Annales mathématiques Blaise Pascal

L.M. CAMACHO
 J.R. GÓMEZ
 R.M. NAVARRO
 3-filiform Lie algebras of dimension 8

Annales mathématiques Blaise Pascal, tome 6, no 2 (1999), p. 1-13
http://www.numdam.org/item?id=AMBP_1999__6_2_1_0
© Annales mathématiques Blaise Pascal, 1999, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

3 -filiform Lie algebras of dimension 8^{1}

L.M. Camacho ${ }^{2} \quad$ J.R. Gómez ${ }^{2} \quad$ R.M. Navarro ${ }^{3}$

Abstract

We give, up to isomorphism and in dimension 8, all the 3-filiform Lie algebras (whose Goze's invariant is $(n-3,1,1,1)$).

1 Introduction

The classification of finite dimensional complex Lie algebras is an open problem. Only the seven (or less) dimensional nilpotent Lie algebras are classified. A general classification seems very difficult. In fact, a recent result of Goze [11] shows that the general classification of $2 p$ or $2 p+1$-dimensional Lie algebras is equivalent to the linear classification of $(2,1)$ tensors in \mathbf{C}^{p}. This implies that the Jacobi conditions do not reduce the difficult problem of classification of the $(2,1)$-tensors.

Except the 7-dimensional case, we know also the classification of filiform algebras up to dimension 11 ([2], [8], [10]) or the general classification of 2 -abelian filiform Lie algebras [9]. The results of Khakimdjanov [12] are very important for these classifications.

Cabezas, Gómez and Jiménez-Merchán [4], [6] and [5] generalize the notion of filiform algebra to p-filiform algebra, which correspond to nilpotent algebras of Goze's invariant $(n-p, 1, \ldots, 1)$ where $n=\operatorname{dim}(\mathfrak{g})$); hence, the filiform algebras are the 1 -filiform algebras and the quasi-filiform algebras are the 2 -filiform algebras. The authors above mentioned also give the classification for high values of p (that is, close to the dimension of the algebra), more exactly for the integer values of p between $n-4$ and $n-2$.

In [3], the $(n-5)$-filiform Lie algebras with maximal derived subalgebra are classified. In this way our first goal in this paper is to give an explicit description of the 3 -filiform Lie algebra in 8-dimension.

Goze's invariant or characteristic sequence of the nilpotent Lie algebra \mathfrak{g}, denoted by $c(\mathfrak{g})$, is defined to be $\sup \{c(X): X \in \mathfrak{g}-[\mathfrak{g}, \mathfrak{g}]\}$, where $c(X)$ is the sequence, in decreasing order, of dimensions of characteristic subspaces of the nilpotent operator $a d(X)$. Thus, the filiform, quasifiliform and abelian Lie algebras of dimension n have as their Goze's invariant $(n-1,1),(n-2,1,1)$ and $(1,1, \ldots, 1)$, respectively.

[^0]
2 Notation and Terminology

The notions and notations used in this paper are defined in [11].
Let \mathfrak{g} be a 3 -filiform Lie algebra of dimension 8 . We consider a characteristic vector $X_{0} \in \mathfrak{g}-[\mathfrak{g}, \mathfrak{g}]$. An adapted basis [11] is given by $\left\{X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, Y_{1}, Y_{2}\right\}$ where $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, Y_{1}, Y_{2}\right\}$ is a Jordan basis of $\operatorname{ad}\left(X_{0}\right)$. It satisfies $\left[X_{0}, X_{i}\right]=X_{i+1}, i=$ $1, \ldots, 4$ and $\left[X_{0}, Y_{j}\right]=0, j=1,2$. We denote by AL3F the set of complex 3 -filiform Lie algebras of dimension 8, AL3F(k) the subset of AL3F constituted of Lie algebras whose derived subalgebra is of dimension $k, \operatorname{AL3F}(\mathrm{k}, \mathrm{l})$ the subset of $\operatorname{AL3F}(\mathrm{k})$ for which elements satisfy $\operatorname{dim}(\mathcal{Z}(\mathfrak{g}))=l, \operatorname{AL3F}(\mathrm{k},-, \mathrm{m})$ the subset of $\operatorname{AL3F}(\mathrm{K})$ with $\operatorname{dim} \mathcal{D}^{2}(\mathfrak{g})=m$.

If $g \in$ AL3F will be given by the following brackets

$$
\begin{array}{ll}
{\left[X_{0}, X_{i}\right]} & 1 \leq i \leq 4 \\
{\left[X_{i}, X_{i+1}\right]} & 1 \leq i \leq 3 \\
{\left[X_{1}, Y_{j}\right]} & 1 \leq j \leq 2 \\
{\left[Y_{1}, Y_{2}\right]} &
\end{array}
$$

An easy computation (using Jacobi's identity) shows that the remaining brackets can be found from the above mentioned.

In what follows, when we use subindexs i and j, then respective ranges of variation will be $1 \leq i \leq 4$ and $1 \leq j \leq 2$, though we do not indicate it. The laws will be denoted by $\mu_{(5,1,1,1)}^{s}$ or by $\mu_{(5,1,1,1)}^{21, \lambda}, \lambda \in \mathbf{C}_{2}$, where $\mathbf{C}_{2}=\mathbf{C} / R$, being R the equivalence relation defined by $u R v \Longleftrightarrow u= \pm v$.

3 3-filiform complex Lie algebras of dimension 8

1. Decomposable case

Proposition 3.1. Let \mathfrak{g} be a 6-dimension filiform Lie algebra. Then $\tilde{\mathfrak{g}}=\mathfrak{g} \oplus \mathbf{C}^{2}$ is a 8-dimension 3-filiform Lie algebra.

Let \mathfrak{g} be a 7-dimension 2-filiform Lie algebra. Then $\tilde{\mathfrak{g}}=\mathfrak{g} \oplus \mathbf{C}$ is a 8-dimension 3-filiform Lie algebra.

The proof is obvious.
As we know the 6 -dimensional Lie algebras and the 7 -dimensional 2 -filiform Lie algebras, we can deduce the complete classification of decomposable 8-dimension 3-filiform Lie algebras.

2. Non decomposable case.

Now, we consider only 3 -filiform non-decomposable Lie algebras.
Lemma 3.2. [3] If $\mathfrak{g} \in A L 3 F$ there is an adapted basis satisfying

$$
\text { (1) }\left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=c X_{4}+d X_{5}+\alpha_{1} Y_{1}+\alpha_{2} Y_{2}} \\
{\left[X_{2}, X_{3}\right]=-e X_{5}-\beta_{1} Y_{1}-\beta_{2} Y_{2}} \\
{\left[X_{1}, Y_{j}\right]=a_{3 j} X_{3}+a_{2 j} X_{4}+a_{1 j} X_{5}} \\
{\left[Y_{1}, Y_{2}\right]=b X_{5}}
\end{array}\right.
$$

with the restrictions following $\alpha_{\mathrm{k}} \mathrm{a}_{3 \mathrm{j}}=0 ; 2 \mathrm{a}_{32} \mathrm{e}-\alpha_{1} \mathrm{~b}=0 ; 2 \mathrm{a}_{31} \mathrm{e}+\alpha_{2} \mathrm{~b}=0$;
$\beta_{\mathrm{k}} \mathrm{a}_{3 \mathrm{j}}=0 ; \beta_{\mathrm{k}} \mathrm{a}_{2 \mathrm{j}} \mathrm{c}=0 ; \beta_{\mathrm{k}} \mathrm{a}_{1 \mathrm{j}}=0 ; \beta_{\mathrm{k}} \mathrm{b}=0 ; \beta_{1} \mathrm{a}_{21}+\beta_{2} \mathrm{a}_{22}=0, \quad 1 \leq \mathrm{k} \leq 2$
We can deduce that there exists three families of AL3F, pairwise non-isomorphic, whose laws can be expressed, in a suitable adapted basis by

$$
\begin{array}{lll}
\operatorname{AL3F}(6): & \operatorname{AL3F}(5): \\
\left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=c X_{4}+Y_{1}} \\
{\left[X_{2}, X_{3}\right]=-Y_{2}} \\
{\left[X_{1}, Y_{1}\right]=a_{21} X_{4}} \\
c a_{21}=0
\end{array}\right. & \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=c X_{4}+Y_{1}} \\
{\left[X_{2}, X_{3}\right]=-e X_{5}-\beta Y_{1}} \\
{\left[X_{1}, Y_{j}\right]=a_{2 j} X_{4}+a_{1 j} X_{5}} \\
\beta a_{1 j}=0 ; \beta a_{21}=0 ; \\
\beta a_{22} c=0
\end{array}\right. & \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=c X_{4}+d X_{5}} \\
{\left[X_{2}, X_{3}\right]=-e X_{5}} \\
{\left[X_{1}, Y_{j}\right]=a_{3 j} X_{3}+a_{2 j} X_{4}+a_{1 j} X_{5}} \\
{\left[Y_{1}, Y_{2}\right]=b X_{5}} \\
a_{3 j} e=0
\end{array}\right.
\end{array}
$$

In fact, let $A=\left(\begin{array}{ll}\alpha_{1} & \alpha_{2} \\ \beta_{1} & \beta_{2}\end{array}\right)$. We have

$$
\operatorname{dim}\left(\mathcal{D}^{1}(\mathfrak{g})\right)=4+\operatorname{rank}(A)
$$

a) $\operatorname{rank}(A)=2$. We consider the change of basis

$$
\left\{\begin{array}{l}
Y_{1}^{\prime}=d X_{5}+\alpha_{1} Y_{1}+\alpha_{2} Y_{2} \\
Y_{2}^{\prime}=e X_{5}+\beta_{1} Y_{1}+\beta_{2} Y_{2}
\end{array}\right.
$$

The relation (1) can be reduced to $\alpha_{1}=\beta_{2}=1$ and $\alpha_{2}=\beta_{1}=d=e=0$. This gives the first family AL3F(6).
$\operatorname{KINANI} \operatorname{rank}(A)=1$. Always we can supposed $\alpha_{1} \neq 0$. The change of basis

$$
\left\{\begin{array}{l}
Y_{1}^{\prime}=d X_{5}+\alpha_{1} Y_{1}+\alpha_{2} Y_{2} \\
Y_{2}^{\prime}=Y_{2}
\end{array}\right.
$$

permits to consider $\left(\alpha_{1}, \alpha_{2}\right)=(1,0)$ and $\beta_{2}=0$. We obtain AL3F(5).
c) $\operatorname{rank}(A)=0$. We find $\operatorname{AL3F}(4)$.

Theorem 3.3. [3] If $\mathfrak{g} \in A L 3 F(6)$, then it is isomorphic to one of the algebras, pairwise non-isomorphic, that will be denoted by μ^{s}, with $1 \leq s \leq 3$.
Lemma 3.4. There exist three subfamilies of $A L 3 F(5)$, pairwise non isomorphic, whose laws can be expressed, in a suitable adapted basis by

$$
\begin{array}{lll}
\operatorname{AL3F}(5,3): & \operatorname{AL3F}(5,2): \\
\left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=c X_{4}+Y_{1}} \\
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=c X_{4}+Y_{1}} \\
{\left[X_{2}, X_{3}\right]=-e X_{5}-\beta Y_{1}} \\
{\left[X_{1}, Y_{j}\right]=a_{2 j} X_{4}+a_{1 j} X_{5}} \\
a_{21} a_{12}-a_{22} a_{11}=0, \\
\exists i, j: a_{i j} \neq 0 \\
\beta a_{1 j}=0, \beta a_{21}=0, \\
\beta a_{22} c=0
\end{array}\right. & \operatorname{AL3F(5,1):} \\
\end{array}\left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=c X_{4}+Y_{1}} \\
{\left[X_{2}, X_{3}\right]=-e X_{5}} \\
{\left[X_{1}, Y_{j}\right]=a_{2 j} X_{4}+a_{1 j} X_{5}} \\
a_{12} a_{21}-a_{22} a_{11} \neq 0
\end{array}\right]
$$

Proof: It is easy to check that the dimension of the center of any Lie algebra \mathfrak{g} with $\mathfrak{g} \in A L 3 F(5)$ depends of the rank of the matrix $B=\left(\begin{array}{ll}a_{21} & a_{22} \\ a_{11} & a_{12}\end{array}\right)$. Thus, we will consider three cases:
(1) If $\operatorname{rank}(B)=0$ we lead to $\operatorname{AL3F}(5,3)$.
(2) If $\operatorname{rank}(B)=1$ this implicates that $a_{21} a_{12}-a_{22} a_{11}=0$ with any $a_{i j} \neq 0$ obtaining of this form the family $\operatorname{AL3F}(5,2)$.
(3) If $\operatorname{rank}(B)=2$ then $a_{21} a_{12}-a_{22} a_{11} \neq 0$ from we can assert that ($\left.a_{21}, a_{11}, a_{12}\right) \neq$ $(0,0,0)$ what together to the above restrictions lead to $\beta=0$, and thus we obtain the family $\operatorname{AL3F}(5,1)$.

We can note that if $\mathfrak{g} \in \operatorname{AL3F}(5,3)$ then \mathfrak{g} is decomposable of the form $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathbf{C}$ with g_{1} of dimension 7. These algebras are will known (see § 3.1). We find the algebras $\mu_{(5,1,1)}^{s} \oplus \mathbf{C}$ for $s=1$ to 8 .

Consider the case $\operatorname{AL3F}(5,2)$. We note that if $a_{22}=a_{12}=0$ then $a_{11} \neq 0$ or $a_{21} \neq 0$. The corresponding algebras are decomposable.

Theorem 3.5. If $\mathfrak{g} \in A L 3 F(5,2)$, then it is isomorphic to one of the algebras, pairwise non-isomorphic, of laws $\mu_{(5,1,1,1)}^{s}$ with $12 \leq s \leq 15$ and the decomposable Lie algebras $\mu_{(5,1,1)}^{s} \oplus \mathbf{C}, 9 \leq s \leq 18, s \neq 14$ and $\mu_{(5,1,1)}^{14, \lambda} \oplus \mathbf{C}, \lambda \in \mathbf{C}_{2}$.

Proof: The nullity of β is an invariant. In fact, $\quad \operatorname{dim}\left(\mathcal{C}^{3}(\mathfrak{g})\right)$ is 2 if $\beta=0$ and 3 if $\beta \neq 0$. Case 1: $(\beta=0)$ Making generic changes of basis,

$$
\begin{aligned}
& X_{0}^{\prime}=P_{0} X_{0}+P_{1} X_{1}+P_{2} X_{2}+P_{3} X_{3}+P_{4} X_{4}+P_{5} X_{5}+P_{6} Y_{1}+P_{7} Y_{2} \\
& X_{1}^{\prime}=Q_{0} X_{0}+Q_{1} X_{1}+Q_{2} X_{2}+Q_{3} X_{3}+Q_{4} X_{4}+Q_{5} X_{5}+Q_{6} Y_{1}+Q_{7} Y_{2} \\
& Y_{2}^{\prime}=S_{0} X_{0}+S_{1} X_{1}+S_{2} X_{2}+S_{3} X_{3}+S_{4} X_{4}+S_{5} X_{5}+S_{6} Y_{1}+S_{7} Y_{2}
\end{aligned}
$$

the condition of change of basis for to remain $\left(X_{5}^{\prime} \neq 0\right)$ is

$$
\left(P_{0}+P_{1} e\right)\left(P_{0}^{2}+P_{1}^{2} a_{21}\right)\left(P_{0} Q_{1}-P_{1} Q_{0}\right) \neq 0
$$

and for to remain into the family, $\left(\left[X_{1}^{\prime}, X_{3}^{\prime}\right]=c^{\prime} X_{5}^{\prime}\right.$), we have to impose that: $P_{0} Q_{0}+$ $P_{1} Q_{1} a_{21}=0$, and the changes will be completed particularizing for some concrete values of any parameter and the respective restrictions.

The new parameters are:

$$
\begin{aligned}
& c^{\prime}=\frac{Q_{1} c}{P_{0}^{2}+P_{1}^{2} a_{21}}+\frac{P_{1}\left(Q_{0} c+Q_{1} a_{11}\right)}{\left(P_{0}+P_{1} e\right)\left(P_{0}^{2}+P_{1}^{2} a_{21}\right)} ; \\
& e^{\prime}=\frac{\left(P_{0} e-P_{1} a_{21}\right)\left(P_{0} Q_{1}-P_{1} Q_{0}\right)}{\left(P_{0}+P_{1} e\right)\left(P_{0}^{2}+P_{1}^{2} a_{21}\right)} ; \quad a_{21}^{\prime}=\frac{\left(P_{0} Q_{1}-P_{1} Q_{0}\right)^{2}}{\left(P_{0}^{2}+P_{1}^{2} a_{21}\right)^{2}} a_{21} .
\end{aligned}
$$

We observe that the nullities of a_{21} and $e^{2}+a_{21}$ are invariants of the algebra, indeed

$$
e^{\prime 2}+a_{21}^{\prime}=\frac{\left(P_{0} Q_{1}-P_{1} Q_{0}\right)^{2}}{\left(P_{0}+P_{1} e\right)^{2}\left(P_{0}^{2}+P_{1}^{2} a_{21}\right)}\left(e^{2}+a_{21}\right)
$$

- If $a_{21}=0$, to remain into the family: $P_{1} S_{7} a_{22}+P_{0} S_{3}=0$ and $P_{0} S_{4}+P_{1} S_{3} c+P_{1} S_{4} e+$ $P_{1} S_{6} a_{11}+P_{1} S_{7} a_{12}-P_{2} S_{3} e+P_{2} S_{7} a_{22}=0$, and the condition of change of basis is $P_{0} Q_{1}\left(P_{0}+\right.$ $\left.P_{1} e\right) S_{7} \neq 0$.

Thus, the parameters remain:

$$
\begin{aligned}
& c^{\prime}=\frac{Q_{1} c}{P_{0}^{2}}+\frac{P_{1} Q_{1} a_{11}}{P_{0}^{2}\left(P_{0}+P_{1} e\right)} ; \quad e^{\prime}=\frac{Q_{1} e}{P_{0}+P_{1} e} \\
& a_{11}^{\prime}=\frac{Q_{1}^{2} a_{11}}{P_{0}\left(P_{0}+P_{1} e\right)^{2}} ; \quad a_{22}^{\prime}=\frac{S_{7} a_{22}}{P_{0}^{3}} ; \\
& a_{12}^{\prime}=\frac{S_{6} a_{11}+S_{7} a_{12}}{P_{0}^{2}\left(P_{0}+P_{1} e\right)^{2}}-\frac{P_{1} S_{7} a_{22}\left(3 P_{0} c+P_{1} a_{11}\right)}{P_{0}^{5}\left(P_{0}+P_{1} e\right)}-\frac{P_{1}^{3} S_{7} c e^{2} a_{22}}{P_{0}^{5}\left(P_{0}+P_{1} e\right)^{2}}
\end{aligned}
$$

Furthermore, the nullity of $c e+a_{11}$ is an invariant. In fact,

$$
c^{\prime} e^{\prime}+a_{11}^{\prime}=\frac{Q_{1}^{2}}{P_{0}^{2}\left(P_{0}+P_{1} e\right)}\left(c e+a_{11}\right)
$$

By the above changes of basis we observe that the nullities of e, a_{11} and a_{22} are invariants. Taking into account that the dimension of the center is 1 together to fact that $a_{21}=0$, we arrive at $a_{22} a_{11}=0$ with any $a_{i j} \neq 0$.

Now, we show in a table the configuration of the parameters
where the cases (1), (2), (3) and (4) are described below

$$
\text { (1) } e=a_{11}=0, \quad c a_{22} \neq 0
$$

We choose $P_{1}=\frac{P_{0} a_{12}}{3 c a_{22}}$ in order to obtain $a_{12}=0$.
(2) $e=0, \quad a_{11} \neq 0$

By choosing $P_{1}=-\frac{P_{0} c}{a_{11}}$ always can be supposed $c=0$ and $a_{22} a_{11}=0 \longrightarrow a_{22}=0$. Thus, taking $S_{6}=-\frac{S_{7} a_{12}}{a_{11}}$ we lead to $a_{12}^{\prime}=0$.
(3) $a_{11}=0, \quad e c a_{22} \neq 0$

It is easily seen that $e^{\prime} a_{12}^{\prime}+c^{\prime} a_{22}^{\prime}=\frac{Q_{1} S_{7}}{P_{0}^{2}\left(P_{0}+P_{1} e\right)^{3}}\left(e a_{12}+c a_{22}\right)$ and so, its nullity is an invariant. Thus, if $e a_{12}+c a_{22} \neq 0$, by a suitable choosing of $P_{1} \neq-\frac{P_{0}}{e}$ can be obtained $a_{12}=0$. Otherwise, if $e a_{12}+c a_{22}=0$ then $a_{12}=-\frac{c a_{22}}{e}$.
(4) $e a_{11} \neq 0, \quad c^{\prime}=\frac{Q_{1}\left(P_{0} c+P_{1}\left(c e+a_{11}\right)\right)}{P_{0}^{2}\left(P_{0}+P_{1} e\right)}$ and, so, the nullity of c depends on the nullity of $c e+a_{11}$. If $c e+a_{11}=0$, the nullity of c is an invariant and if $c e+a_{11} \neq 0$, by substituting $P_{1}=-\frac{P_{0} c}{c e+a_{11}}$ we obtain $c=0$ and in the same way $S_{6}=-\frac{S_{7} a_{12}}{a_{11}}$ lead to $a_{12}=0$.

At this point, is a laborious but simple process to verify that the only algebras or families of algebras with $a_{21}=0$, pairwise non-isomorphic, are the correspond to the enunciate, previous changes of scale when they are needed.

- If $a_{21} \neq 0$, the change of basis given by $\left(X_{0}^{\prime}=X_{0}, X_{1}^{\prime}=X_{1}, Y_{1}^{\prime}=Y_{1}, Y_{2}^{\prime}=a_{21} Y_{2}-a_{22} Y_{1}\right)$ together to the restriction $a_{21} a_{12}-a_{22} a_{11}=0$, let us suppose $a_{22}=a_{12}=0$. In this case, we can note that any algebra is decomposable of the form $\mu_{(5,1,1)}^{s} \oplus \mathbf{C}$ for $s=12$ to $s=18$, $s \neq 14$, and $\mu_{(5,1,1)}^{14, \lambda} \oplus C$ with $\lambda \in \mathrm{C}_{2}$.
Case 2: $(\beta \neq 0)$ Taking into account the restrictions, we obtain $a_{11}=a_{12}=a_{21}=0$, $a_{22} \neq 0 \Longrightarrow c=0$ and doing an suitable change of basis ($X_{0}^{\prime}=X_{0} ; X_{1}^{\prime}=X_{1}-\frac{e}{\beta a_{22}} Y_{2}$) we can supposed $e=0$. In this way, we arrive at $\mu_{(5,1,1,1)}^{15}$, previous change of scale.

Theorem 3.6. If $\mathfrak{g} \in \operatorname{AL3F}(5,1)$, then it is isomorphic to one of the algebras, pairwise non-isomorphic, of laws $\mu_{(5,1,1,1)}^{s}$ with $16 \leq s \leq 25$ and $s \neq 21$ or to one of the type $\mu_{(5,1,1,1)}^{21, \lambda}$ with $\lambda \in \mathbf{C}_{2}$.

Proof: By the generic changes of basis used in Theorem 3.5 can be proved that the nullity of a_{21} is an invariant.

- If $a_{21}=0 \rightarrow Q_{0}=0$, and from the condition of change of basis we can arrive at $a_{11} a_{22} \neq 0$ and thanks to the change of basis ($Y_{1}^{\prime}=Y_{1}, Y_{2}^{\prime}=a_{11} Y_{2}-a_{12} Y_{1}$) can be supposed $a_{12}=0$. The others parameters remain:

$$
c^{\prime}=\frac{\left(P_{0}+P_{1} e\right) Q_{1} c+P_{1} Q_{1} a_{11}}{P_{0}^{2}\left(P_{0}+P_{1} e\right)} ; \quad e^{\prime}=\frac{Q_{1} e}{P_{0}+P_{1} e}
$$

under the restrictions:

$$
\begin{aligned}
& P_{0} Q_{1}\left(P_{0}+P_{1} e\right) \neq 0 \\
& P_{0}^{3} S_{6} a_{11}-3 P_{0} P_{1} S_{7}\left(P_{0}+P_{1} e\right) c a_{22}-P_{1}^{2} S_{7}\left(P_{0}+P_{1} e\right) a_{11} a_{22}-P_{1}^{3} S_{7} c e^{2} a_{22}=0
\end{aligned}
$$

We observe that the nullities of e and $c e+a_{11}$ are invariants.

- if $e=0$, choosing $P_{1}=-\frac{P_{0} c}{a_{11}}\left(a_{11} \neq 0\right)$ we obtain $c=0$ and
- if $e \neq 0$,
$* c e+a_{11} \neq 0$, choosing $P_{1}=-\frac{P_{0} c}{c e+a_{11}}$ we obtain $c=0$,
* $c e+a_{11}=0$, then $c=-\frac{a_{11}}{e}$.

After all the above considerations, we can consider the following configuration for the parameters:

$$
\binom{a_{21}=0 \Longrightarrow a_{11} a_{22} \neq 0 ;}{\Longrightarrow a_{12}=0}\left\{\begin{array}{l}
e=0 \longrightarrow c=0 \\
e \neq 0\left\{\begin{array}{l}
c=0 \\
c=-\frac{a_{11}}{e}
\end{array}\right.
\end{array}\right.
$$

obtaining the algebras $\mu_{(5,1,1,1)}^{s}$, with $16 \leq s \leq 18$, previous changes of scale.

- If $a_{21} \neq 0$, using a similar reasoning of Theorem 3.5 the nullity of $e^{2}+a_{21}$ is invariant and the change ($Y_{1}^{\prime}=Y_{1}, Y_{2}^{\prime}=a_{21} Y_{2}-a_{22} Y_{1}$) let us suppose $a_{22}=0$ and so $a_{12} \neq 0$.
- If $e^{2}+a_{21} \neq 0$, choosing $P_{1}=\frac{P_{0} e}{a_{21}}$, we obtain $e=0$.

By doing again the changes of basis together to the imposition of remain into the family, that is $e=0$, we have that $Q_{0}=P_{1}=0$, leading to

$$
c^{\prime}=\frac{Q_{1} c}{P_{0}^{2}} ; \quad a_{11}^{\prime}=\frac{Q_{1}^{2} a_{11}}{P_{0}^{3}}
$$

obtaining $\mu_{(5,1,1,1)}^{s}$, with $19 \leq s \leq 20$ and $\mu_{(5,1,1,1)}^{21, \lambda}$, with $\lambda \in \mathbf{C}_{2}$ previous changes of scale when they are needed.

- If $e^{2}+a_{21}=0 \longrightarrow a_{21}=-e^{2} ; e \neq 0$. It is easy to see that the changes of basis used in the proof of the Theorem 3.5 can be adapted because of there is not necessary to consider the vector Y_{2} thanks to the fact that $Y_{2} \notin \mathcal{C}^{1}(\mathfrak{g})$ and $a_{12} \neq 0$. The nullities of $a_{11}-e c$ and $a_{11}+3 e c$ hold, and now repeating the cases considered in Theorem 3.5 we obtain the algebras $\mu_{(5,1,1,1)}^{s}$, with $22 \leq s \leq 25$.

Lemma 3.7. There exist two subfamilies of AL3F(4), pairwise non-isomorphic, whose laws can be expressed, in a suitable adapted basis by

$$
\begin{array}{ll}
A L 3 F(4,-, 0): & A L 3 F(4,-, 1): \\
\left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=c X_{4}+d X_{5}} \\
{\left[X_{1}, X_{3}\right]=c X_{5}} \\
{\left[X_{1}, Y_{1}\right]=a_{31} X_{3}+a_{21} X_{4}+a_{11} X_{5}} \\
{\left[X_{1}, Y_{2}\right]=a_{22} X_{4}+a_{12} X_{5}} \\
{\left[X_{2}, Y_{1}\right]=a_{31} X_{4}+a_{21} X_{5}} \\
{\left[X_{2}, Y_{2}\right]=a_{22} X_{5}} \\
{\left[X_{3}, Y_{1}\right]=a_{31} X_{5}} \\
{\left[Y_{1}, Y_{2}\right]=b X_{5}}
\end{array}\right. & {\left[\begin{array}{l}
{\left[X_{1}, X_{2}\right]=c X_{4}+d X_{5}} \\
{\left[X_{1}, X_{3}\right]=c X_{5}} \\
{\left[X_{1}, X_{4}\right]=e X_{5}} \\
{\left[X_{2}, X_{3}\right]=-e X_{5}} \\
{\left[X_{1}, Y_{1}\right]=a_{21} X_{4}+a_{11} X_{5}} \\
{\left[X_{1}, Y_{2}\right]=a_{22} X_{4}+a_{12} X_{5}} \\
{\left[X_{2}, Y_{1}\right]=a_{21} X_{5}} \\
{\left[X_{2}, Y_{2}\right]=a_{22} X_{5}} \\
{\left[Y_{1}, Y_{2}\right]=b X_{5}}
\end{array} e \neq 0\right.}
\end{array}
$$

Proof: By tacking into account the restrictions of the family of laws AL3F(4), can be supposed $a_{32}=0$ (doing changes of basis when they are needed). The nullity of e is an invariant, in fact $\operatorname{dim}\left(\mathcal{D}^{2}(\mathfrak{g})\right)$ is 0 if $e=0$ and 1 if $e \neq 0$.
Theorem 3.8. If $\mathfrak{g} \in A L 3 F(4,-, 0)$, then it is isomorphic to one of the algebras, pairwise non-isomorphic, of laws $\mu_{(5,1,1,1)}^{s}$ with $26 \leq s \leq 41$, and the decomposable Lie algebras $\mu_{(5,1)}^{s} \oplus \mathbf{C}^{2}, 1 \leq s \leq 3, \mu_{(5,1,1)}^{s} \oplus \mathbf{C}, 19 \leq s \leq 27$.
Proof: Similar to precedents.
Theorem 3.9. If $\mathfrak{g} \in A L 3 F(4,-, 1)$, then it is isomorphic to one of the algebras, pairwise non-isomorphic, of laws $\mu_{(5,1,1,1)}^{s}$ with $42 \leq s \leq 47$, and the decomposable Lie algebras $\mu_{(5,1)}^{s} \oplus \mathbf{C}^{2}, 4 \leq s \leq 5, \mu_{(5,1,1)}^{s} \oplus \mathbf{C}, 28 \leq s \leq 33$.
Proof: Similar to precedents.

4 List of laws

Continuously we will explicit the laws of each one of the algebras with Goze's invariant ($5,1,1,1$) in order to simplify their placing. We remind that it is only necessary to know the following brackets:

$$
\begin{array}{ll}
{\left[X_{0}, X_{i}\right]} & 1 \leq i \leq 4 \\
{\left[X_{i}, X_{i+1}\right]} & 1 \leq i \leq 3 \\
{\left[X_{1}, Y_{j}\right]} & 1 \leq j \leq 2 \\
{\left[Y_{1}, Y_{2}\right]} &
\end{array}
$$

the remaining brackets can be found using Jacobi's identity.
The used notations in the list of algebras can be see in [7]. By commodity, we include the list of laws of any $(n-5)$-filiform Lie algebra of dimension 6 and 7 (whose Goze's invariant are $(5,1)([10],[13])$ and $(5,1,1)([1])$, respectively).
AL3F(6):

$$
\begin{aligned}
& \mu_{(5,1,1,1)}^{1}: \\
& \left\{\begin{array}{lll}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=Y_{1}} \\
{\left[X_{2}, X_{3}\right]=-Y_{2}}
\end{array}\right. \\
& \mu_{(5,1,1,1)}^{2}: \\
& {\left[X_{0}, X_{i}\right]=X_{i+1}} \\
& {\left[X_{1}, X_{2}\right]=Y_{1}} \\
& {\left[X_{2}, X_{3}\right]=-Y_{2}} \\
& {\left[X_{1}, Y_{1}\right]=X_{4}}
\end{aligned} \quad\left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}+Y_{1}} \\
{\left[X_{2}, X_{3}\right]=-Y_{2}}
\end{array}\right.
$$

AL3F(5):
$\operatorname{AL3F}(5,3)$:

$$
\mu_{(5,1,1)}^{s} \oplus \mathbf{C}, \quad 1 \leq s \leq 8
$$

AL3F(5,2):

$$
\begin{aligned}
& \mu_{(5,1,1,1)}^{10}: \quad \mu_{(5,1,1,1)}^{11}: \quad \mu_{(5,1,1,1)}^{12} \text { : } \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = Y _ { 1 } } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 4 } }
\end{array} \quad \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = Y _ { 1 } } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 4 } + X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}+Y_{1}} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y_{2}\right]=X_{5}}
\end{array}\right.\right.\right. \\
& \mu_{(5,1,1,1)}^{13}: \quad \mu_{(5,1,1,1)}^{14}: \quad \mu_{(5,1,1,1)}^{15}: \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 4 } + Y _ { 1 } } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 4 } }
\end{array} \quad \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 4 } + Y _ { 1 } } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 4 } - X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=Y_{1}} \\
{\left[X_{2}, X_{3}\right]=-Y_{1}} \\
{\left[X_{1}, Y_{2}\right]=X_{4}}
\end{array}\right.\right.\right. \\
& \mu_{(5,1,1)}^{s} \oplus \mathbf{C}, \quad 9 \leq s \leq 18, i \neq 14 \\
& \mu_{(5,1,1)}^{14, \lambda} \oplus \mathbf{C}, \quad \lambda \in \mathbf{C}_{2}
\end{aligned}
$$

$\operatorname{AL3F}(5,1)$:

$\mu_{(5,1,1,1)}^{16}$:	$\mu_{(5,1,1,1)}^{17}$	
$\left\{\begin{array}{l} {\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=Y_{1}} \\ {\left[X_{1}, Y_{1}\right]=X_{5}} \\ {\left[X_{1}, Y_{2}\right]=X_{4}} \end{array}\right.$	$\left\{\begin{array}{l} {\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=Y_{1}} \\ {\left[X_{2}, X_{3}\right]=-X_{5}} \\ {\left[X_{1}, Y_{1}\right]=X_{5}} \\ {\left[X_{1}, Y_{2}\right]=X_{4}} \end{array}\right.$	$\left\{\begin{array}{l} {\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=-X_{4}+Y_{1}} \\ {\left[X_{2}, X_{3}\right]=-X_{5}} \\ {\left[X_{1}, Y_{1}\right]=X_{5}} \\ {\left[X_{1}, Y_{2}\right]=X_{4}} \end{array}\right.$
$\mu_{(5,1,1,1)}^{19}$:	$\mu_{(5,1,1,1)}^{20}$:	$\mu_{(5,1,1,1)}^{21, \lambda}$:
$\left\{\begin{array}{l} {\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=Y_{1}} \\ {\left[X_{1}, Y_{1}\right]=X_{4}} \\ {\left[X_{1}, Y_{2}\right]=X_{5}} \end{array}\right.$	$\left\{\begin{array}{l} {\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=Y_{1}} \\ {\left[X_{1}, Y_{1}\right]=X_{4}+X_{5}} \\ {\left[X_{1}, Y_{2}\right]=X_{5}} \end{array}\right.$	$\left\{\begin{array}{l} {\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=X_{4}+Y_{1}} \\ {\left[X_{1}, Y_{1}\right]=X_{4}+\lambda X_{5}} \\ {\left[X_{1}, Y_{2}\right]=X_{5}} \\ \lambda \in \mathbf{C}_{2} \end{array}\right.$
$\mu_{(5,1,1,1)}^{22}$:	$\mu_{(5,1,1,1)}^{23}$:	$\mu_{(5,1,1,1)}^{24}$:
$\left\{\begin{array}{l} {\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=Y_{1}} \\ {\left[X_{2}, X_{3}\right]=-X_{5}} \\ {\left[X_{1}, Y_{1}\right]=-X_{4}} \\ {\left[X_{1}, Y_{2}\right]=X_{5}} \end{array}\right.$	$\left\{\begin{array}{l} {\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=X_{4}+Y_{1}} \\ {\left[X_{2}, X_{3}\right]=-X_{5}} \\ {\left[X_{1}, Y_{1}\right]=-X_{4}+X_{5}} \\ {\left[X_{1}, Y_{2}\right]=X_{5}} \end{array}\right.$	$\left\{\begin{array}{l} {\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=X_{4}+Y_{1}} \\ {\left[X_{2}, X_{3}\right]=-X_{5}} \\ {\left[X_{1}, Y_{1}\right]=-X_{4}-3 X_{5}} \\ {\left[X_{1}, Y_{2}\right]=X_{5}} \end{array}\right.$

$\mu_{(5,1,1,1)}^{25}$:
$\left\{\begin{array}{l}{\left[X_{0}, X_{i}\right]=X_{i+1}} \\ {\left[X_{1}, X_{2}\right]=Y_{1}} \\ {\left[X_{2}, X_{3}\right]=-X_{5}} \\ {\left[X_{1}, Y_{1}\right]=-X_{4}+X_{5}} \\ {\left[X_{1}, Y_{2}\right]=X_{5}}\end{array}\right.$
AL3F(4):
AL3F(4,-,0):

$$
\mu_{(5,1)}^{s} \oplus \mathbf{C}^{2}, \quad 1 \leq s \leq 3
$$

$$
\mu_{(5,1,1)}^{s} \oplus \mathbf{C}, \quad 19 \leq s \leq 27
$$

$$
\begin{aligned}
& \mu_{(5,1,1,1)}^{26} \text { : } \\
& \begin{array}{l}
\mu_{(5,1,1,1)}^{2}: \\
\left\{\begin{array}{lll}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[Y_{1}, Y_{2}\right]=X_{5}}
\end{array}\right. \\
\mu_{(5,1,1,1)}^{2}: \\
\mu_{(5,1,1,1)}^{29}:
\end{array}\left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } ^ { 2 8 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 5 } } \\
{ [Y _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, Y_{1}\right]=X_{4}} \\
{\left[Y_{1}, Y_{2}\right]=X_{5}}
\end{array}\right.\right. \\
& \mu_{(5,1,1,1)}^{29}: \quad \mu_{(5,1,1,1)}^{30}: \quad \mu_{(5,1,1,1)}^{31}: \\
& \begin{array}{l}
\left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, Y_{1}\right]=X_{4}} \\
{\left[X_{1}, Y_{2}\right]=X_{5}}
\end{array}\right.
\end{array}\left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 4 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 5 } } \\
{ [Y _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}} \\
{\left[Y_{1}, Y_{2}\right]=X_{5}}
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 4 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 4 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 4 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 4 } } \\
{ [Y _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, Y_{1}\right]=X_{3}} \\
{\left[Y_{1}, Y_{2}\right]=X_{5}}
\end{array}\right.\right.\right. \\
& \mu_{(5,1,1,1)}^{35} \text { : } \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 3 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 3 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 5 } } \\
{ [Y _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{5}} \\
{\left[X_{1}, Y_{1}\right]=X_{3}} \\
{\left[Y_{1}, Y_{2}\right]=X_{5}}
\end{array}\right.\right.\right. \\
& \mu_{(5,1,1,1)}^{38} \text { : } \\
& \mu_{(5,1,1,1)}^{39}: \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 5 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 3 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 5 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 3 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 5 } } \\
{ [Y _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, Y_{1}\right]=X_{3}} \\
{\left[X_{1}, Y_{2}\right]=X_{4}}
\end{array}\right.\right.\right. \\
& \mu_{(5,1,1,1)}^{41} \text { : } \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, Y_{1}\right]=X_{3}} \\
{\left[X_{1}, Y_{2}\right]=X_{4}} \\
{\left[Y_{1}, Y_{2}\right]=X_{5}}
\end{array}\right.
\end{aligned}
$$

AL3F(4,-,1):

$$
\begin{aligned}
& \mu_{(5,1,1,1)}^{42}: \quad \mu_{(5,1,1,1)}^{43}: \quad \mu_{(5,1,1,1)}^{44} \text { : } \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 4 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 4 } } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 4 } } \\
{ [X _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[Y_{1}, Y_{2}\right]=X_{5}}
\end{array}\right.\right.\right. \\
& \mu_{(5,1,1,1)}^{45}: \quad \mu_{(5,1,1,1)}^{46}: \quad \mu_{(5,1,1,1)}^{47} \text { : } \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [X _ { 1 } , Y _ { 1 }] = X _ { 4 } } \\
{ [Y _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 4 } } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [Y _ { 1 } , Y _ { 2 }] = X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y_{1}\right]=X_{4}} \\
{\left[Y_{1}, Y_{2}\right]=X_{5}}
\end{array}\right.\right.\right. \\
& \mu_{(5,1)}^{s} \oplus \mathbf{C}^{2}, \quad 4 \leq s \leq 5 \\
& \mu_{(5,1,1)}^{s} \oplus \mathbf{C}, \quad 28 \leq s \leq 33
\end{aligned}
$$

5 Appendix

We will explicit the laws of each one of the algebras with Goze's invariant $(5,1)$ and $(5,1,1)$ in order to simplify their placing. We write only essential brackets (see § 4).

5.1 Lie algebras of Goze's invariant $(5,1)$

(see, [10], [13])

$$
\left.\begin{array}{l}
\mu_{(5,1)}^{1}: \\
\left\{\left[X_{0}, X_{i}\right]=X_{i+1}\right.
\end{array}{\begin{array}{l}
\mu_{(5,1)}^{2}: \\
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{5}}
\end{array}}_{\mu_{(5,1)}^{3}:}^{\mu_{(5,1)}^{4}:} \begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}}
\end{array}\right\}
$$

5.2 Lie algebras of Goze's invariant ($5,1,1$)

(see, [1])

$$
\begin{aligned}
& \mu_{(5,1,1)}^{1}: \\
& \left\{\begin{array}{lll}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=Y}
\end{array}\right. \\
& \mu_{(5,1,1)}^{2}: \\
& {\left[\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=Y} \\
{\left[X_{2}, X_{3}\right]=-X_{5}}
\end{array}\right.}
\end{aligned}\left\{\begin{array}{l}
{\left[X_{(5,1,1)}^{3}: X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}+Y}
\end{array}\right\}
$$

$$
\begin{aligned}
& \mu_{(5,1,1)}^{7}: \quad \mu_{(5,1,1)}^{8}: \quad \mu_{(5,1,1)}^{9}: \\
& \begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}+Y} \\
{\left[X_{2}, X_{3}\right]=-Y} & \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}+Y} \\
\mu_{(5,1,1)}^{10}:
\end{array}\right. \\
{\left[X_{2}, X_{3}\right]=-\sqrt{2} X_{5}-Y}\end{cases} \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=Y} \\
{\left[X_{1}, Y\right]=X_{5}} \\
\mu_{(5,1,1)}^{12}:
\end{array}\right. \\
& \begin{array}{l}
\begin{cases}{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=Y} & \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=X_{5}}
\end{array}\right. \\
\mu_{(5,1,1)}: & {\left[X_{1}, X_{2}\right]=-X_{4}+Y} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=X_{5}}\end{cases} \\
\mu_{(5,1,1)}^{14, \lambda}:
\end{array} \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=Y} \\
{\left[X_{1}, Y\right]=X_{4}} \\
{\left[X_{2}, Y\right]=X_{5}}
\end{array}\right. \\
& \mu_{(5,1,1)}^{15} \text { : } \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = Y } \\
{ [X _ { 1 } , Y] = X _ { 4 } + X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}+Y} \\
{\left[X_{1}, Y\right]=X_{4}+\lambda X_{5}}
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=Y} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=-X_{4}}
\end{array}\right. \\
& \mu_{(5,1,1)}^{16} \text { : } \\
& \mu_{(5,1,1)}^{17} \text { : } \\
& \mu_{(5,1,1)}^{18} \text { : } \\
& \left\{\begin{array} { l l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 4 } + Y } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [X _ { 1 } , Y] = - X _ { 4 } + X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}+Y} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=-X_{4}-3 X_{5}}
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=Y} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=-X_{4}+X_{5}}
\end{array}\right. \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, Y\right]=X_{5}}
\end{array}\right. \\
& \mu_{(5,1,1)}^{22} \text { : } \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , Y] = X _ { 4 } + X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}} \\
{\left[X_{1}, Y\right]=X_{5}}
\end{array}\right.\right. \\
& \mu_{(5,1,1)}^{25} \text { : } \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , Y] = X _ { 3 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, Y\right]=X_{3}+X_{5}}
\end{array}\right.\right. \\
& \mu_{(5,1,1)}^{28} \text { : } \\
& \mu_{(5,1,1)}^{29} \text { : } \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=X_{5}}
\end{array}\right. \\
& \mu_{(5,1,1)}^{31} \text { : } \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{5}} \\
{ }_{2}^{23}\left[X_{1}, Y\right]=X_{5}
\end{array}\right. \\
& \mu_{(5,1,1)}^{21} \text { : } \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, Y\right]=X_{4}}
\end{array}\right. \\
& \mu_{(5,1,1)}^{24} \text { : } \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}} \\
{\left[X_{1}, Y\right]=X_{4}}
\end{array}\right. \\
& \mu_{(5,1,1)}^{27} \text { : } \\
& \left\{\begin{array} { l }
{ [X _ { 0 } , X _ { i }] = X _ { i + 1 } } \\
{ [X _ { 1 } , X _ { 2 }] = X _ { 4 } } \\
{ [X _ { 2 } , X _ { 3 }] = - X _ { 5 } } \\
{ [X _ { 1 } , Y] = X _ { 4 } - X _ { 5 } }
\end{array} \quad \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=X_{5}}
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{5}} \\
{\left[X_{1}, Y\right]=X_{3}} \\
\mu_{(5,1,1)}:
\end{array}\right. \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=X_{4}}
\end{array}\right. \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=X_{4}+X_{5}} \\
\mu_{(5,1,1)}^{33}:
\end{array}\right. \\
& \left\{\begin{array}{l}
{\left[X_{0}, X_{i}\right]=X_{i+1}} \\
{\left[X_{1}, X_{2}\right]=X_{4}} \\
{\left[X_{2}, X_{3}\right]=-X_{5}} \\
{\left[X_{1}, Y\right]=X_{4}}
\end{array}\right.
\end{aligned}
$$

and the decomposable algebras $\quad \mu_{(5,1)}^{s} \oplus \mathbf{C}, \quad 1 \leq s \leq 5$.

References

[1] J.M. Ancochea, M. Goze, Classification des algèbres de Lie nilpotentes complexes de dimension 7, Archiv. Math., 52:2, pp. 175-185, 1989.
[2] J.M. Ancochea, M. Goze, Classification des algèbres de Lie filiformes de dimension 8, Archiv. Math., 50, 511-525, 1988.
[3] J.M. Cabezas, L.M. Camacho, J.R. Gómez, R.M. Navarro, A class of nilpotent Lie algebras, To appear in Communications in Algebra.
[4] J.M. Cabezas, J.R. Gómez, Generación de la familia de leyes de álgebras de Lie ($n-5$)filiformes en dimensión cualquiera, Meeting on Matrix Analysis and its Applications, 109-116, Sevilla, 1997.
[5] J.M. Cabezas, J.R. Gómez, (n-4)-filiform Lie algebras, Communications in Algebra, vol 27, 1999.
[6] J.M. Cabezas, J.R. Gómez, A. Jiménez-Merchán, Family of p-filiform Lie algebras, In Algebra and Operator Theory, 1997. Ed. Y. Khakimdjanov, M. Goze, Sh. Ayupov, 93102, Kluwer Academic Publishers, 1998.
[7] L.M. Camacho, J.R. Gómez, R.M. Navarro, ($n-5$)-filiform Lie algebras up to dimension 7, Preprint of Departamento Matemática Aplicada I, Universidad de Sevilla. MA1-0399IX.
[8] J.R. Gómez, F.J. Echarte, Classification of complex filiform Lie algebras of dimension 9, Rend. Sem. Fac. Sc. Univ. Cagliari, 61:1, 21-29, 1991.
[9] J.R. Gómez, M. Goze, Y. Khakimdjanov, On the k-abelian filiform Lie algebras, Communications in Algebra, 25(2), 431-450, 1997.
[10] J.R. Gómez, A. Jiménez-Merchán, Y. Khakimdjanov, Low-dimensional filiform Lie algebras, Journal of Pure and Applied Algebra, 130(2), 133-158, 1998.
[11] M. Goze, Y. Khakimdjanov, Nilpotent Lie Algebras, Kluwer Academic Publishers, 1996.
[12] Y. Hakimdjanov (Khakimdjanov), Variété des lois d'algèbres de Lie nilpotentes, Geometriae Dedicata, 40, 229-295, 1991.
[13] V. Morosov, Classification of nilpotent Lie algebras of sixth order, Izv. Vysch. U. Zaved. Mat., 4(5), 161-171, 1958.

[^0]: ${ }^{1}$ Partially supported by the PAICYT, FQM143, of the Junta de Andalucía (Spain).
 ${ }^{2}$ Dpto. Matemática Aplicada I. Univ. Sevilla. Avda. Reina Mercedes S.N. 41012 Sevilla (Spain). E-mail: lcamacho@euler.fie.us.es; jrgomez@cica.es
 ${ }^{3}$ Dpto. de Matemáticas. Univ. de Extremadura. Avda. de la Universidad S.N. 10071 Cáceres (Spain). E-mail: rnavarro@unex.es

