Annales mathématiques Blaise Pascal

P.N. NATARAJAN
 Some properties of the Y-method of summability in complete ultrametric fields

Annales mathématiques Blaise Pascal, tome 9, n 1 (2002), p. 79-84
http://www.numdam.org/item?id=AMBP_2002__9_1_79_0

L'accès aux archives de la revue «Annales mathématiques Blaise Pascal» (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Some properties of the Y - method of summability in complete ultrametric fields

P. N. Natarajan

Abstract

In this paper, a few results regarding the Y-method of summability in complete ultrametric fields are proved.

Let K be a complete ultrametric field. Throughout the present paper, infinite matrices, sequences and series have entries in K. Given an infinite $\operatorname{matrix} A=\left(\alpha_{i}^{j}\right), i, j=0,1,2, \cdots$ and a sequence $\left\{u_{j}\right\}, j=0,1,2, \cdots$, by the A-transform of $\left\{u_{j}\right\}$, we mean the sequence $\left\{v_{i}\right\}$,

$$
v_{i}=\sum_{j=0}^{\infty} \alpha_{i}^{j} u_{j}, i=0,1,2, \cdots
$$

where it is assumed that the series on the right converge. If $\lim _{i \rightarrow \infty} v_{i}=s$, we say that the sequence $\left\{u_{j}\right\}$ is A-summable to s.

The Y-method of summability in K is defined as follows: the Y-method is given by the infinite matrix $Y=\left(\alpha_{i}^{j}\right)$, where

$$
\alpha_{i}^{j}=\lambda_{i-j}
$$

$\left\{\lambda_{n}\right\}$ being a bounded sequence in K. Srinivasan's method [4] is a particular case with $K=\mathbb{Q}_{p}$, the p-adic field for a prime $p, \lambda_{0}=\lambda_{1}=\frac{1}{2}, \lambda_{n}=0, n>1$.

We shall prove a few results about the Y-method using properties of analytic functions (a general reference in this direction is [2]).

Let U be the closed unit disk in K and let $H(U)$ be the set of all power series converging in U, with coefficients in K. Let $h(x)=\sum_{n=0}^{\infty} u_{n} x^{n}$ and
AMS subject classification: 40
Keywords: complete ultrametric field, Y-method of summability, p-adic field, power series, analytic functions, summability factors.

P. N. Natarajan

$l(x)=\sum_{n=0}^{\infty} v_{n} x^{n}$. The following result is easily proved.
Lemma 1. The sequence $\left\{u_{n}\right\}$ is Y-summable to s if and only if the function l is of the form

$$
l(x)=\frac{s}{1-x}+\psi(x)
$$

where $\psi \in H(U)$. We now have
Lemma 2. Let $\phi(x)=\sum_{n=0}^{\infty} \lambda_{n} x^{n}$. The Y-transform $\left\{v_{n}\right\}$ of the sequence $\left\{u_{n}\right\}$ satisfies

$$
l(x)=\phi(x) h(x)
$$

i.e., The Y-transform $\left\{v_{n}\right\}$ of $\left\{u_{n}\right\}$ is the convolution product of $\left\{u_{n}\right\}$ and $\left\{\lambda_{n}\right\}$.

Most of the theorems that are proved in the sequel use the following basic Lemma which is true in any complete ultrametric field and which follows as a corollary of the Hensel Lemma.
Lemma 3. Let $h \in H(U)$ and $a \in U$ such that $h(a)=0$. Then there exists $t \in H(U)$ such that

$$
h(x)=(x-a) t(x)
$$

We now prove the main results of the paper.
Theorem 1. If $\left\{a_{n}\right\}$ is Y-summable to $0,\left\{b_{n}\right\}$ is Y-summable to B, then $\left\{c_{n}\right\}$ is Y-summable to $B\left(\sum_{n=0}^{\infty} a_{n}\right)$, where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}, n=0,1,2, \cdots$, i.e., $\left\{c_{n}\right\}$ is the convolution product of $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$.

Proof. Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$. Then $\phi(x) f(x) \in H(U)$ and $\phi(x) g(x)=\frac{B}{1-x}+\theta(x)$, where $\theta \in H(U)$. Consequently the convolution product $\left\{c_{n}\right\}$ of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfies:

$$
\begin{aligned}
\phi(x) \sum_{n=0}^{\infty} c_{n} x^{n} & =(\phi(x) g(x)) f(x) \\
& =\left(\frac{B}{1-x}+\theta(x)\right) f(x) \\
& =\left(\frac{B}{1-x}+\theta(x)\right)\{f(1)+(f(x)-f(1))\}
\end{aligned}
$$

Properties of the Y-method

$$
=\frac{B f(1)}{1-x}+\frac{B(f(x)-f(1))}{1-x}+\theta(x) f(x)
$$

In view of Lemma $3, \frac{f(x)-f(1)}{1-x} \in H(U)$. So

$$
\phi(x) \sum_{n=0}^{\infty} c_{n} x^{n}=\frac{B f(1)}{1-x}+\gamma(x)
$$

where $\gamma \in H(U)$. Using Lemma 1, the result follows.
Theorem 2. Let K be a complete ultrametric field of characteristic $\neq 2$. Let $\lambda_{0}=\lambda_{1}=\frac{1}{2}, \lambda_{n}=0, n>1$. If $\left\{a_{n}\right\}$ is Y-summable to $A,\left\{b_{n}\right\}$ is Y-summable to B, then

$$
\lim _{n \rightarrow \infty}\left(\gamma_{n+2}-\gamma_{n}\right)=2 A B
$$

where $\left\{\gamma_{n}\right\}$ is the Y-transform of $\left\{c_{n}\right\}$.
Proof. Let us retain the same notations regarding f, g. Let $F(x)=\phi(x) g(x) f(x)$. Again $\phi(x) g(x)=\frac{B}{1-x}+\theta(x), \phi(x) f(x)=\frac{A}{1-x}+\xi(x)$, where $\theta, \xi \in H(U)$. Hence

$$
\phi^{2}(x) f(x) g(x)=\frac{A B}{(1-x)^{2}}+\frac{A \theta(x)+B \xi(x)}{1-x}+\xi(x) \theta(x)
$$

On the other hand, let $h(x)=\sum_{n=0}^{\infty} \gamma_{n} x^{n}$. Then $h(x)=\phi(x) f(x) g(x)$ so that $\phi^{2}(x) f(x) g(x)=\phi(x) h(x)$ and consequently

$$
\phi(x) h(x)=\frac{A B}{(1-x)^{2}}+\frac{\omega(x)}{1-x}
$$

where $\omega \in H(U)$. Now,

$$
(1-x) \phi(x) h(x)=\frac{A B}{1-x}+\omega(x)
$$

Since $\lambda_{0}=\lambda_{1}=\frac{1}{2}, \lambda_{n}=0, n>1, \phi(x)=\frac{1+x}{2}$ and so
i.e.,

$$
\begin{aligned}
(1-x)\left(\frac{1+x}{2}\right) h(x) & =\frac{A B}{1-x}+\omega(x) \\
\left(\frac{1-x^{2}}{2}\right) h(x) & =\frac{A B}{1-x}+\omega(x) \\
\sum_{n=0}^{\infty}\left(\frac{\gamma_{n}-\gamma_{n-2}}{2}\right) x^{n} & =\frac{A B}{1-x}+\omega(x)
\end{aligned}
$$

i.e.,

P. N. Natarajan

Now the result follows using Lemma 1.
We now return back to the general case when $\left\{\lambda_{n}\right\}$ is a bounded sequence in any complete ultrametric field K and $\alpha_{i}^{j}=\lambda_{i-j}, i, j=0,1,2, \cdots$.
Definition. The series $\sum_{k=0}^{\infty} a_{k}$ is said to be Y-summable to l if $\left\{s_{n}\right\}$ is Y summable to l, where $s_{n}=\sum_{k=0}^{n} a_{k}, n=0,1,2, \cdots$.
We now have
Theorem 3. Suppose $\lim _{n \rightarrow \infty} a_{n}=0$ and $\sum_{n=0}^{\infty} a_{n}=l$. Let $\sum_{n=0}^{\infty} b_{n}$ be Y-summable to m. Then $\sum_{n=0}^{\infty} c_{n}$ is Y-summable to $l m$.
Proof. Let $t_{n}=\sum_{k=0}^{n} b_{k}, w_{n}=\sum_{k=0}^{n} c_{k}, n=0,1,2, \cdots$. Let f, g have the same meaning as in the preceding theorems. We notice that

$$
\sum_{n=0}^{\infty} t_{n} x^{n}=g(x)\left(\sum_{n=0}^{\infty} x^{n}\right)=\frac{g(x)}{1-x}
$$

Since $\left\{t_{n}\right\}$ is Y-summable to m, we have,

$$
\frac{\phi(x) g(x)}{1-x}=\frac{m}{1-x}+\psi(x)
$$

where $\psi \in H(U)$. Hence

$$
\begin{aligned}
\frac{\phi(x) f(x) g(x)}{1-x} & =m \frac{f(x)-f(1)}{1-x}+\frac{m f(1)}{1-x}+\psi(x) \\
& =\frac{m f(1)}{1-x}+\theta(x)
\end{aligned}
$$

where $\theta \in H(U)$ (this is so because $\left.\frac{f(x)-f(1)}{1-x} \in H(U)\right)$ and $f(1)=l$. The proof is now complete.
Remark 1. In the classical case, we have the following result: If $\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$ and $\sum_{n=0}^{\infty} a_{n}=l, \sum_{n=0}^{\infty} b_{n}$ is Y-summable to m, then $\sum_{n=0}^{\infty} c_{n}$ is Y-summable to

Properties of the Y-method

$l m$. Theorem 3 thus gives yet another instance where absolute convergence in classical analysis is effectively replaced by ordinary convergence in nonarchimedean analysis.

In the context of summability factors (For the definition of summability factors or convergence factors, see, for instance, [3], pp.38-39), the following result about the Y - method is interesting.
Theorem 4. Let $\lim _{n \rightarrow \infty} \lambda_{n}=0$. If $\sum_{n=0}^{\infty} a_{n}$ is Y-summable and $\left\{b_{n}\right\}$ converges, then $\sum_{n=0}^{\infty} a_{n} b_{n}$ is Y-summable.
Proof. Let $s_{n}=\sum_{k=0}^{n} a_{k}, n=0,1,2, \cdots,\left\{s_{n}\right\}$ be Y-summable to $s, \lim _{n \rightarrow \infty} b_{n}=m$. Let $b_{n}=m+\epsilon_{n}$ so that $\lim _{n \rightarrow \infty} \epsilon_{n}=0$. Since $\lim _{n \rightarrow \infty} \lambda_{n}=0, \phi \in H(U)$. Since $\left\{s_{n}\right\}$ is Y-summable to s, we have,

$$
\frac{\phi(x) f(x)}{1-x}=\frac{s}{1-x}+\psi(x),
$$

where $\psi \in H(U)$. Now,

$$
\frac{\phi(x) \sum_{n=0}^{\infty} a_{n} b_{n} x^{n}}{1-x}=\frac{m \phi(x) f(x)}{1-x}+\frac{\phi(x) \theta(x)}{1-x},
$$

where $\theta(x)=\sum_{n=0}^{\infty} \epsilon_{n} x^{n}$ and $\theta \in H(U)$. Consequently

$$
\begin{aligned}
\phi(x) \sum_{n=0}^{\infty} a_{n} b_{n} x^{n} & =\frac{m s}{1-x}+\psi(x)+\frac{\phi(x) \theta(x)}{1-x} \\
& =\frac{m s+\phi(1) \theta(1)}{1-x}+\omega(x),
\end{aligned}
$$

where $\omega \in H(U)$ so that $\sum_{n=0}^{\infty} a_{n} b_{n}$ is Y-summable to $m s+\phi(1) \theta(1)$, completing the proof of the theorem.
Acknowledgement. The author thanks the referee very much for pointing out the remarkable connection between the Y-method and the properties of analytic functions.

P. N. Natarajan

References

[1] G. Bachman, Introduction to p-adic numbers and valuation theory. Academic Press, 1964.
[2] A. Escassut, Analytic elements in p-adic Analysis. World Scientific Publishing Co., 1995.
[3] Peyerimhoff, Lectures on summability, Springer,1969.
[4] V.K. Srinivasan, On certain summation processes in the p-adic field. Indag. Math. 27(1965), 319-325.
P. N. Natarajan

Department of Mathematics
Ramakrishna Mission
Vivekananda College
Chennai 600004
India

