
ANNALES MATHÉMATIQUES BLAISE PASCAL

HENRIK PETERSSON
Hypercyclic convolution operators on entire functions
of Hilbert-Schmidt holomorphy type
Annales mathématiques Blaise Pascal, tome 8, no 2 (2001), p. 107-114
<http://www.numdam.org/item?id=AMBP_2001__8_2_107_0>

© Annales mathématiques Blaise Pascal, 2001, tous droits réservés.

L’accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http:
//math.univ-bpclermont.fr/ambp/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commer-
ciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AMBP_2001__8_2_107_0
http://math.univ-bpclermont.fr/ambp/
http://math.univ-bpclermont.fr/ambp/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


Hypercyclic convolution operators on entire functions ot
Hilbert-Schmidt holomorphy type

Henrik Petersson

ANNALES MATHEMATIQUES BLAISE PASCAL, VOL. 8, N~ 2, PP 107-114 (2001)

Abstract

A theorem due to G. Godefroy and J. Shapiro states that every continuous convo-
lution operator, that is not just multiplication by a scalar (non-trivial), is hypercyclic .

on the space of entire functions in n variables endowed with the compact-open topol-
ogy. We study the space of entire functions of Hilbert-Schmidt type on a

Hilbert space E. We characterize its continuous convolution operators and prove the
following: Every continuous non-trivial convolution operator is hypercyclic on HH(E).

Key words: Hypercyclic, Hilbert-Schmidt, Holomorphic, Convolution operator, Expo-
nential type.

1 Introduction

A cyclic (hypercyclic) vector for an operator T : : is a vector x such that the
closed linear hull (closed hull) of the orbit O(T, x) - {x, Tx, ...} under the operator
is the entire space. An operator T is cyclic (hypercyclic) whenever there exists a cyclic
(hypercyclic) vector. Recall that an invariant subset for an operator T : X - X is a
subset S C X such that T S C S. Thus every orbit constitutes an invariant set and the
invariant sets are called trivial. Note that the closed linear hull of an orbit under
a continuous operator is the smallest closed invariant subspace that contains the vector
under consideration. Consequently, a continuous operator lacks non-trivial invariant closed
subspaces (subsets) if and only if every non-zero vector is cyclic (hypercyclic).

The theory of cyclic and hypercyclic operators is a natural part of the study of invariant
subspaces and the approximation theory. An overview of the theory is exposed in [7]. The
most natural problems are maybe (1): given an operator T : X --~ X, is it hypercyclic
and (2): given a space X, does it admit a hypercyclic operator T : X -~ X. For example,
it is known that no linear operator on a finite dimensional space is hypercyclic but every
separable infinite-dimensional Frechet space carries a hypercyclic operator (see [7] for more
on this).

Godefroy and Shapiro show in [6] that every continuous non-trivial convolution opera-
tor is hypercyclic on the (Fréchet-) space of entire functions in n-variables (a convolution
operator is an operator that commutes with all translations and it is called trivial when it
is given by x H ax for soine scalar a). It is known that the continuous convolution opera-
tors are the operators of the form 03C6(D), p(D) f ~ 03A303B1~Nn 03C603B1D03B1 f where 03C6 = 03A303B1~Nn 03C603B1y03B1
is an entire exponential type function in n variables. Thus, in particular, every operator
of translation is hypercyclic and the one variable version of this particular result was
obtained by Birkhoff already in the twenties [2]. Before Godefroy and Shapiro obtained
their general result, MacLanc [11] ha.d established the hypcrcyclicity of differentiation D
on the one variable entire functions. Hypercyclic properties of exponential type differen-
tial operators on spaces of holomorphic functions with infinite dimensional domains, have
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also been studied (see for example [1]). In this note we prove the analogue of Godefroy
and Shapiro’s result for entire functions of Hilbert-Schmidt type HH(E) on a (separable)
Hilbert space E (Theorem 3.1). HH(E) is a separable Fréchet space and is built up of
homogenous Hilbert-Schmidt polynomials. A similar, but different, type of holomorphy
is studied in [4]. In fact, we prove that every continuous non-trivial convolution operator
has a dense set of hypercyclic vectors but that there is a certain dense subspace for which
every such type of hypercyclic vector must be outside. This result is interesting in view
of a result of the following type: There exists a continuous linear operator on ~1 for which
every non-zero vector is hypercyclic (due to Read [14] and it is not known whether we can
replace .~1 with an infinite-dimensional separable Hilbert space (see [7] page 359)).

For our purpose we make use of the following well-known theorem due to Gethner,
Godefroy, Shapiro, Kitai ([5], [6], [10]). The theorem is based on the Baire Category
Theorem and gives a criterion, known as the Hypercyclicity Criterion, for an operator to
be hypercyclic.

Theorem 1.1 (Hypercyclicity Criterion) Let X be a separable Fréchet space and let
T : X -~ X be a continuous linear operator. Assume that T satisfies the following (hyper-
cyclicity) criterion (HC): there are dense subsets Z, Y C X and a map S : Y -~ Y such

that

1. V~ E Z,

2. Sny -3 0 dy E Y,

3. TSy=y Vy Y.

Then T is hypercyclic. ,

We emphasize that the subsets Z, Y and the operator S in the hypothesis need not
to be linear. Moreover, it is not necessary that the map S is continuous. It is known

that (HC) is not a necessary condition for an operator to be hypercyclic. We shall say
that an operator T (on an arbitrary locally convex Hausdorff space X) satisfies the Strong
Hypercyclicity Criterion (SHC) when it satisfies the condition (HC) in such a way that
the set Z can be chosen as an invariant set for T.

2 Hilbert-Schmidt entire functions and convolution operators

In this section we introduce the space of entire functions of Hilbert-Schmidt type and
characterize its continuous convolution operators.

If X is a complex vector space, we denote by ) the complex valued Gateaux
holomorphic functions on X. . If f E we denote by the n:th directional
derivative at x along y. Let E be a separable complex Hilbert space (we shall tacitly
assume everywhere below that all vector spaces are complex and that all Hilbert spaces
are separable). We denote by PF(nE) C HG(E) the space of n-homogenous polynomials
on E of finite type. That is. is the subspace of the n-homogenous polynomials

on E, spanned by the elements ( ~, y) n, y E E, where (., .) denotes the inner product
on E. We endow PF(nE) with the inner product defined by ((.,y)n, (.,z)n)n ‘ n!(z, y)n
(More precisely, by the assumption on E we can identify the symmetric tensors @n,sE with
PF(nE) and (., .)n is the inner product is induced from the inner product space in

this way). The n-homogenous Hilbert-Schmidt polynomials, denoted by PH (nE), is the
completion Of w.r.t. the inner product (~, ~)n. . ~ye use the symbol ,~~ for the
corresponding norm. In view of our purposes, it is convenient to note that
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Let (e j) be an orthonormal basis in E. For a given multi-index a E N~ ~ ~~k=1N,
let Here suppa D {~ : 0} and H = ~ aj. The
elements ea, |03B1| = n, form an orthogonal basis for PH(nE) and ~e03B1~2n = a! = 03B11!...
(this follows from Lemma 1 in (4J). Thus PH(nE) can be identified with the space of all
sequences (Pa) such that 03A3|03B1|=n |P03B1|203B1!  oo and in this way we have that

~P~2n = |P03B1|203B1!, P E (2.2)

Let us note the following. The n-homogenous nuclear polynomials PN(nE) and the
continuous polynomials PC(nE) can be put in duality by passing to the limit out of the
inner product (., .)n on PF(nE). In this way we have that PC(nE) is the topological dual
of PN(nE) (see Dineen [3] or Gupta [8] for further details). Recall that PN(nE) is the

Banach space obtained from the completion of PF(nE) w.r.t. the nuclear norm. We have
the following (continuous) injections

PN(nE) ~ PH(nE) ~ PC(nE). (2.3)

The following lemma is crucial for our investigation and can, at this stage, only be
found in a preprint [13j. Therefore we include here a proof.

Lemma 2.1 Let E be a Hilbert space and let P E PH(mE), Q E PH("E). Then PQ E
PH(n+mE) and

~PQ~n+m ~ 2n+m~P~m~Q~n. (2.4)

Thus, multiplication by P defines a continuous operator between PH(nE) and PH(n+mE).

PROOF: Let (ej) be an orthonormal basis in E and let P = 03A3|03B1|=m P03B1e03B1, Q =
Qaea. . Formally we have that PQ = 03A3|03B3|=n+m R03B3e03B3, where

R03B3 ~  PaQ7-a, ’Y E Noo. (2.5)

It suffices to prove that the right hand side defines an element R in PH(n+mE), i.e. that
03A3|03B3|=n+m|R03B3|203B3!  oo. Indeed, then both PQ and R define continuous polynomials and
since they coincide on Ej M span{ el, ..., ej} for all j, we deduce that PQ = R.

We have that

 ( |P03B1~Q03B3-03B1|) 203B3! 

where J03B3(m) C is the index set in the sum in (2.5) and denotes the number of

elements in J03B3(m). We derive an estimate for by using arguments from
the probability theory. Consider a bowl with |03B3| objects of # supp 03B3 different kinds and
of 03B3j of sort j E supply respectively. Assume that we pick m objects from the bowl.
Given a E the probability of obtaining precisely a~ elements of each respective
sort j E supply is known to be
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The number Ny(m) is now nothing but the number of elementary events and hence

N03B3(m) ~ ()/ () ~ () ~ 2n+m.
Thus

|R03B3|203B3! ~ 4n+m  |P03B1|203B1!|Q03B3-03B1|2(03B3- a}! = 4n+m~P~2n~Q~2m

and the proof is complete. r-.

We denote by the space of all formal expansions f = 03A3 f n, f n E PH(nE),
i.e. H(E) --_ 03A0n PH(nE) (PH(0E) - C). . is a ring by virtue of Lemma 2.1. The
Hilbert-Schmidt polynomials, denoted by PH(E), is the subring ~nPH(nE), or alterna-
tively, the space spanned by UnPH(nE) in .

If E is a Hilbert space, the space of entire functions of Hilbert-Schmidt type on E,
denoted by ~lH (E), is the space defined as follows. (E) is the space of all f = ~ f n E

such that

~f~H:r =  ~, r > 0, (2.6)
endowed with the semi-norms thus defined. HH(E) is a Fréchet space and, in particular,
HH(Cn) is the space of entire functions endowed with the compact-open topology. The
series E fn converges absolutely in and uniformly on bounded sets for every f =
03A3 fn E HH(E). Indeed, we have that |fn(y)|  n > 0, if  r. Thus,

is separable and every element in HH(E) defines an entire function of bounded
type so can also be described as the space of all f E HG(E) such that f n ~

PH(nE), n = 0, ..., and such that (2.6) holds.
By Lemma 2.1 we obtain:

Theorem 2.1 Let E be a Hilbert space. Then f g E and ~ 
for all f,g E HH(E). Thus HH(E) is a subring of H(E) and multiplication by f E
HH(E) defines an everywhere defined continuous operator on HH(E).

PROOF: Let f, , g E HH(E). Then f g = 03A3 hn E H(E) where hn E figj. By
Lemma (2.1 ) we obtain 

rn~hn~n n! ~ ri+j~figj~n i!j! ~ (2r)i~fi~i i! (2r)j~gj~j j! 
(2.7)

This estimate completes the proof.

Given r > 0 we denote by EXPr(E) the (Banach-) space of all p E H(E) such
that for some AI > 0, ~03C6n~n  n = 0,... equipped with the norm =

supn The symbol EXPH (E) denotes the union Ur>0EXPr(E) equipped
with the corresponding inductive locally convex topology. Thus EXPH (E) is given by all
cp 2lH(E) such that lim(n!~03C6n~n)1/n  ~. E;ery cp E EXPH(E) defines
an exponential type function, i.e. a Gateaux holomorphic function with |03C6|(y)| ~ Mer~y~
for some > 0, and its power series converges in EXPH(E). A proof of the "finite-
dimensional" analogue of the following proposition can be found in [15] (see also [12] page
320).

Proposition 2,1 Let E be ri Hi/bel’t space. Then HH(E) is reflexive and the rnap F : a H
03A3 03BBn. 03BBn(y) _ 03BB((.,y)n/n!). defines an anti-linear isomorphism between H’H(E) (strong
topology) and EXPH(E).



111

PROOF: Let cp = 03A3 03C6n E EXPr(E). Then ~03C6n~n~03C6H:rrn/n! and we can define a
functional A = 03BB03C6 on HH(E) by a( f ) - 03A3(fn,03C6n)n. Indeed, the following estimates show
that A is well-defined and is a continuous linear functional

03A3 ~fn~n~03C6n~n  03A3 ~fn~nrn/n! = 03C6H:r~f~H:r. (2.8)

Moreover, in view of (2.1) it follows that .~a = cp.
Next we prove that FH’H(E) C EXPH(E). Let 03BB E be arbitrary. Every

PH(nE) has the topology induced by Consequently, the restriction 03BB|n to PH(nE)
belongs to P’H (nE) for all n. From this we conclude that An E PH (nE) for all n, =

03A303BBn ~ H(E), and aJn = (., an)n. Now there is an r > 0 such that f a( f )J  
for all f E HH(E). Hence

~03BBn~2n = M~03BBn~H:r  Mrn~03BBn~n/n! (2.9)

and thus;:’B = ~ An E EXPH(E). ,~ is one to one and thus ~’ is a vector space isomor-
phism.

We prove that F-1 is continuous. Let U = BO, B = { f E HH(E) : ~f~r  Mr, r > 0}
be a neighbourhood of the origin in Let ro > 0 be arbitrary and consider the
neighbourhood of the origin Vo E= {03C6 E EXPr0(E) : 03C6H:r0  MToI} in EXPro (E). From
(2.8) it follws that .~’-~~o C U and thus ~~1 is continuous since ro was arbitrary.

In order to complete the proof of that 0 is an isomorphism, we must prove that ~’ is
continuous. It suffices to prove that F is continuous for the weak topologies 03C3(H’H, HH),
03C3(EXPH, EXP’H). Let  E EXP’H(E) be arbitrary. Then  E EXP;.(E) for every r. For
any n and r, has the topology induced by EXPr (E). In view of this it follows
that ((.,y)n/n!) belongs to PH(nE) and  = (., on PH(nE) for all n. If
r > 0 there is an Mr > 0 such that  Mr03C6H: for all cp E EXPr(E). Let r > 0 be
arbitrary and choose R > r. Then we obtain

~ _ . (2.10)
Hence f = f  ~ 03A3 n E HH(E). Further, we conclude that (a, f ) = F03BB, ~ for all
A E H’H(E) so F is weakly continuous.

We have proved that;: is an isomorphism which implies that :F is an isomorphism
for the weak topologies T" E= H"H) and 03C3(EXPH, EXP’H). But we also proved that
F is continuous for the dual pairs T’ = 03C3(H’H, HH) and a(EXP H, EXP’H). From this we
deduce that the injection (H’H, ) ~ (H’H, ") is continuous and hence HH(E) = H"H(E).
Thus is semi-reflexive and therefore reflexive since is barreled. 0

We put HH(E) and EXPH(E) into sesqui-linear duality by ( f, p) = i.e. by
the formula ~( fn, . In view of our purposes, it is convenient to note the following.
Let ey _ e(.,y) = 03A3(., y)n/n! E EXPH(E) C y E E. Then F is ’given by
F03BB(y) = and cp(v) = ey, 03C6~, f(y) = f, ey) for all cp E EXPH(E) and f E HH(E).

Proposition 2.2 Let E be a Hilbert space. Multiplication by cp E EXPH(E) is a continu-
ous operator on EXPH(E) and continuous for the duality between EXPH(E) and HH(E).

.stable under translations and the transpose 03C6(D) ~ t03C6 : HH(E) ~ HH(E) is
a continuous convolution operator on . The family, {03C6(D) cp E EXPH(E)} is all
the continuous convolution operators on HH(E). (Compare [6] Prop. 5.2.)

PROOF: Let cp, 03C8 E EXPH(E) and put y ; E Then there are M, r > 0
such that ~03C8~n  n! for all n. By Lemma 2.1, and since i!j! > when
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i + j = n, we obtain

~03C6n~n = ~ 03A3 03C6i03C8j~n ~ 03A3 2i+j~03C6i~i~03C6j~j
i+ j -n i+j=n

~ M22nrn 1/i!j! ~ M22nrn2n/2(n + 1) n! 
~ M2(R)n n!,

for some R = R(r) > 0. Hence § E EXPH(E) and our estimates show that 03C8 ~ 03C803C6 is

continuous on EXPH(E). By Proposition 2.1 this implies that this map is continuous for
the duality between EXPH(E) and HH(E).

Since’Ø ~ 03C803C6 is weakly continuous its transpose 03C6(D) ~ t03C6 is continuous on HH(E).
Indeed, cp(D) is continuous for 03C3(HH,H’H) = 03C3(HH, EXPH) and thus for the strong
topology, which is the (Frechet-) topology on RH(E) (see [9], Prop. 8 page 218 & Prop.
5 page 256, for details).

The transpose of multiplication by ey on EXPH(E) is the translation operator Ty,
f (y + x). Thus is ("continuously") stable under translations. Further,

it is easily checked that every operator cp(D) commutes with every translation operator
on the total set {ey : y E E} in From this we deduce that c~ E EXPH(E)
are convolution operators.

Let T be a continuous convolution operator on ~l~(E). Then the composition 
be o T, where bo( f ) = f (o), belongs to Thus, by Proposition 2.1, there is a

cp E EXPH(E) such that = cp, i.e. = [Tey](O) = y E E. Hence if yo E E

= = = E E.

On the other hand 
.

Hence, T and cp(D) coincide on the total set formed by the elements ey, y = E, and thus,
by continuity, on all of . 0

Remark: If cp E EXPH(E) and f E cp(D) f = 03A3 03C6(D)f with absolute
convergence in . Moreover, if CPn = 03A3j 03BBjDnyj.
This motivates our notation. 

3 An infinite-dimensional analogue of the Godefroy-Shapiro Theorem

We have characterized the continuous convolution operators on and in this section

we prove our main result - the analogue of Godefroy & Shapiro’s result for ~~le

start with a short discussion.

We have that = for all cp, ~ E EXPH(E). From this we deduce that
= f ). Since every convolution operator p ~ 0 on

has a dense range (its transpose is one to one) we conclude that if f is a hypercyclic
vector for cp(D), then so is for every 0 ~ ~~ E EXPH(E) (it is not known if every
non-zero convolution operator is surjective, i.e. if the analogue of Malgrange’s classical
theorem holds [12]. However by virtue of Lemma 2.1 it is not difficult to prove that

every homogenous convolution operator P(D), U ~ P E PH(nE)) is surjective). Thus a
hypercyclic vector for a convolution operator must be outside the set H0 = U03C8~0 ker 03C8(D).
H0 is a dense subspace of Indeed, since ker 03C6(D) U ker 03C8(D) C H0 is a
vector space. Further, assume that 0 ~ cp E H0. Since = Im 03C8, we have that

H0 = ~03C8~0Im03C8. Clioose yo so that ~ 0 and let. y1 be a vector orthogonal to y0. VtG
deduce that cp does not belong to Im 03C8 where 03C8 = (., y1)03C6. Thus H0 contains no non-zero
vectors hence H0 is dense in HH(E).
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Theorem 3.1 Let E be a Hilbert space and let cp E EXPH(E) be non-constant. Then

cp(D) : HH(E) ~ HH(E) has the property (SHC) and is thus hypercyclic. Thus there
exists a hypercyclic vector f E HH(E) B H0 such that the (dense) subspace M = {03C8(D)f :

03C8 E EXPH(E)} is invariant for 03C6(D) and every non-zero vector in M is hypercyclic for
~(D) ~

PROOF: We shall prove that T = ~p(D) has the property (SHC). Consider the subsets

v = {y E Y : |03C6(y)|  W = {y E Y > 1}.

By the assumption on V and W are both non-empty and open. Let

1lv(E) = span{ey : y E V}

and define similarly. We claim that and HW(E) both are dense in .

Assume that HV(E) is not dense. By the Hahn-Banach theorem and Proposition 2.1 there
is a 0 ~ ~ E EXPH(E) such that

~ _ ~) = y E V.

Thus ~ vanishes in a neighbourhood of the origin and hence ~ = 0. This is a contra-
diction which proves our claim for HV(E) and the assertion concerning HW(E) follows
analogously. Next, let y E V be arbitrary. Then 03C6(D)ney = 03C6(y)ney for all n > 0. This
shows that maps HVE) into HV(E) and that cp(D)n f ~ 0 for every f E HV(E).

On HW(E) we define the operator S by Sey = ey/cp(y), yEW. . We conclude, in the
same way as for T and that S maps HW(E) into HW(E) and that Sn f ~ 0 for
every f E HW(E). Finally we note that TSey = 03C6(D)ey/03C6(y) = ey for yEW and thus
T S f = f for all f E . This completes the proof. u
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