$$

as the following example illustrates. Consider the infinite matrix

$$
A=\left(a_{n k}\right)=\left[\begin{array}{ccccccc}
1 & -1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 2 & -2 & 0 & 0 & 0 & \cdots \\
0 & 0 & 3 & -3 & 0 & 0 & \cdots \\
0 & 0 & 0 & 4 & -4 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

$$
\text { i.e., } \quad \begin{aligned}
a_{n k} & =n+1 \text { if } k=n ; \\
& =-(n+1), \text { if } k=n+1 \\
& =0, \text { otherwise }
\end{aligned}
$$

Then (3), (7), (8) and (9) hold so that A is in $\left(\ell, c_{0} ; P\right) \cap\left(c, c_{0}\right)$. These remarks point out significant departure from the case $K=\mathbb{R}$ or \mathbb{C}.

The following lemma is needed in the sequel.
Lemma 3.5 The following statements are equivalent:
(a) A matrix $A=\left(a_{n k}\right)$ is in $\left(\ell_{\infty}, c_{0}\right)$;

$$
\begin{equation*}
\text { (b) (i) } \lim _{k \rightarrow \infty} a_{n k}=0 \text {; } \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { (ii) } \lim _{n \rightarrow \infty} \sup _{k \geq 0}\left|a_{n k}\right|=0 \text {; } \tag{11}
\end{equation*}
$$

(c) (i) (8) holds
and

$$
\begin{equation*}
\text { (ii) } \lim _{k \rightarrow \infty} \sup _{n \geq 0}\left|\boldsymbol{a}_{n k}\right|=0 \text {. } \tag{12}
\end{equation*}
$$

Proof. For the proof of "(a) is equivalent to (b)", see ([4], 422). We now prove that (b) and (c) are equivalent. Let us suppose that (b) holds. For every fixed $k=0,1,2, \ldots$,

$$
\left|a_{n k}\right| \leq \sup _{k^{\prime} \geq 0}\left|a_{n k^{\prime}}\right|
$$

Now (8) follows in view of (b) (ii). Again by (b) (ii), given $\varepsilon>0$, we can choose a positive integer N such that

$$
\begin{equation*}
\sup _{k \geq 0}\left|a_{n k}\right|<\varepsilon, n>N \tag{13}
\end{equation*}
$$

In view of (b) (i), for $n=0,1,2 \ldots, N$. we can find a positive integer L such that

$$
\begin{equation*}
\left|a_{n k}\right|<\equiv, k>L \tag{14}
\end{equation*}
$$

(13) and (14) imply that

$$
\begin{aligned}
& \left|a_{n k}\right|<\varepsilon, n=0,1,2, \ldots, k>L \\
& \sup _{n \geq 0}\left|a_{n k}\right|<\varepsilon . k>L \\
& \lim _{k \rightarrow \infty} \sup _{n \geq 0}\left|a_{n k}\right|=0
\end{aligned}
$$

i.e.,
i.e.,
so that (c) (ii) holds. Similarly we can prove that (c) implies (b). This establishes the lemma.

We now prove the following Steinhaus type result.
Theorem 3.6 When K is a complete, non trivially valued, non-archimedean field, then

$$
\left(\ell, c_{0} ; P\right) \cap\left(\ell_{\infty}, c_{0}\right)=\emptyset
$$

Proof. Let $A=\left(a_{n k}\right)$ be in $\left(\ell, c_{0} ; P\right) \cap\left(\ell_{\infty}, c_{0}\right)$. In view of (3), we have,

$$
l=\left|\sum_{n=0}^{\infty} a_{n k}\right| \leq \sup _{n \geq 0}\left|a_{n k}\right|
$$

Taking limit as $k \rightarrow \infty$ and using (12), we get $1 \leq 0$, which is absurd. This proves the theorem.

In view of Theorem 3.2 and Theorem 3.6 we have the following.
Corollary. $\quad\left(c_{0}, c_{0} ; P\right) \cap\left(\ell_{\infty}, c_{0}\right)=\emptyset$.
We shall now take up an application of Theorem 3.6 to analytic functions. For the theory of analytic functions in non-archimedean fields, one can refer to [2]. Consider the space of bounded analytic functions inside the disk $d\left(0,1^{-}\right)$(usually denoted by $\mathcal{A}_{b}\left(d\left(0,1^{-}\right)\right)$), provided with the topology of uniform convergence in each disk $d(0, r), r<1$ and the space of analytic elements in the disk $d(0,1)$ (usually denoted by $H(d(0,1))$), provided with the topology of uniform convergence on $d(0,1)$. Thanks to Lemma 3.5, one can check that $\left(\ell_{\infty}, c_{0}\right)$ represents the space of continuous linear mappings from $\mathcal{A}_{b}\left(d\left(0,1^{-}\right)\right)$into $H(d(0,1))$. We now have the following result, which follows from Theorem 3.6.

Theorem 3.7 There exists no continuous linear mapping ϕ from $\mathcal{A}_{b}\left(d\left(0,1^{-}\right)\right)$into $H(d(0,1))$ satisfying $\phi(f)(1)=f(1)$ for all $f \in \mathcal{A}_{b}\left(d\left(0,1^{-}\right)\right)$.

I thank the referee for his useful and helpful suggestions which enabled me to present the material in a much better form.

REFERENCES

[1] G. Bachman, Introduction to p-adic numbers and valuation theory, Academic Press, 1964.
[2] A. Escassut, Analytic elements in p-adic analysis, World Scientific Publishing Co., 1995.
[3] I.J. Maddox, On theorems of Steinhaus type, J. London Math. Soc. 42 (1967), 239-244.
[4] P.N. Natarajan, The Steinhaus theorem for Toeplitz matrices in non-archimedean fields, Comment. Math. Prace Mat. 20 (1978), 417-422.
[5] P.N. Natarajan, Some Steinhaus type theorems over valued fields, Ann. Math. Blaise Pascal 3 (1996), 183-188.
[6] M. Stieglitz, H. Tietz, Matrix transformationen von Folgenräumen Eine Ergebnisübersicht, Math. Z. 154 (1977), 1-16.

Department of Mathematics, Ramakrishna Mission Vivekananda College, Chennai - 600 004, INDIA

