
ANNALES MATHÉMATIQUES BLAISE PASCAL

MARCUS NILSSON
Cycles of monomial and perturbated monomial
p-adic dynamical systems
Annales mathématiques Blaise Pascal, tome 7, no 1 (2000), p. 37-63
<http://www.numdam.org/item?id=AMBP_2000__7_1_37_0>

© Annales mathématiques Blaise Pascal, 2000, tous droits réservés.

L’accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http:
//math.univ-bpclermont.fr/ambp/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commer-
ciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AMBP_2000__7_1_37_0
http://math.univ-bpclermont.fr/ambp/
http://math.univ-bpclermont.fr/ambp/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


Cycles of monomial and perturbated monomial
p-adic dynamical systems

Marcus Nilsson

Ann. Math. Blaise Pascal, Vol. 7, N° 1, 2000, pp.37-63

Abstract

Discrete dynamical systems over the field of p-adic numbers are
considered. We will concentrate on the study of periodic points of
monomial and perturbated monomial system. Similarities between
these two kinds of systems will be investigated. The conditions of the
perturbation and the choice of the prime number p plays an important
role here. Our considerations will lead to formulas for the number

cycles of a specific length and for the total number of cycles. ‘Ve will
also study the distribution of cycles in the different p-adic fields.

1 Introduction

Discrete dynamical systems have a lot of applications, for example in bi-
ology and physics, [7]. Dynamical systems over the p-adic numbers (see
for example [11] and [2] for a general introduction to p-adic analysis) can
also be used for modelling psychological and sociological phenomena, see
[7] and [6]. Especially, in [6] a modell of the human memory, using p-adic
dynamical system, is presented.

The most studied p-adic dynamical systems are the so called monomial
systems. A (discrete) monomial system is defined by a function f (x) = x’~.
In [9] there is a stochastic approach to such systems. In [10] dynamical sys-
tems (not only monomial) over finite field extensions of the p-adic numbers
are considered.

By using theorems from number theory, we will be able to prove formulas
for the number of cycles of a specific length to a given system and the total
number of cycles for monomial dynamical systems. We will also investigate
the number of cycles of a specific length to a system for different choices of
the prime number p. Here some remarkable asymptotical results occur.
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We will also study perturbated monomial dynamical systems defined by
functions, fq(x) = xn + q(x), where the perturbation q(x) is a polynomial
whose coefficients have small p-adic absolute value. We investigate the
connection between monomial and perturbated monomial systems. In this
investigations we will use Hensel’s lemma. As in the monomial case the
interesting dynamic of some perturbated systems are located on the unit
sphere in Qp. Sufficient conditions on the perturbation for the two systems
to have similar properties are derived. By similar properties we mean that
there is a one to one correspondence between fixed points and cycles of the
two kinds of systems.

2 Properties of monomial systems

Everywhere below we will use the following notations: The field of p-adic
numbers is denoted by Qp, the ring of p-adic integers is denoted Zp. We
will use ~ ~ ~p to denote the p-adic valuation. The sphere, ball and open ball
with radius p and center at a, with respect to the p-adic metric induced by
the padic valuation, are denoted by Sp(a), Up(a) and respectively.
We use the notation a = b (mod pkZp) if and only if b|p  1/pk.

In this article we will first consider the dynamical systems f : Qp
where

f(x) = x’~ (2.1)

and n E N such that ?~ ~ 2. In [7] there is an extensive investigation of these
systems. Most of the theorems in this section come from this book. In the

following we will use the notation fr to denote the composition of f with
itself r times. By limr~~ fr(x) = Xo we mean that limr~~|fr(x) - x0|p =
0.

Definition 2.1. Let zr = If Xr = XQ for some positive integer r
then 2*0 is said to be a periodic point of f If r is the least natural number
with this property, we call r the period of xo. A periodic point of period 1
is called a fixed point of f. .

Definition 2.2. Let r be a positive integer. The set, = {xe, ... , xr-1}
of periodic points of period r is said to be a cycle to the dynamical system
determined by f if xo = f (xr_1) and xj = for 1  j  r - l. The

length of the cycle is the number of elements in ~y.
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Definition 2.3. A fixed point xo to a function f is said to be an attractor
if there exists a neighbourhood V(xo) such that for every y E V (xo) holds
that

lim x0.

By the basis of attraction we mean the set

= {y E x0~~

It is known that for a monomial system (2.1) 0 and oo are attractors
and that .4(0) = U1(0) and A(oo) = Qp B Ul(0). The rest of the periodic
points are located on SI (0).

Fixed points of (2.1) on 5’~ (0) are solutions of the equation = 1,
hence (n - 1)th roots of unity. Periodic points, with period r > 2, are
solutions of

= 1. (2.2)
It follows directly from the definition of the periodic points that the set of
solutions to equation (2.2) not only contains the periodic points of period
r but also the periodic points with periods that divides r. We have the
following theorem about the roots of (2.2) in Qp. (We use gcd(m, n) to
denote the greatest common divisor of two positive integers m and n. )
Theorem 2.4. The equation x~ =1 has gcd(k, p-1 ) solutions in Qp when
p > 2. If p = 2 then xk = 1 has two solutions (x = 1 and x = -1) if k is
even and one solution ~x =1) if k is odd.

Let N(n, r, p) denote the number of periodic points of period r in (2.1).
Each cycle of length r contains r periodic points with period r. If we denote
by K(n, r, p) the number of cycles of length r then

K(n~ r~ p) = N(n , r, p) /r. (2~3)
In [7] we find the following theorem about the existens of cycles.
Theorem 2.5. Let p > 2 and let mj = gcd(n~ -1,p -1). . The dynamical
system f(x) = xn has r-cycles (r > 2) in Qp if and only if mr does not
divide any m~, r 2014 1. .

We have the following relation between mj, N(n, j, p) and K(n, j, p)

mj = N(n, i, p) = 2K(n, i, P). (2.4)
ilJ zh

Here follow some more facts about the monomial systems:
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Theorem 2.6. If p = 2 then the dynamical system (2.1) has no cycles of
order r > 2.

Proof. If n is even then it follows from Theorem 2.4 that (2.1) has only
one fixed point in Q2. It also follows that nr is even for all r  2 and this
implies that fr(x) = xnr only has one fixed point in Qz which also is the
fixed point of f ( x) = xn. Hence f has no periodic points of period r. The
case when n is odd is proved in a similar way. Q

Theorem 2.7. Let x and y be two nth roots of unity in Qp and let x ~ y.
If p > 2 then Ix - y~p =1. If p = 2 then Ix - y~p = 1/2.

3 Number of cycles
In this section we will derive a formula for the number of cycles of the
dynamical system (2.1). To do this we need some results from number

theory. See for example [5] and [1]. Let us begin with a review of the
Mobius inversion formula.

Definition 3.1. Let n E Z+ then we can write n = "P~ where

p~, r are prime numbers and r is the number of different primes.
The function on Z+ defined by ~c(1) = 1, ~c(n) = 0 if any ej > 1 and
(n) = (20141)’’, if ei = ... = er == 1 is called the Möbius function.

The Mobius function has the following property

(d) = 1, 
if n =1,0, if n > 1,

where d is a positiv divisor of n.

Mobius inversion formula. Let f and g be functions defined for each
n E ?~+ . Then,

f (n) = (3.1)
dJTt

if and only if

g(n) = (3.2)
din
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We are now ready to derive a formula for the number of periodic points
to the monomial system (2.1). Observe that according to Theorem 2.4 we
have for p > 2 that gcd(nr - 1,p - 1) gives the number of periodic points
of period r and periods that divides r. We have the following theorem.

Theorem 3.2. Assume that p > 2. . The number of periodic points of period
r of (2.1) is then given by

N(n, r,p) = 03A3 (d) gcd(nr/d - 1,p - 1). (3.3)
dlr

Proof. The theorem follows directly from Mobius inversion formula. 0

The number of cycles of lenght r of (2.1) is given by

K(n, r,p) - 
N(n’r’p) - I " d gcd(nr/d -- l, p -1 . (3.4

dlr

Remark ~.~. If we assume that r > 2 then it follows from Theorem 2.6 that

N(n, r, 2) = 0. If we take p = 2 in (3.3) we get that N(n, r, 2) = 0. Hence
we can use formula (3.3) also for p = 2 if r > 2.
Remark 3.,~. Formula (3.4) implies the following result which may be in-
teresting for number theory: For every natural number n > 2 and prime
number p > 2 the number N (n, r, p) is divisible by r.
We will now determine the maximum of numbers of cycles, of any length,

in Qp for a fixed p. Let n > 2 be a natural number. Denote by p* (n) the
number we get if we remove, from the prime factorisation of p -~ 1, the
factors dividing n. That is p* (n) is the largest divisor of p -1 which is
relatively prime to n. We also recall the definition of Euler’s p-function
and Euler’s Theorem.

Definition 3.5. Let n be a positive integer. Henceforth, we will denote by
cp(n) the number of natural numbers less than n which are relatively prime
to n. The function cp is called Euler’s p-function.

An equivalent definition of p is that cp(n) is the number of elements in
1Fn which are not divisors of zero. If p is a prime number then 03C6(pl) =

-1). .

Theorem 3.6 (Euler’s Theorem). If a is an integer relatively prime to
b then 1 (mod b).
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Lemma 3.7. With the above notation we have for each r E N

gcd(nr - l,p - 1) = gcd(nr - 1,p*(n)). (3.5)

Proof. Since nr -1- -1 (mod q) if q ~ n it follows that we can remove the
prime factors from p - 1 which divides n and it would not change the value
of gcd(nT - l,p - 1). D

Lemma 3.8. There is a least integer (n), such that

= p*(n). 

Proof. Since gcd(n,p*(n)) = 1 it follows from Theorem 3.6 that n03C6(p*(n)) -
1 (modp*(n)). It is then clear that there exists a smallest such that

1 (modp*(n)) and (n)  03C6(p*(n)). (It is also true that )
/?(?* (~)).) Hence p*(n) ( -1 and the theorem follows. ll

Theorem 3.9. Let p > 2 be a fized prime number, let n > 2 be a natural
number. If R > (n) then

R

~ N(n, r, p) = p*(n). (3.6)
r=1

Proof. We first prove that N(n, r, p) = 0 if r > r(n). Since 

I, p - 1) = p*(n) and every mr = p*(n), r > it

follows from Theorem 2.5 that N(n, r, p) = 0.
Next we want to prove that if r f f(n) then N(n, r, p) = 0. Let dl be a

divisor of p* (n). Let q be the least integer such that n~ -1 = 0 (mod Ll ) .
Since = 1 (modp*(n)) it follows that 1 (mod l1). By the
division algorithm we have f(n) = kq + rl. This implies that

1 == nkq+rl - (nq)knr1 - nrl (mod l1).
Since q was the least non-negative integer such that 1 (mod l1) it

follows that rl = 0. That is q ~ r(n).
The only possible values of are the divisors of p* (n). In

the paragraph above we showed that the least number q such that gcd(nq -
l,p 2014 1) = li, where l1 | p*(n), must be a divisor of r(n). Hence if r f r(n)
then N(n, r, p) = 0.

So far we have proved that

R

~ N(n, r, p) = ~ N(n, r, p).
r=1 r|(n)
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We have left to prove that

L N(n,r,p) = p*(n). °
rlr(n)

From (2.4) we know that

gcd(nr - 1,p*(n)) = 
dlr

If we set r = f(n) we have proved the theorem. D

Corollary 3.10. Let p > 2. The dynamical system (2.1) has p* (n) periodic
points in Qp. .

Theorem 3.11. Let p > 2. The total number,K Tot(n,p), of cycles of (2.1)
is given by

KTot(n,p) = _ 03A31 r03A3 (d)gcd(nr/d-1,p-1) . { 3.7 )
rjr r~r 

r 
d~r

Proof. . From the proof of Theorem 3.9 we know that we only have cycles
of lengths that divides f(n). From (3.4) it follows that

K(n,r,p) = 1 r 03A3 (d) gcd(nr/d - 1, p - 1).
d~r

The theorem is proved. D

Example 3.12. Let us consider the monomial system f(x) = x2 (n = 2).
If p = 137 then it follows from Corollary 3.10 that the dynamical system
has p* (2) = 17 periodic points and from Theorem 3.11 it follows that it has
KTot (2,137) = 3 cycles. In fact the monomial system f(x) = ~2 has one
cycle of length 1 (one fixed point) and two cycles of length 8.

If we consider the same system, but let p = 1999 instead, then the
number of periodic points is p*(2) = 999 and the number of cycles is

KTot {2,1999) = 31. In fact the system has one cycle of length 1, 2, 6
and 18 and also 27 cycles of length 36.

Example 3.13. Let us now instead consider the dynamical system f(x) =
x3. If p =137 then there are 136 periodic points and 13 cycles. In fact we
have two fixed points, three cycles of length 2 and 8 cycles of length 16. If
instead p = 1999 then there are two fixed points and four cycles of length
18, so we have 74 periodic points and six cycles.
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Figure 4.1: The number of periodic points of period 12 for the first 200

primes.

4 Distribution of cycles

In this section we will discuss the distribution of periodic points and cycles,
of a specific period and length, in Qp for different choices of p. We denote by
r(m) the number of positive divisors of the positive integer m.Henceforth
we let pM denote the Mth prime and PM denote the set of the first M

prime numbers.

Example 4.1. Let f(x) = x2. We are interested in how many periodic
points of period 12 there are to this system for different primes p. We can
use formula (3.3) and plot the number of periodic points of period 12 as a
function of p. See Figure 4.1 and Figure 4.2. Let

S(M,12) ~ L ~V(2,12, p~.
PEPM

In Figure 4.3 we have plot S(M, 12) for the first 10,000 primes (that is

M  10, 000). It seems that the asymptotical inclination of the graph
should be a constant.

We will prove that the asymptotical inclination is in fact a constant
and that this constant can be expressed rather easily. We will prove the

following theorem:
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Figure 4.2: The number of periodic points of period 12 for the first 10,000
primes.

Figure 4.3: The graph of S(M, 12) for M  10, 000.
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Theorem 4.2. Let n and r be positive integers such that n > 2 and r > 2.
We then have

lim 1 M (d)gcd(nr/d-1,p --1) _ ! 1), 

where  is Möbius function.

Before we start to prove this theorem we need some results from number

theory. We will use the arithmetical functions cp, ,u and r.
We first recall some simple connections between cp and  which will be

useful to us later on, see [1]. .

Theorem 4.3. For each positive integer n we have

~ cp(d) = n. (4.1)
djn

By Mobius formula we have

= . (4.2)
dJTi

We will also need some results from number theory concerning the dis-
tribution of primes. Henceforth we will use the notation f (x) N g(x) if

f (x)/g(x) --~ 1 when x -+ oo.

Definition 4.4. For x > 0 we define 7r(T) to be the number of primes less
or equal to x.

Theorem 4.5 (Prime number theorem). Let be as above then

x log x (4.3)

The proof of this theorem can be found in [4], [13] and [1]. .

Definition 4.6. Let k and a be positive integers such that gcd(a, k) = 1.
Let be the number of primes p less or equal to x such that p =
a (mod k).

The number is the number of primes less or equal to x which
can be written as kn + a, where n is a natural number. Dirichlet proved
the following theorem:
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Theorem 4.7. If gcd(a, k) =1 then there are infinitely many prime num-
bers p which can be written p = kn + a. .

The following theorem is a generalization of the prime number theorem.

Theorem 4.8. Let be as above. Then,

a,k(x)~
(x) 03C6(k). (4.4)

A proof of this theorem can be found in [14].
We are now ready to prove the main part of Theorem 4.2. We state it

as a theorem.

Theorem 4.9. Let m be a positive integer then

lim 1 M  gcd(m, p - I} = T{m}. (4.5)

Proof. . Let

gcd(m, p -1).
pEPM

The possible values of gcd(m,p 2014 1) are of course the divisors of m. Let

d be a divisor of m and denote by A(d, M) the number of primes p E PM
satisfying gcd(m, p - 1) = d. It is easy to see that

B(m,M) = (4.6)
dim

Let M) == That is, ~r(d, M) is the number of prime numbers
p E PM such that dip - 1. Observe that 7r(1, M) = In the first

part of this proof we will derive a relation between A(d, M) and 03C0(d, M).
The set M) contains not only the set A(d, M) but also all sets

A(k, M) where d We can write this

03C0(d, M) = 03A3 A(dr, M}. (4.7)
rdlm

We will now prove that this implies

A(d, M) = L (k)03C0(dk, M). (4.8)
kd)m
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From (4.7) it follows that

03C0(dk, M) = A(dkr, M).

The right-hand side of (4.8) is therefore

(k) A(dkr, M) = (k)A(dkr,M) .

Let k’ = rk. We can then write

(k) A(dkr, M) = (k)A(dk’, M)

= ~ A(dk’, M) .

k’d|m k|k’

By the properties of the Möbius function we have

1,1 if k’ = 1.

Therefore

(k) A(dkr, M) = (k) A(dk’, M) = A(d, M). .

Formula (4.8) is proved. If we use (4.8) we can write (4.6) as

B(m,M) = 03A3 d 03A3 (k)03C0(dk, M)
d~m kd~m

= 03A3 03A3 d (k)03C0(dk, M).
dJm kd~m

Let r = kd. It is easy to see that

B(m, M) = rJm r k (k)(r kk, M) = r k (k)(r, M)
= 03A3 03C0(r, M) k

rJm klr
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Prom (4.2) we get

r{m

Since

E lim

and the sum has r(m) elements we have proved the theorem if we can show
that

lim 1 M03C0(r,M)03C6(r) = 1. ° (4.9)

Since

~,M)~)= ,~~~).
and 03C0(pM) = M it follows from Theorem 4.8 that

~im = 1.

This proves (4.9) and the theorem. D

Theorem 4.2 now follows directly since

N(n, r,p) = l,p - 1).
dlr

For the distribution of cycles we have the following theorem, which fol-
lows directly from Theorem 4.2.

Theorem 4.10. We have

lim 1 M  K(n,r,p) = 1 r (d)(n(r/d)-1). (4’io)
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5 Perturbation of monomial systems

In [7] there is an extensive investigation of monomial dynamical systems
over the field of p-adic numbers, Qp. In this section we will follow the ideas
from [7] for investigations of perturbations of such systems. We will use
the following theorems a lot.

Theorem 5.1. Let F(x) be a polynomial over Zp. Assume that there exists

ao E Zp such that

F(ao) - 0 (mod p203B4+1Zp), (5.1)

F’(03B10) ~ 0 (mod p03B4Zp), (5.2)
0 (mod p03B4+1Zp), (5.3)

where b E N. Then there exists a E Zp such that F(a) = 0 and a =
ao .

Corollary 5.2 (Hensel’s Lemma). . Let F be a polynomial over Zp. As-
sume that there exists ao E Zp such that F(ao) = 0 (mod pZp) and F’(03B10) ~
0 (mod pZp ) . . Then there exists a p-adic integer a such that F(a) = 0 and
a w czo (modpZp). .

By a perturbation we mean a polynomial with small coefficients in the
p-adic sense. More formally:

Definition 5.3. A polynomial
N

q(x) = 03A3 qjxj
j=o

over Zp (N E N) is said to be a k-perturbation if

~q~ = max|qj|p  1 p2k+1 (5.4)

where If 1/p (k = 0) then q is called a perturbation.

Henceforth we will consider the dynamical system

fq(x) = x~ + 9(x) (5.5)

where n E N, n ~ 2 and q(x) is a k-perturbation where k is the unique
number satisfying n 2014 1 = pkm, where p f m.
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Theorem 5.4. Consider the dynamical system (5.5). . If x E Sl (0) then
fq(x) E S1(0).

Proof. Since  1/p and = 1,

~ max (|qjxj|p)  1/p.

Because =1 and |q(x)|p  1 it follows that

= max = |x|np = 1.

D

Theorem 5.5. The dynamical system (5.5), has a fixed point a such that
|03B1|p  1/p. This fixed point is an attractor and Ui (o) C A(a).

Proof. Let cp(x) = fq(x) - x, Since 03C6(0) = fq(0) = qo and  1/p we
have 0 (mod pZp). Since cp’{x) = + q’(x) -1 and cp’(o) =
q’(o) - 1 = qj -1 we have |03C6’(0)|p = max (|q1|p, |1|p) = l, that is 03C6’(0) ~
0 (mod pZp). The two conditions in Hensel’s Lemma (Corollary 5.2) are
satisfied and from this Lemma we conclude that there exists a E ~, such
that cp(a) = 0 and a = 0 (mod pZp). That is, the dynamical system (5.5)
has a fixed point a and |03B1|p  1.

Let x E Ui (o), that is  1/p. It then follows that

= +  max , I q(x)I p ) . P . .
By induction it follows that  1/p for all r E We will now

prove that Ul (0) C A{a). Observe first that

’ a!p = |fq(x) -- fq(03B1)|p = |xn - 03B1n + -- q(03B1)|p
N

j=1
n-1 N j-1

= |(x - Q) L.. + 03A3qj(x - a) 03A3xi03B1j-1-i|p
j=0 j=1 i=0

n-1 N j-1
= Ix - 03B1|p| 03A3xj03B1n-j-1 + 03A3 qj 03A3 xi03B1j-1-i|p.

j=0 j=",1, i^0
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Since each term in the second factor on the right in the equation above
contains at least one x or one a we have for all x E Qp, such that |x|p  1,
that there exists a real number c  1 such that

03B1|p  03B1|p.

Since (x) ~ p  I/p for all r E it follows from

- ajp - 03B1|p  c|fr-1q(x) ‘ 03B1|p
that

|frq(x) - 03B1|p  cr|x ‘ 03B1|p, (5.6)

by induction. Hence frq(x) - a when r - 0o for all x E U-1(0), that is
tIz (0) C A(a). The proof is complete. ©

In the above theorem we only need q to be a perturbation, not a k-

perturbation.

Theorem 5.6. Consider the dynamical system (5.5) and assume that the
degree of q is less or equal to n. We have that -~ oo when r --~ o0

if and only if |x|p > 1, so A(oo) = Qp B U1(0).

Proof. . Assume first that |x|p > 1. Since x E Qp it is true that p. If

we use the inverse triangle inequality we get

n n-1 n-1

|fq(x)|p = |xn + 03A3qjxj|p = |xn|p - |03A3qjxj|p
. 

~=0 ~-0 ~-0

|qjxj|p > |xn|p - ~q~|xn-1|p = |x|n-2p(|x|p - ~q~)|x|p.
?

Since the parenthesis in the last expression is positive, there is a constant,
c > 1, such that

> c|x|p.

for all x satisfying |x|p > 1. By induction it is easy to prove that

|frq(x)|p > cr|x|p.

Hence, ~ 00 as r ~ 00 if |x|p  1.

If 1 it follows directly from the strong triangle inequality that
 1 and by induction that  1. D
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If we assume that the degree of the perturbation polynomial q is less or
equal to n it follows from Theorem 5.4 and Theorem 5.6 that A(a) = Ui (0).
If we assume that deg q fi n, we can say that a and oo are attractors to
the dynamical system f(x) = xn + q(x), and that the basins of attraction
are and Qp B U1 (o) respectively. If deg q > n we do not always have
A(a) = Ui (0), see the following example.

Example 5.7. Let p be a fi.xed prime number and let n > 2 be an integer
such that p f n - 1. Let q(x) = cxn+1, where c = 03A3~i=1 (p -1 ) p$. It is clear
that q is a perturbation to the dynamical system f(x) = xn. Consider the
dynamical system fq(x) = xn + q(x). Let x =1 /p = p) then

00

fq(1/p) = 1/pn + 03A3(p - 1)pi-(n+1) = 0.

i=l

From Theorem 5.5 it follows that there is a fixed point a E Ui (0) and that
Ui (0) C A(a). Since 0 E A(a) it follows that 1/p E A(a).
We will now start to investigate the behaviour of the dynamical system

on the sphere S’1(0). .

Theorem 5.8. Let a E Sl(O) be a fixed point of the dynamical system
(2.1). Then there exists a fixed point, a E Zp, to the dynamical system
(5.5) such that a == a (mod pk+1Zp).
Proof. Let 03C8(x) = f(x)-x = xn-x and let 03C6(x) = fq(x)-x = 
Since it follows that

03C6(a) = 03C8(a) + q(a) = 03C8(a) 

and since 03C8(a) = 0 (a is a fixed point to that dynamical system) it follows
that 0 (mod p2k+1Zp). We also have that cp’(x) = 03C8’(x) = nxn-1 -
1 + q’(x), this implies that

p’(a) = 1 + ~(o) = n - 1 + ~(a),
since = 1 = o). It follows now, from the fact that 1 and

that

03C6’(a) ~ 0 (mod pkZp), (5.7)
03C6’(a) ~ 0 (mod pk+1Zp). (5.8)

From Theorem 5.1 it follows that there exists a E Zp such that p(a) = 0
(that is, a fixed point to f {x)) and a ~ a (mod pk+1Zp). D
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We now prove the converse to this theorem.

Theorem 5.9. If a E Sl (0) is a fixed point to the dynamical system (5.5),
then there exists a fixed point, a, (a root of unity) to {2.1) such that a ~
a (mod pk+1Zp).
Proof. yVe will use Theorem 5.I to prove this. Let

= f(x) - x = xn - w fq(x) - q(x) - x
and observe that f q (a) = a. First of all we have

= |fq(03B1) - q(a) -- alp = |q(03B1)|p  

that is, 0 If we observe that

a

then

= In( - q(a) + 1) - 1|p

= | 1 a |p|n(-q(03B1) + 03B1) - 03B1|p = | - nq(03B1) + (n - 1)03B1|p.
Since and |n-1|p = 1/pk we have Hence

0 (mod pkZp) and 0 (mod pk+1Zp). From Theorem 5.1 it
follows that there exists a E Zp such that ~(a) = 0 and a = a (mod .

a

Theorem 5.10. lfp> 2 there is a one to one correspondence between the
fixed points on Sl(0) of the dynamical systems (5.5) and (2.1).
Proof. Let a and b (a ~ b) be two fixed points in S~(0) to the monomial
dynamical system (2.1). According to Theorem 5.8 there are fixed points a
and 03B2 on S1(0) to (5.5) such that la - 03B1|p  1/p and |b - 03B2|p  1/p. From
Theorem 2.7 it follows that la - b~~ = 1. We therefore have

~(a-a)+(a‘b)+(b‘~)~r=1~ >
since j(a - a) + (6 - /3)~p ~ 1/p. Hence /3.

The second part of the theorem is proved similarily. Q

Remark 5.11. If ~q~ > 1, Theorem 5.10 no longer holds.

Example 5.12. Let p = 3, f(x) = x2 and fq(x) = x2 - 2. The dynamical
system f has only one fixed point (x = 1) on Sl (0). But the dynamical
system f q has the fixed points x = 2 and x = - I on Sl (0) .
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6 Cycles of perturbated systems
In this section we will start to study the dynamical system

= x’~ + q(x), (6.I)

where q is a perturbation, f(x) = = To study cycles of length r
to this system, we look for fixed points to f q . We can write

frq(x) = + (6.2)

where qr is a new perturbation. Let Cr denote the set of fixed points to

(6.2). All periodic points of period r are contained in Cr, but this set also
contains periodic points of periods that divides r.

Theorem 6.1. Assume that nr -1 ~ 0 (modp). . Then frq(x) has a fixed
point b E S~(o) if and only if f~ has a fixed point a E Sl(0) such that

1/p.

Proof. . Let

9r(x) = xnr - x

and let

9q,r(x) = xnr - x + qr(x) = gr(x) + qr(x).

First, let us assume that a is a fixed point to f a that is gr(a) = 0. The fact
that = 1 implies that

and that

g’r(a) = = nr - 1. .

So if nr -1 ~ 0 (modpZp) (which is an assumption) we have that

0 (mod pZp)

and of course

g’q,r(a) ~ 0 (mod pZp).
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Hence, by Hensel’s lemma there exists b E 81(0) such that = 0 and

b|p  1/p.
Let us now assume that there is b E S1(0) such that gq,r(b) = 0, that is

b is a fixed point on S’i(0) to the function f;. . Since

gr(x) = gq,r(x) - qr(x)

we get gr(b) = 0 (mod pZp). Observe that

= nrbnr-1 - 1.

From the fact that 9q,r(b) = 0 we get

b = -qr(b)

which in turn implies that bnr ~ b (mod pZp) and that bnr-1 ~ 1 (mod pZp).
All this give us that

9r(b) = (modpZp).

The theorem now follows from Hensel’s lemma. 0

We have not this results in the case nr -1 ~ 0 (modp). .

Example 6.2. Let p = 3, f(x) = x2 and fq(x) = x2 - 39/4. We are going
to show that f has no cycles of length 2 but f q has one cycle of length 2.
From the fact that gcd(n2 - 1,p - 1) = 1 we immediately have that f has
no cycles of length 2. Since

>

has two fixed points, x = 5/2 and x = -7/2, and none of them are fixed
points to fq(x) it follows that fq has one cycle of length 2.

Theorem 6.3. Let p be a fixed prime number and let n E N and n > 2. If
p f n there is a least r such that nr -1- 0 (mod p) and 2  r  p - l. . If
r f r then nr - 1 ~ 0 (modp).

Proof. . Consider the multiplicativ group I~ _ ~ I, Z, ... , p-1 }, of the field of
residue classes Fp. We know that IF~ is a cyclic group under multiplication.
Let d be the remainder when n is divided by p, of course d E F*p. Due

to Fermat we have cP~"~ 2014 1 = 0 (mod p). That is, there exits r such that
nr-1= 0 (modp). Since the set {2,3,... ,p-1~ is finite there exists a least
r, say r. It is clear that r is the order of the cyclic subgroup generated by
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d. (Accordning to the Theorem of Lagranges r must be a divisior of p -1. )
Assume that nr -1 ~ 0 (mod p), then there is a cyclic subgroup of order r.
Let r = qlr + ri. We then have

but since ri  r this is only possible if 7-1 = 0, that is r The proof is
complete. D

Example 6.4. Let p = 3 and let f(x) = x2 and = x2 + q(x) where
03B4q  1/p. We then have

~n,.=(2r-1,p-1)=(2r-1,2)=1.

Thus the function = x2f has no fixed points on Si (0) according to
Theorem 2.5. By using Theorem 6.1 we conclude that frq(x) = x2r + qr(x)
has no fixed points on S1(0) if 2r - 1 ~ 0 (mod 3). Since 2’’ - 1 = (--1)r -
1 (mod 3) we have that

2r -1 ~ JO (mod 3), is even,

1 (mod 3), if r is odd.

So, the dynamical system f q has no cycles of odd length on the sphere
81(0).

Example 6.5. Let f and fq be as in the example above, but let p = 7. It

is easy to show that 2’’ 2014 1 ~ 0 if and only if 3 ~ r. Since 2T -1 does not
contain any factor of 2 we have

gcd(2’’ --1, fi) = gcd(2r --1, 3). .

Let us now study two cases: (i) If r = 21 then 2r - 1 = 0(mod3), so
gcd(2r-1, 3) = 3. (ii) If r = 2l+1 then 2’’-1 = 1 (mod 3), so gcd(2r-1, 3) _
1. We can now make the following conclusions: The dynamical system f q
has cycles of order 2 and there exists no cycles of order r if 2 f r and 3 f r
(or r ~ 3 (mod6)). .

Example 6.6. Let p = 43 and let f and f q be as above. One can show
(or use a computer) that 2r --1 ~ 0 (mod 43) if and only if 14 f r. We have
the following values for mr:
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The dynamical system f q therefore has cycles of order 2, 3 and 6. If r > 3,
r ~ 6 and 14 f r, then the dynamical system f q has no cycles of order r.

To get more information about the cycles of the dynamical system (6.1)
we have to use stronger conditions on the perturbation polynomial.

Theorem 6.7. Let nr 2014 1 = p03BAm, where p m, and let q be a 03BA-perturba-
tion. If a E SI (0) is a fixed point to the dynamical system f T then there is
a fixed point a E Sl (0) to the dynamical system f q and a - 03B1|p  1/p03BA+1.
Conversely, if b E Sl(0) is a fixed point to fQ then there is a fixed point
03B2 E 6’i(0) to f r such 1/p03BA+1.

Proof. We begin this proof by introducing two functions:

gr(x) = x = xnr - x

and .

gq,r(x) = fQ (x) " x = gr(x) + qr(x).
Let us first assume that a E Sl (0) is a fixed point to that is gr (a) = 0.

We have that

gq,r(a) = qr(a) ~ 0 (mod p203BA+1Zp).
Since (d/dx)gq,r(x) = nrxnr-1 - 1 + q; (x) we also have (d/dx)gq,r(a) = .

0 (mod p03BAZp) and (d/dx)gq,r(a) ~ 0 (mod p03BA+1Zp). According to Theorem
5.1 there is a E S1(o) such that gq,r(a) = 0 and ja - 03B1|p  1/p03BA+1.

Assume now that b E Si(0) is a fixed point to f;. . If we observe that

gr (x) = gq,r (x) - qr(x), we can make the conclusion that

gr(b) = -qr(b) ~ (mod p203BA+1Zp).
Since b (modp2’~+~), and therefore b’~r~l ~ 1 we have

(d/dx)gr(b) = nr -1- 0 (mod p03BAZp)
and 0 The conditions in Theorem 5.1 are

satisfied, so there exists /3 E S1(0) such that gr(03B2) = 0 and  
The proof is complete. D
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Observe that for p > 2 we have a one-to-one correspondence between the
cycles of a specific length to the dynamical system f q and f. . This follows
directly from Theorem 5.10. Before we present some examples we state
some theorems which will help us in the construction of these examples.

Theorem 6.8. Let p be a fixed prime number and let d > 2, n > 2. If
p is not a divisor of n, then there is a least integer r such that nr -1 ~
0 (mod pl), 1  r  03C6(pl) . If nr - 1 ~ 0 (mod pl) then r | r.

Proof. According to Theorem 3.6 we have 1 = ° (modpl), since
gcd(n,pl) = 1. The existence of a least integer r such that nr - 1 =
0 (modpl) is therefore obvious. Of course 1  r  03C6(pl).

Assume nr = 1 (modp’). If we divide r by r we get r = cr + d. Since

d  f and r is the least integer such that nr ~ 1 (mod pl) we must have
d = 0 and hence fir. The theorem is proven. D

Theorem 6.9. Let n, m and I be positive integers. 11n -1 (mod m~ ), then
nm == 1 (mod ml+1) . 1fm = p is a prime number and n ~ I (mod pl+1) then
p is the least m such that nm =1 (mod pl+1).

Proof. Since n = 1 (mod m’) we can write n = qml + 1. By use of the
binomial theorem we have .

nm =(qml + = f m (qml)j

=1 + (m1)qml + 03A3(mj)(qml)j
;1 (mod 

This proves the first part of the theorem. Let us now assume that m = p
is a prime number. The fact that n = 1 (modpl) implies that n and pare
relatively prime. According to Theorem 6.8 there is a least r such that

1 If n ~ 1 (mod pl+1) then it is obvious that the least r

must be p since the only positive divisors of p are p and 1.(We know that
np ~ 1 (mod pl+1) from the first part of this theorem.) D

Theorem 6.10. Assume that n ~ 1 (modpl) for some l E 7~+, where p is
a prime number. Assume also that this prime number is the least positive
integer d such that nd =1 . The least positive integer k such that

(nP)k = 1 (modp’+2) is then p.
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Proof. . We can write n = qpl +1. Since p is the least positive integer d such
that nd == 1 (mod pl+1) it follows that n ~ 1 hence p  q. We
have

np = _~ 0 = ~ ’f’ 
2 

If np ~ 1 (modp’+2) then 0 (mod pl+2) which is a contradiction to
the fact that p f q. Hence, the least positive integer k such that 
1 (modp’+2) is p, by Theorem 6.9. D

Example 6.11. Let fq(x) = x2 + q(x), where q is a perturbation. Due to
Theorem 2.5, f (x) = ~2 has no cycles of any lenght. According to Example
6.4, f q has no cycles of odd length. Assume that r = 2ri, y-i E Z+, then we
have that

2r - 1 ~ (22)rl _ ~ ~ 0 (mod 3). (6.3)

That is, Theorem 6.1 tells us nothing about possible cycles of f q in this
case. Since 4 ~ 1 (mod 32) we have that 43 = 1 (mod 32), and 3 is the least
positive integer, d, such that 4d = 1 (mod 32), by Theorem 6.9. Due to this
remark it is easy to see that if r = 2(3r2 + a), (r2 E Z+ and a = 0,1, 2)
then 2r = 1 (mod 32) if and only if a = 0. That is

2T -1 ~ 0 (mod 32). (6.4)

If we assume that q is a 1-perturbation, that is ~133, then it follows
from (6.3), (6.4) and Theorem 6.7 that if 6 f r then f q has no cycles of order
r.

We can continue this investigations by repeating the above arguments.
If we assume that q is a 2-perturbation then we can make the conclusion
that f q has no cycles of length r if 18 f r.

More general, if we assume that ~q~ 1/3203BA+1 then there are no cycles
of length r if 2 . 3" f r, by Theorem 6.10.

Example 6.12. Let p = 7 and let fq(x) = x2 + q(x), where q is a per-
turbation. According to Theorem 6.3 the dynamical system f(x) = x2
has cycles only of length 2. Accordning to Example 6.5, f q has a cycles
of length 2 and we also know that f q has no cycles of order r if r > 2
and 3 f r. Let us now assume that r = 3r1, where ri E ?L+, then
2~i - 1 == 0(mod7). Since 8 ~ 1 (mod 49) we have that 7 is the least
positive integer d such that 8d - 1 (mod 49), by Theorem 6.9. We therefore
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have that 23(7r2+03B1) -1 ~ 0 (mod 49) if 1  03B1  6. If 1/p3 it follows
from Theorem 6.7 that there are no cycles of order r to the dynamical
system fq if r > 2 and 21 ~ r.

If we assume that 1/72"+1 then it follows from Theorem 6.7 and
6.10 that the dynamical system f q has no cycles of length r if 3 . 7" f r.

Example 6.13. Let n = 10 and let p = 3. Since

mr = = gcd(lOr - 1,2) = 1

it follows from Theorem 2.5 that the dynamical system f(x) = xl° has no
cycles. We have that nr -1 ~ 0 (mod 9) for every r > 2 and if 3 f r we have
r~r -1 ~ 0 (mod 27). If we assume that 1/35 we have by Theorem
6.7 that fq has no cycles of length r if 3 ~ r. If 1/3~"+~ then fq has
no cycles of length r if 3"-1 ~’ r.

Example 6.14. Let n = 2 and p = 251. Computer calculations show
that r = 50 is the least positive integer such that nr --1 - 0 (mod 251).
According to Theorem 2.5 we have that f only has cycles of lengths 4, 20
and 100. Due to Theorem 6.1 we can make the conclusion that f q has cycles
of order 4 and 20, and that f q has no cycles of order r if r 7~ 4, r ~ 20 and
50 f r. By using a computer we get that n~°° --1 y 0 (mod 2512). So, if
q is a 1-perturbation we have according to Theorem 6.7 that f q also has a
cycle of order 100.

Since 25° -1 ~ 0 (mod 251) and 25° - 1 ~ 0 (mod 2512) we have by
Theorem 6.9 that d = 251 is the least positive integer such that (2~°)d _ 1=
0 (mod 2512). So, if we assume that q is a 1-perturbation we have that f q
has no cycles of order r if r ~ 4, r ~ 20, r ~ 100 and 12550 ~ r.

It is possible to generalize the theorems in Section 3 and 4 to some
perturbated monomial systems. Assume that p > 2. Let r denote the
length of the longest cycle of f and let Nq(n, r, p) denote the number of
periodic points on 81 (0) of period r of f q (a corresponding perturbated
system). If nrj - 1 = p03BAnj, p nj for all rj |  then it follows from Theorem
5.10 that

= 

if q is a x-perturbation.
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