HENRIK PETERSSON

Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type

Annales mathématiques Blaise Pascal, tome 8, nº 2 (2001), p. 107-114 http://www.numdam.org/item?id=AMBP_2001_8_2_107_0>

© Annales mathématiques Blaise Pascal, 2001, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type

Henrik Petersson

Abstract

A theorem due to G. Godefroy and J. Shapiro states that every continuous convolution operator, that is not just multiplication by a scalar (non-trivial), is hypercyclic on the space of entire functions in n variables endowed with the compact-open topology. We study the space of entire functions of Hilbert-Schmidt type $\mathcal{H}_H(E)$ on a Hilbert space E. We characterize its continuous convolution operators and prove the following: Every continuous non-trivial convolution operator is hypercyclic on $\mathcal{H}_H(E)$.

Key words: Hypercyclic, Hilbert-Schmidt, Holomorphic, Convolution operator, Exponential type.

1 Introduction

A cyclic (hypercyclic) vector for an operator $T: X \to X$ is a vector x such that the closed linear hull (closed hull) of the orbit $\mathcal{O}(T,x) \equiv \{x,Tx,T^2x,...\}$ under the operator is the entire space. An operator T is cyclic (hypercyclic) whenever there exists a cyclic (hypercyclic) vector. Recall that an invariant subset for an operator $T: X \to X$ is a subset $S \subseteq X$ such that $TS \subseteq S$. Thus every orbit constitutes an invariant set and the invariant sets $\{0\}, X$ are called trivial. Note that the closed linear hull of an orbit under a continuous operator is the smallest closed invariant subspace that contains the vector under consideration. Consequently, a continuous operator lacks non-trivial invariant closed subspaces (subsets) if and only if every non-zero vector is cyclic (hypercyclic).

The theory of cyclic and hypercyclic operators is a natural part of the study of invariant subspaces and the approximation theory. An overview of the theory is exposed in [7]. The most natural problems are maybe (1): given an operator $T: X \to X$, is it hypercyclic and (2): given a space X, does it admit a hypercyclic operator $T: X \to X$. For example, it is known that no linear operator on a finite dimensional space is hypercyclic but every separable infinite-dimensional Fréchet space carries a hypercyclic operator (see [7] for more on this).

Godefroy and Shapiro show in [6] that every continuous non-trivial convolution operator is hypercyclic on the (Fréchet-) space of entire functions in *n*-variables (a convolution operator is an operator that commutes with all translations and it is called trivial when it is given by $x \mapsto \alpha x$ for some scalar α). It is known that the continuous convolution operators are the operators of the form $\varphi(D)$, $\varphi(D)f \equiv \sum_{\alpha \in N^n} \varphi_{\alpha} D^{\alpha} f$ where $\varphi = \sum_{\alpha \in N^n} \varphi_{\alpha} y^{\alpha}$ is an entire exponential type function in *n* variables. Thus, in particular, every operator of translation is hypercyclic and the one variable version of this particular result was obtained by Birkhoff already in the twenties [2]. Before Godefroy and Shapiro obtained their general result, MacLane [11] had established the hypercyclicity of differentiation *D* on the one variable entire functions. Hypercyclic properties of exponential type differential operators on spaces of holomorphic functions with infinite dimensional domains, have

¹⁹⁹¹ Mathematics Subject Classification: Primary: 46G20, 47A15, Secondary: 46A32, 46E25

also been studied (see for example [1]). In this note we prove the analogue of Godefroy and Shapiro's result for entire functions of Hilbert-Schmidt type $\mathcal{H}_H(E)$ on a (separable) Hilbert space E (Theorem 3.1). $\mathcal{H}_H(E)$ is a separable Fréchet space and is built up of homogenous Hilbert-Schmidt polynomials. A similar, but different, type of holomorphy is studied in [4]. In fact, we prove that every continuous non-trivial convolution operator has a dense set of hypercyclic vectors but that there is a certain dense subspace for which every such type of hypercyclic vector must be outside. This result is interesting in view of a result of the following type: There exists a continuous linear operator on ℓ_1 for which every non-zero vector is hypercyclic (due to Read [14] and it is not known whether we can replace ℓ_1 with an infinite-dimensional separable Hilbert space (see [7] page 359)).

For our purpose we make use of the following well-known theorem due to Gethner, Godefroy, Shapiro, Kitai ([5], [6], [10]). The theorem is based on the Baire Category Theorem and gives a criterion, known as the Hypercyclicity Criterion, for an operator to be hypercyclic.

Theorem 1.1 (Hypercyclicity Criterion) Let X be a separable Fréchet space and let $T: X \to X$ be a continuous linear operator. Assume that T satisfies the following (hypercyclicity) criterion (HC): there are dense subsets $Z, Y \subseteq X$ and a map $S: Y \to Y$ such that

- 1. $T^n z \to 0 \quad \forall z \in Z$,
- 2. $S^n y \to 0 \quad \forall y \in Y$,
- 3. $TSy = y \quad \forall y \in Y$.

Then T is hypercyclic.

We emphasize that the subsets Z, Y and the operator S in the hypothesis need not to be linear. Moreover, it is not necessary that the map S is continuous. It is known that (HC) is not a necessary condition for an operator to be hypercyclic. We shall say that an operator T (on an arbitrary locally convex Hausdorff space X) satisfies the Strong Hypercyclicity Criterion (SHC) when it satisfies the condition (HC) in such a way that the set Z can be chosen as an invariant set for T.

2 Hilbert-Schmidt entire functions and convolution operators

In this section we introduce the space of entire functions of Hilbert-Schmidt type and characterize its continuous convolution operators.

If X is a complex vector space, we denote by $\mathcal{H}_G(X)$ the complex valued Gateaux holomorphic functions on X. If $f \in \mathcal{H}_G(X)$, we denote by $D_y^n f(x)$ the n:th directional derivative at x along y. Let E be a separable complex Hilbert space (we shall tacitly assume everywhere below that all vector spaces are complex and that all Hilbert spaces are separable). We denote by $\mathcal{P}_F(^nE) \subseteq \mathcal{H}_G(E)$ the space of n-homogenous polynomials on E of finite type. That is, $\mathcal{P}_F(^nE) \subseteq \mathcal{H}_G(E)$ the space of the n-homogenous polynomials $\mathcal{P}(^nE)$ on E, spanned by the elements $(\cdot, y)^n, y \in E$, where (\cdot, \cdot) denotes the inner product on E. We endow $\mathcal{P}_F(^nE)$ with the inner product defined by $((\cdot, y)^n, (\cdot, z)^n)_n \equiv n!(z, y)^n$ (More precisely, by the assumption on E we can identify the symmetric tensors $\otimes_{n,s} E$ with $\mathcal{P}_F(^nE)$ and $(\cdot, \cdot)_n$ is the inner product is induced from the inner product space $\otimes_{n,s} E$ in this way). The n-homogenous Hilbert-Schmidt polynomials, denoted by $\mathcal{P}_H(^nE)$, is the completion of $\mathcal{P}_F(^nE)$ w.r.t. the inner product $(\cdot, \cdot)_n$. We use the symbol $\|\cdot\|_n$ for the corresponding norm. In view of our purposes, it is convenient to note that Let (e_j) be an orthonormal basis in E. For a given multi-index $\alpha \in N_{\infty} \equiv \bigoplus_{k=1}^{\infty} N$, let $e_{\alpha} \equiv \prod_{\text{supp}\,\alpha} (\cdot, e_j)^{\alpha_j} \in \mathcal{P}_H(|^{|\alpha|}E)$. Here $\text{supp}\,\alpha \equiv \{j : \alpha_j \neq 0\}$ and $|\alpha| \equiv \sum \alpha_j$. The elements e_{α} , $|\alpha| = n$, form an orthogonal basis for $\mathcal{P}_H(^nE)$ and $||e_{\alpha}||_n^2 = \alpha! \equiv \alpha_1!...$ (this follows from Lemma 1 in [4]). Thus $\mathcal{P}_H(^nE)$ can be identified with the space of all sequences (P_{α}) such that $\sum_{|\alpha|=n} |P_{\alpha}|^2 \alpha! < \infty$ and in this way we have that

$$\|P\|_n^2 = \sum_{|\alpha|=n} |P_\alpha|^2 \alpha!, \qquad P \in \mathcal{P}_H({}^n E).$$
(2.2)

Let us note the following. The *n*-homogenous nuclear polynomials $\mathcal{P}_N(^n E)$ and the continuous polynomials $\mathcal{P}_C(^n E)$ can be put in duality by passing to the limit out of the inner product $(\cdot, \cdot)_n$ on $\mathcal{P}_F(^n E)$. In this way we have that $\mathcal{P}_C(^n E)$ is the topological dual of $\mathcal{P}_N(^n E)$ (see Dineen [3] or Gupta [8] for further details). Recall that $\mathcal{P}_N(^n E)$ is the Banach space obtained from the completion of $\mathcal{P}_F(^n E)$ w.r.t. the nuclear norm. We have the following (continuous) injections

$$\mathcal{P}_N({}^nE) \to \mathcal{P}_H({}^nE) \to \mathcal{P}_C({}^nE).$$
 (2.3)

The following lemma is crucial for our investigation and can, at this stage, only be found in a preprint [13]. Therefore we include here a proof.

Lemma 2.1 Let E be a Hilbert space and let $P \in \mathcal{P}_H(^mE)$, $Q \in \mathcal{P}_H(^nE)$. Then $PQ \in \mathcal{P}_H(^{n+m}E)$ and

$$\|PQ\|_{n+m} \le 2^{n+m} \|P\|_m \|Q\|_n.$$
(2.4)

Thus, multiplication by P defines a continuous operator between $\mathcal{P}_H(^{n}E)$ and $\mathcal{P}_H(^{n+m}E)$.

PROOF: Let (e_j) be an orthonormal basis in E and let $P = \sum_{|\alpha|=m} P_{\alpha} e_{\alpha}$, $Q = \sum_{|\alpha|=n} Q_{\alpha} e_{\alpha}$. Formally we have that $PQ = \sum_{|\gamma|=n+m} R_{\gamma} e_{\gamma}$, where

$$R_{\gamma} \equiv \sum_{\alpha \leq \gamma, \ |\alpha| = m} P_{\alpha} Q_{\gamma - \alpha}, \quad \gamma \in N_{\infty}.$$
(2.5)

It suffices to prove that the right hand side defines an element R in $\mathcal{P}_H(^{n+m}E)$, i.e. that $\sum_{|\gamma|=n+m} |R_{\gamma}|^2 \gamma! < \infty$. Indeed, then both PQ and R define continuous polynomials and since they coincide on $E_j \equiv \operatorname{span}\{e_1, \dots, e_j\}$ for all j, we deduce that PQ = R.

We have that

$$\begin{split} |R_{\gamma}|^{2} \gamma! &\leq \left(\sum_{J_{\gamma}(m)} |P_{\alpha}| |Q_{\gamma-\alpha}|\right)^{2} \gamma! \leq \\ &\leq N_{\gamma}(m) \gamma! \sum_{J_{\gamma}(m)} |P_{\alpha}|^{2} |Q_{\gamma-\alpha}|^{2} \leq 2^{n+m} N_{\gamma}(m) \sum_{J_{\gamma}(m)} |P_{\alpha}|^{2} \alpha! |Q_{\gamma-\alpha}|^{2} (\gamma-\alpha)!, \end{split}$$

where $J_{\gamma}(m) \subseteq N_{\infty}$ is the index set in the sum in (2.5) and $N_{\gamma}(m)$ denotes the number of elements $\#J_{\gamma}(m)$ in $J_{\gamma}(m)$. We derive an estimate for $N_{\gamma}(m)$ by using arguments from the probability theory. Consider a bowl with $|\gamma|$ objects of $\# \operatorname{supp} \gamma$ different kinds and of γ_j of sort $j \in \operatorname{supp} \gamma$ respectively. Assume that we pick m objects from the bowl. Given $\alpha \in J_{\gamma}(m)$, the probability of obtaining precisely α_j elements of each respective sort $j \in \operatorname{supp} \gamma$ is known to be

$$\binom{\gamma}{\alpha}/\binom{|\gamma|}{m}, \quad \binom{\gamma}{\alpha} \equiv \prod \binom{\gamma_i}{\alpha_i}, \quad \binom{0}{0} \equiv 1.$$

The number $N_{\gamma}(m)$ is now nothing but the number of elementary events and hence

$$N_{\gamma}(m) \leq {\binom{|\gamma|}{m}} / \min_{\alpha \in J_{\gamma}(m)} {\binom{\gamma}{\alpha}} \leq {\binom{|\gamma|}{m}} \leq 2^{n+m}$$

Thus

$$\sum_{|\gamma|=n+m} |R_{\gamma}|^2 \gamma! \le 4^{n+m} \sum_{|\gamma|=n+m} \sum_{J_{\gamma}(m)} |P_{\alpha}|^2 \alpha! |Q_{\gamma-\alpha}|^2 (\gamma-\alpha)! = 4^{n+m} ||P||_n^2 ||Q||_m^2$$

and the proof is complete.

We denote by $\mathfrak{A}_H(E)$ the space of all formal expansions $f = \sum f_n$, $f_n \in \mathcal{P}_H({}^nE)$, i.e. $\mathfrak{A}_H(E) \equiv \prod_n \mathcal{P}_H({}^nE) \ (\mathcal{P}_H({}^0E) \equiv C)$. $\mathfrak{A}_H(E)$ is a ring by virtue of Lemma 2.1. The Hilbert-Schmidt polynomials, denoted by $\mathcal{P}_H(E)$, is the subring $\bigoplus_n \mathcal{P}_H({}^nE)$, or alternatively, the space spanned by $\bigcup_n \mathcal{P}_H({}^nE)$ in $\mathcal{H}_G(E)$.

If E is a Hilbert space, the space of entire functions of Hilbert-Schmidt type on E, denoted by $\mathcal{H}_H(E)$, is the space defined as follows. $\mathcal{H}_H(E)$ is the space of all $f = \sum f_n \in \mathfrak{A}_H(E)$ such that

$$||f||_{H:r} \equiv \sum r^n ||f_n||_n / \sqrt{n!} < \infty, \quad r > 0,$$
(2.6)

endowed with the semi-norms thus defined. $\mathcal{H}_H(E)$ is a Fréchet space and, in particular, $\mathcal{H}_H(C^n)$ is the space of entire functions endowed with the compact-open topology. The series $\sum f_n$ converges absolutely in $\mathcal{H}_H(E)$ and uniformly on bounded sets for every $f = \sum f_n \in \mathcal{H}_H(E)$. Indeed, we have that $|f_n(y)| \leq r^n ||f_n||_n / \sqrt{n!}$, $n \geq 0$, if $||y|| \leq r$. Thus, $\mathcal{H}_H(E)$ is separable and every element in $\mathcal{H}_H(E)$ defines an entire function of bounded type so $\mathcal{H}_H(E)$ can also be described as the space of all $f \in \mathcal{H}_G(E)$ such that $f_n \equiv D_{(\cdot)}^n f(0)/n! \in \mathcal{P}_H(^nE)$, n = 0, ..., and such that (2.6) holds.

By Lemma 2.1 we obtain:

Theorem 2.1 Let E be a Hilbert space. Then $fg \in \mathcal{H}_H(E)$ and $||fg||_{H:r} \leq ||f||_{H:2r} ||g||_{H:2r}$ for all $f,g \in \mathcal{H}_H(E)$. Thus $\mathcal{H}_H(E)$ is a subring of $\mathfrak{A}_H(E)$ and multiplication by $f \in \mathcal{H}_H(E)$ defines an everywhere defined continuous operator on $\mathcal{H}_H(E)$.

PROOF: Let $f, g \in \mathcal{H}_H(E)$. Then $fg = \sum h_n \in \mathfrak{A}_H(E)$ where $h_n \in \sum_{i+j=n} f_i g_j$. By Lemma (2.1) we obtain

$$\frac{r^{n} \|h_{n}\|_{n}}{\sqrt{n!}} \leq \sum_{i+j=n} \frac{r^{i+j} \|f_{i}g_{j}\|_{n}}{\sqrt{i!}\sqrt{j!}} \leq \sum_{i+j=n} \frac{(2r)^{i} \|f_{i}\|_{i}}{\sqrt{i!}} \frac{(2r)^{j} \|g_{j}\|_{j}}{\sqrt{j!}}.$$
(2.7)

This estimate completes the proof.

Given r > 0 we denote by $\operatorname{EXP}_r(E)$ the (Banach-) space of all $\varphi = \sum \varphi_n \in \mathfrak{A}_H(E)$ such that for some M > 0, $\|\varphi_n\|_n \leq Mr^n/\sqrt{n!}$, $n = 0, \ldots$ equipped with the norm $\|\varphi\|_{H:r} \equiv \sup_n \sqrt{n!}r^{-n}\|\varphi_n\|_n$. The symbol $\operatorname{EXP}_H(E)$ denotes the union $\bigcup_{r>0}\operatorname{EXP}_r(E)$ equipped with the corresponding inductive locally convex topology. Thus $\operatorname{EXP}_H(E)$ is given by all $\varphi = \sum \varphi_n \in \mathfrak{A}_H(E)$ such that $\overline{\lim} (\sqrt{n!}\|\varphi_n\|_n)^{1/n} < \infty$. Every $\varphi \in \operatorname{EXP}_H(E)$ defines an exponential type function. i.e. a Gateaux holomorphic function with $|\varphi(y)| \leq Me^{r||y||}$ for some $M, r \geq 0$, and its power series converges in $\operatorname{EXP}_H(E)$. A proof of the "finite-dimensional" analogue of the following proposition can be found in [15] (see also [12] page 320).

Proposition 2.1 Let E be a Hilbert space. Then $\mathcal{H}_H(E)$ is reflexive and the map $\mathcal{F} : \lambda \mapsto \sum \lambda_n$. $\lambda_n(y) \equiv \overline{\lambda((\cdot, y)^n/n!)}$. defines an anti-linear isomorphism between $\mathcal{H}'_H(E)$ (strong topology) and $EXP_H(E)$.

PROOF: Let $\varphi = \sum \varphi_n \in \text{EXP}_r(E)$. Then $\|\varphi_n\|_n \leq \|\varphi\|_{H:r} r^n / \sqrt{n!}$ and we can define a functional $\lambda = \lambda_{\varphi}$ on $\mathcal{H}_H(E)$ by $\lambda(f) \equiv \sum (f_n, \varphi_n)_n$. Indeed, the following estimates show that λ is well-defined and is a continuous linear functional

$$|\lambda(f)| \le \sum \||f_n\|_n \|\varphi_n\|_n \le \|\varphi\|_{H:r} \sum \||f_n\|_n r^n / \sqrt{n!} = \|\varphi\|_{H:r} \|f\|_{H:r}.$$
(2.8)

Moreover, in view of (2.1) it follows that $\mathcal{F}\lambda = \varphi$.

Next we prove that $\mathcal{FH}'_{H}(E) \subseteq \text{EXP}_{H}(E)$. Let $\lambda \in \mathcal{H}'_{H}(E)$ be arbitrary. Every $\mathcal{P}_{H}({}^{n}E)$ has the topology induced by $\mathcal{H}_{H}(E)$. Consequently, the restriction $\lambda|_{n}$ to $\mathcal{P}_{H}({}^{n}E)$ belongs to $\mathcal{P}'_{H}({}^{n}E)$ for all n. From this we conclude that $\lambda_{n} \in \mathcal{P}_{H}({}^{n}E)$ for all n, i.e. $\mathcal{F}\lambda = \sum \lambda_{n} \in \mathfrak{A}_{H}(E)$, and $\lambda|_{n} = (\cdot, \lambda_{n})_{n}$. Now there is an r > 0 such that $|\lambda(f)| \leq M ||f||_{H:r}$ for all $f \in \mathcal{H}_{H}(E)$. Hence

$$\|\lambda_n\|_n^2 = |\lambda|_n(\lambda_n)| = |\lambda(\lambda_n)| \le M \|\lambda_n\|_{H:r} \le Mr^n \|\lambda_n\|_n / \sqrt{n!}$$
(2.9)

and thus $\mathcal{F}\lambda = \sum \lambda_n \in \mathrm{EXP}_H(E)$. \mathcal{F} is one to one and thus \mathcal{F} is a vector space isomorphism.

We prove that \mathcal{F}^{-1} is continuous. Let $U = B^{\circ}$, $B = \{f \in \mathcal{H}_{H}(E) : ||f||_{r} \leq M_{r}, r > 0\}$ be a neighbourhood of the origin in $\mathcal{H}'_{H}(E)$. Let $r_{0} > 0$ be arbitrary and consider the neighbourhood of the origin $V_{0} \equiv \{\varphi \in \operatorname{EXP}_{r_{0}}(E) : ||\varphi||_{H:r_{0}} \leq M_{r_{0}}^{-1}\}$ in $\operatorname{EXP}_{r_{0}}(E)$. From (2.8) it follows that $\mathcal{F}^{-1}V_{0} \subseteq U$ and thus \mathcal{F}^{-1} is continuous since r_{0} was arbitrary.

In order to complete the proof of that \mathcal{F} is an isomorphism, we must prove that \mathcal{F} is continuous. It suffices to prove that \mathcal{F} is continuous for the weak topologies $\sigma(\mathcal{H}'_H, \mathcal{H}_H)$, $\sigma(\text{EXP}_H, \text{EXP}'_H)$. Let $\mu \in \text{EXP}'_H(E)$ be arbitrary. Then $\mu \in \text{EXP}'_r(E)$ for every r. For any n and r, $\mathcal{P}_H(^nE)$ has the topology induced by $\text{EXP}_r(E)$. In view of this it follows that $\mu_n(y) \equiv \overline{\mu((\cdot, y)^n/n!)}$ belongs to $\mathcal{P}_H(^nE)$ and $\mu = (\cdot, \mu_n)_n$ on $\mathcal{P}_H(^nE)$ for all n. If r > 0 there is an $M_r > 0$ such that $|\mu(\varphi)| \leq M_r ||\varphi||_{H:r}$ for all $\varphi \in \text{EXP}_r(E)$. Let r > 0 be arbitrary and choose R > r. Then we obtain

$$r^{n} \|\mu_{n}\|_{n}^{2} / \sqrt{n!} \leq r^{n} |\mu(\mu_{n})| / \sqrt{n!} \leq r^{n} M_{R} \|\mu_{n}\|_{H:R} / \sqrt{n!} \leq M_{R} (r/R)^{n} \|\mu_{n}\|_{n}.$$
 (2.10)

Hence $f = f_{\mu} \equiv \sum \mu_n \in \mathcal{H}_H(E)$. Further, we conclude that $\langle \lambda, f \rangle = \langle \mathcal{F} \lambda, \mu \rangle$ for all $\lambda \in \mathcal{H}'_H(E)$ so \mathcal{F} is weakly continuous.

We have proved that \mathcal{F} is an isomorphism which implies that \mathcal{F} is an isomorphism for the weak topologies $\tau'' \equiv \sigma(\mathcal{H}'_H, \mathcal{H}''_H)$ and $\sigma(\text{EXP}_H, \text{EXP}'_H)$. But we also proved that \mathcal{F} is continuous for the dual pairs $\tau' \equiv \sigma(\mathcal{H}'_H, \mathcal{H}_H)$ and $\sigma(\text{EXP}_H, \text{EXP}'_H)$. From this we deduce that the injection $(\mathcal{H}'_H, \tau) \to (\mathcal{H}'_H, \tau'')$ is continuous and hence $\mathcal{H}_H(E) = \mathcal{H}''_H(E)$. Thus $\mathcal{H}_H(E)$ is semi-reflexive and therefore reflexive since $\mathcal{H}_H(E)$ is barreled.

We put $\mathcal{H}_H(E)$ and $\operatorname{EXP}_H(E)$ into sesqui-linear duality by $\langle f, \varphi \rangle = \mathcal{F}^{-1}\varphi(f)$, i.e. by the formula $\sum_{i} (f_n, \varphi_n)_n$. In view of our purposes, it is convenient to note the following. Let $e_y \equiv e^{(\cdot,y)} = \sum_{i} (\cdot, y)^n / n! \in \operatorname{EXP}_H(E) \subseteq \mathcal{H}_H(E), y \in E$. Then \mathcal{F} is given by $\mathcal{F}\lambda(y) = \overline{\lambda(e_y)}$ and $\overline{\varphi(y)} = \langle e_y, \varphi \rangle, f(y) = \langle f, e_y \rangle$ for all $\varphi \in \operatorname{EXP}_H(E)$ and $f \in \mathcal{H}_H(E)$.

Proposition 2.2 Let E be a Hilbert space. Multiplication by $\varphi \in EXP_H(E)$ is a continuous operator on $EXP_H(E)$ and continuous for the duality between $EXP_H(E)$ and $\mathcal{H}_H(E)$. $\mathcal{H}_H(E)$ is stable under translations and the transpose $\bar{\varphi}(D) \equiv {}^{t}\varphi : \mathcal{H}_H(E) \to \mathcal{H}_H(E)$ is a continuous convolution operator on $\mathcal{H}_H(E)$. The family, $\{\bar{\varphi}(D) : \varphi \in EXP_H(E)\}$ is all the continuous convolution operators on $\mathcal{H}_H(E)$. (Compare [6] Prop. 5.2.)

PROOF: Let $\varphi, \psi \in \text{EXP}_H(E)$ and put $\phi \equiv \varphi \psi \in \mathfrak{A}_H(E)$. Then there are M, r > 0 such that $\|\varphi\|_n, \|\psi\|_n \leq Mr^n/\sqrt{n!}$ for all n. By Lemma 2.1, and since $i!j! \geq n!/2^n$ when

i + j = n, we obtain

$$\begin{split} \|\phi_n\|_n &= \|\sum_{i+j=n} \varphi_i \psi_j\|_n \le \sum_{i+j=n} 2^{i+j} \|\varphi_i\|_i \|\varphi_j\|_j \\ &\le M^2 2^n r^n \sum_{i+j=n} 1/\sqrt{i!j!} \le M^2 2^n r^n \frac{2^{n/2}(n+1)}{\sqrt{n!}} \le \frac{M^2(R)^n}{\sqrt{n!}}, \end{split}$$

for some R = R(r) > 0. Hence $\phi \in \text{EXP}_H(E)$ and our estimates show that $\psi \mapsto \psi \varphi$ is continuous on $\text{EXP}_H(E)$. By Proposition 2.1 this implies that this map is continuous for the duality between $\text{EXP}_H(E)$ and $\mathcal{H}_H(E)$.

Since $\psi \mapsto \psi \varphi$ is weakly continuous its transpose $\bar{\varphi}(D) \equiv {}^{t}\varphi$ is continuous on $\mathcal{H}_{H}(E)$. Indeed, $\bar{\varphi}(D)$ is continuous for $\sigma(\mathcal{H}_{H}, \mathcal{H}'_{H}) = \sigma(\mathcal{H}_{H}, \mathrm{EXP}_{H})$ and thus for the strong topology, which is the (Frechet-) topology on $\mathcal{H}_{H}(E)$ (see [9], Prop. 8 page 218 & Prop. 5 page 256, for details).

The transpose of multiplication by e_y on $\text{EXP}_H(E)$ is the translation operator τ_y , $[\tau_y f](x) \equiv f(y+x)$. Thus $\mathcal{H}_H(E)$ is ("continuously") stable under translations. Further, it is easily checked that every operator $\bar{\varphi}(D)$ commutes with every translation operator on the total set $\{e_y : y \in E\}$ in $\mathcal{H}_H(E)$. From this we deduce that $\bar{\varphi}(D)$, $\varphi \in \text{EXP}_H(E)$ are convolution operators.

Let T be a continuous convolution operator on $\mathcal{H}_H(E)$. Then the composition $\lambda_T \equiv \delta_0 \circ T$, where $\delta_0(f) \equiv f(0)$, belongs to $\mathcal{H}'_H(E)$. Thus, by Proposition 2.1, there is a $\varphi \in \text{EXP}_H(E)$ such that $\mathcal{F}\lambda_T = \varphi$, i.e. $\overline{\lambda_T(e_y)} = \overline{[Te_y](0)} = \varphi(y), y \in E$. Hence if $y_0 \in E$

$$[Te_{y_0}](y) = [\tau_y(Te_{y_0})](0) = [T(\tau_y e_{y_0})](0) = e^{(y,y_0)}[Te_{y_0}](0) = e^{(y,y_0)}\overline{\varphi(y_0)}, \quad y \in E.$$

On the other hand

$$[\bar{\varphi}(D)e_{y_0}](y) = \langle e_{y_0}, \varphi e_y \rangle = \langle \tau_y e_{y_0}, \varphi \rangle = e^{(y,y_0)} \langle e_{y_0}, \varphi \rangle = e^{(y,y_0)} \overline{\varphi(y_0)}, \quad y \in E.$$

Hence, T and $\bar{\varphi}(D)$ coincide on the total set formed by the elements e_y , y = E, and thus, by continuity, on all of $\mathcal{H}_H(E)$.

Remark: If $\varphi = \sum \varphi_n \in \text{EXP}_H(E)$ and $f \in \mathcal{H}_H(E)$, $\bar{\varphi}(D)f = \sum \bar{\varphi}_n(D)f$ with absolute convergence in $\mathcal{H}_H(E)$. Moreover, if $\varphi_n = \sum_j \lambda_j (\cdot, y_j)^n \in \mathcal{P}_F({}^nE)$, $\bar{\varphi}_n(D) = \sum_j \overline{\lambda_j} D_{y_j}^n$. This motivates our notation.

3 An infinite-dimensional analogue of the Godefroy-Shapiro Theorem

We have characterized the continuous convolution operators on $\mathcal{H}_H(E)$ and in this section we prove our main result - the analogue of Godefroy & Shapiro's result for $\mathcal{H}_H(E)$. We start with a short discussion.

We have that $\bar{\varphi}(D) \circ \bar{\psi}(D) = \overline{\varphi\psi}(D)$ for all $\varphi, \psi \in \text{EXP}_H(E)$. From this we deduce that $\mathcal{O}(\bar{\varphi}(D), \bar{\psi}(D)f) = \bar{\psi}(D)\mathcal{O}(\bar{\varphi}(D), f)$. Since every convolution operator $\bar{\varphi}(D), \varphi \neq 0$ on $\mathcal{H}_H(E)$ has a dense range (its transpose is one to one) we conclude that if f is a hypercyclic vector for $\bar{\varphi}(D)$, then so is $\bar{\psi}(D)f$ for every $0 \neq \psi \in \text{EXP}_H(E)$ (it is not known if every non-zero convolution operator is surjective, i.e. if the analogue of Malgrange's classical theorem holds [12]. However by virtue of Lemma 2.1 it is not difficult to prove that every homogenous convolution operator $\bar{P}(D), 0 \neq P \in \mathcal{P}_H(^nE)$) is surjective). Thus a hypercyclic vector for a convolution operator must be outside the set $\mathcal{H}_0 \equiv \bigcup_{\psi \neq 0} \ker \bar{\psi}(D)$. \mathcal{H}_0 is a dense subspace of $\mathcal{H}_H(E)$. Indeed, since $\ker \bar{\varphi}(D) \cup \ker \bar{\psi}(D) \subseteq \overline{\varphi\psi}(D), \mathcal{H}_0$ is a vector space. Further, assume that $0 \neq \varphi \in \mathcal{H}_0^{\perp}$. Since $\ker \bar{\psi}(D)^{\perp} = \overline{\operatorname{Im} \psi}$, we have that $\mathcal{H}_0^{\perp} = \bigcap_{\psi \neq 0} \overline{\operatorname{Im} \psi}$. Choose y_0 so that $\varphi(y_0) \neq 0$ and let y_1 be a vector orthogonal to y_0 . We deduce that φ does not belong to $\overline{\operatorname{Im} \psi}$ where $\psi = (\cdot, y_1)\varphi$. Thus \mathcal{H}_0^{\perp} contains no non-zero vectors hence \mathcal{H}_0 is dense in $\mathcal{H}_H(E)$.

Theorem 3.1 Let E be a Hilbert space and let $\varphi \in EXP_H(E)$ be non-constant. Then $\bar{\varphi}(D) : \mathcal{H}_H(E) \to \mathcal{H}_H(E)$ has the property (SHC) and is thus hypercyclic. Thus there exists a hypercyclic vector $f \in \mathcal{H}_H(E) \setminus \mathcal{H}_0$ such that the (dense) subspace $\mathcal{M} = \{\bar{\psi}(D)f : \psi \in EXP_H(E)\}$ is invariant for $\bar{\varphi}(D)$ and every non-zero vector in \mathcal{M} is hypercyclic for $\bar{\varphi}(D)$.

PROOF: We shall prove that $T = \overline{\varphi}(D)$ has the property (SHC). Consider the subsets

$$V = \{y \in Y : |\varphi(y)| < 1\}, \quad W = \{y \in Y : |\varphi(y)| > 1\}.$$

By the assumption on φ , V and W are both non-empty and open. Let

$$\mathcal{H}_V(E) \equiv \operatorname{span}\{e_y : y \in V\}$$

and define $\mathcal{H}_W(E)$ similarly. We claim that $\mathcal{H}_V(E)$ and $\mathcal{H}_W(E)$ both are dense in $\mathcal{H}_H(E)$. Assume that $\mathcal{H}_V(E)$ is not dense. By the Hahn-Banach theorem and Proposition 2.1 there is a $0 \neq \psi \in \text{EXP}_H(E)$ such that

$$0 = \langle e_y, \psi \rangle = \overline{\psi(y)}, \quad y \in V.$$

Thus ψ vanishes in a neighbourhood of the origin and hence $\psi = 0$. This is a contradiction which proves our claim for $\mathcal{H}_V(E)$ and the assertion concerning $\mathcal{H}_W(E)$ follows analogously. Next, let $y \in V$ be arbitrary. Then $\bar{\varphi}(D)^n e_y = \overline{\varphi(y)}^n e_y$ for all $n \geq 0$. This shows that $\bar{\varphi}(D)$ maps $\mathcal{H}_V(E)$ into $\mathcal{H}_V(E)$ and that $\bar{\varphi}(D)^n f \to 0$ for every $f \in \mathcal{H}_V(E)$. On $\mathcal{H}_W(E)$ we define the operator S by $Se_y \equiv e_y/\overline{\varphi(y)}$, $y \in W$. We conclude, in the same way as for T and $\mathcal{H}_V(E)$, that S maps $\mathcal{H}_W(E)$ into $\mathcal{H}_W(E)$ and that $S^n f \to 0$ for every $f \in \mathcal{H}_W(E)$. Finally we note that $TSe_y = \bar{\varphi}(D)e_y/\overline{\varphi(y)} = e_y$ for $y \in W$ and thus TSf = f for all $f \in \mathcal{H}_W(E)$. This completes the proof.

References

- R. Aron and J. Bés. Hypercyclic differentiation operators. Function Spaces (Proc. Conf. Edwardsville, IL, 1998), Amer. Math. Soc. Providence, RI, pages 39-42, 1999. MR 2000b:47019.
- [2] G.D. Birkhoff. Démonstration d'un théoreme élémentaire sur les fonctions entières. C.R. Acad. Sci. Paris, 189:437-475, 1929.
- [3] S. Dineen. Complex analysis on Infinite Dimensional Spaces. Springer-Verlag, 1999.
- [4] A.W. Dwyer. Partial differential equations in Fischer-Fock spaces for the Hilbert-Schmidt holomorphy type. Bull. Amer. Soc., 77:725-730, 1971. MR 44#7288.
- [5] R.M. Gethner and J.H. Shapiro. Universal vectors for operators on spaces of holomorphic functions. Proc. Amer. Math. Soc., No. 2, 100:281-288, 1987. MR 88g:47060.
- [6] G. Godefroy and J.H. Shapiro. Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal., 98:229-269, 1991. MR 92d:47029.
- K.-G. Grosse-Erdmann. Universal families and hypercyclic operators. Bull. Amer. Math. Soc. (N.S.). No. 3, 36:345-381, 1999. MR 2000c:47001.
- [8] C. Gupta. Convolution operators and holomorphic mappings on a Banach space. Sem. Anal. Mod., No. 2, 1969. Univ. Sherbrooke, Québec.

- [9] J. Horvath. Topological Vector Spaces and Distributions, volume 1. Addison-Wesley, Reading Massachusetts, 1966.
- [10] C. Kitai. Invariant closed sets for linear operators. Ph.D. thesis, Univ. of Toronto, 1982.
- [11] G.R. MacLane. Sequences of derivatives and normal families. J. Analyse Math., pages 72-87, 1952/53. MR 14:741d.
- [12] B. Malgrange. Existence et approximation des solutions des équations aux dérivativées partielles et des équations de convolution. Ann. Inst. Fourier, 6:271-354, 1955.
- [13] H. Petersson. Fischer decompositions of entire functions of Hilbert-Schmidt holomorphy type. preprint and submitted, 2001.
- [14] C. J. Read. The invariant subspace problem for a class of Banach spaces. ii. Israel J. Math., 63:1-40, 1998. MR 90b:47013.
- [15] F. Treves. Linear partial differential equations with constant coefficients. Gordon and Breach, 1966.

Henrik Petersson School of Mathematics and Systems Engineering SE-351 95 Växjö Sweden

Henrik.Petersson@msi.vxu.se