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Abstract

In this paper, K denotes a complete, non-trivially valued, non-
archimedean field. The entries of sequences, series and infinite matri-
ces are in K. In the present paper, we prove the Silvermann-Toeplitz
theorem for double sequences and series in K and apply it to Norlund
means for double sequences and series in K.

Throughout the present paper, K denotes a complete, non-trivially val-
ued, non-archimedean field. The entries of sequences, series and infinite
matrices are in K. In this paper, we prove the Silvermann-Toeplitz theorem
for double sequences and series in K (see Theorem 2, proved in the sequel).
We then introduce Norlund means for double sequences and series in K and

apply Silvermann-Toeplitz theorem for these means.
For analysis in the classical case a general reference is [2] while for analysis

in non-archimedean fields a general reference is [1].
For a given infinite matrix A = (an,k ) and a sequence ~x~~, the sequence

is defined as follows:

00

yn = 03A3an,kxk , n = l, 2, ... ,

A;=l

it being assumed that the series on the right converge. If lim yn = s when-
n~~

ever lim xk = s, we say that A is regular. The criterion for A to be regulark~~

in terms of the entries of the matrix A are well-known (see [4], [6]).
Theorem 1. A = (an,k) is regular if and only if

(i) sup |an,k|  oo;
rc,k

85
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(ii) lim ~=0, ~=1,2,...;
n~~

and

00

(iii) lin an,k = 1.

In the sequel, the following definitions are needed.
Definition 1. Let be a double sequence in K and x e K. We say
that lim xm,n = x if for each 6 > 0, the set {(m,n) ~ N2 : |x - xm,n| ~ c}
is finite. In such a case we say that x is the limit of {xm,n}.
Definition 2. Let be a double sequence in K and s e K. We say
that

S = xm,n,

if

s = lim sm,n,
m+n~~

where
m,n

sm,n = ~ ~~m~==l,2,....
k=1,l=1

Remark. If lim = ~, then the sequence is automatically
m+n~~

bounded.

It is easy to prove the following results.
Lemma 1. lim == z if and only if

m+n~~

(i) lim = z, m = 1, 2, ... ,
n-co

(ii) lim ~=1,2,...,
m~~

and

(iii) for each 6 > 0 there exists an N e N such that |x - xm,n| [  6, for all

m, n > N, which we write as lim xm,n == z.
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Lemma 2. lim sm,n exists if and only if
m+n~~

lim xm,n = 0 . (1)
m+n--~oo

Given the matrix A = we define

~,~

= ~ 
, 

m, n = 1, 2, ... ~ , (2)
k=1,l=1

assuming that the series on the right converge.
Necessary and sufficient conditions for A = (am,n,k,l) to be regular for

the class of all double sequences and series in the classical case have been
found by Kojima [3]. It has been found that convergence and boundedness

play a vital role for double sequences and series, a role analogous to that of
convergence for simple sequences and series. Robison [8] proved Silvermann-
Toeplitz theorem for such a class of bounded and convergent double sequences
in the classical case. We prove here its analogue in a complete, non-trivially
valued, non-archimedean field.

In this context, the following definition is needed.
Definition 3. If whenever is a convergent sequence, con-

verges to the same value, then the matrix A = is said to be regular.
Theorem 2. In order that whenever a sequence has a limit x,

am,n,k,lxk,l shall converge and lim am,n,k,lxk,l = x, i. e., for

A = (am,n,k,l) to be regular it is necessary and sufficient that

(a) lim am,n,k,l = 0, k, l =1, 2, ... ;

00,00

(b) lim = 1; s
m+n~~

k=1,l=1

(c) lim sup |am,n,k,l| = 0, l =1, 2, ... 
k~1

(d) lim sup |am,n,k,l| = 0, k = 1, 2, ... ;
t>i

and
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(e) sup  oo. .

m,n,k,l 
~ ~ 

Proof. Proof of necessity.
Define the sequence as follows: For any fixed p, q, let

1, when k = p, l = q;
xk, l =  (3)0, otherwise.

Then

ym,n = am,n,p,q.

Since has limit 0, it follows that (a) is necessary.
Define the sequence where =1, =1, 2, ~ ~ ~ .

Now,
~,~

= £ am,n,k,l, a ~, n = 1, 2, ... ,
k=l,d=1

00,00

This shows that L am,n,k,lconverges for m, n =1, 2, ~ ~ ~ . (4)
k=1,l=1

Since has limit 1, it follows that

~,~

lim = 1.~2014~ ’ .

k=l,l=1

so that (b) is necessary.
We now show that lim sup = 0 for all I E N. Suppose not.

~>i 
’ ’ ’

Then there exists lo E N such that lim sup 0 does not hold.
m+n~~ k~1 

’’ ’ ’

So, there exists an E > 0, such that

(m, n) : sup ( > E is infinite. (5)L J
Let us choose ml = nl = ri == 1. Choose m2, n2 E N such that m2+n2 >

m1 + nl and

sup |am2,n2,k,l0|  ~ 8, using (a);
and

sup > E, using (5).
k>1



89

Then choose r2 e N such that r2 > ri and

SUP |am2,n2,k,l0 l  §, using (b).k>r2

Inductively choose mp + np > mp-1 + np-1 such that

sup |amp,np,k,l0|  )3 (6)
1~k~rp-1

SUP |amp,np,k,l0| ) > El ( 7)
k>I

and then choose rp > rp-1 such that

§UP |amp,np,k,l0|  § . (8)
>r~

In view of (6) , (7) , (8) , we have

sup |amp,np,k,l0| > ~ - ~ 8 - ~ 8 = 3~ 4.rp-1 k~rp

We can now find kp G N, rp-1  kp  rp such that

) |amp,np,kp,l0| > t " ( 9)

Define the sequence (zk,i ) as follows:

xk,l = { 0, l ~ l0;1, if l = l0, k = kp, p = 1, 2, ....

We note that lim zk 1 = 0. Now, in view of (6) ,
k+I-oo 

’

r~-i

I amp,np,k,l0xk,l0|  |amp,np,k,l0| I  ); (i°)

Using (8), we have,

oo 

£ amp,np,k,l0xk,l0|  ?UP |amp,np,k,l0| I  j l ( 11)
k=rp+I ~’~P
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and using (9), we get,

| amp,np,k,l0xk,l0| = |amp,np,kp,l0| > jT- (12)

Thus

00

|ymp,np|=| 03A3 amp,np,k,l0xk,l0|
~=1

T’p 00

~| amp,np,k,l0xk,l0| 
- | amp,np,k,l0xk,l0| - | amp,np,k,l0xk,l0|

" sup " sup )
|~k~rp-1 k>rp

>3~4 - ~ 8 - ~ 8, using (10), (11) and (12)
=~ 2, p = 1, 2, ....

Consequently lim ym,n = 0 does not hold, which is a contradiction. Thus’

(c) is necessary. The necessity of (d) follows in a similar fashion.
To establish (e), we shall suppose that (e) does not hold and arrive at

a contradiction. Since K is non-trivially valued, there exists 7r G K such

that 0  p = ~  1. Choose 7~1 = ni == 1. Using (a), (b), choose
m2 + n2 > ~i + ~i such that

sup  2, using (a);

sup |am2,n2,k,l| > (2 03C1)6;
and

sup 2~? using (b) and Lemma 1, Lemma 2.
k+l>m1+n1

It now follows that

sup |am2,n2,k,l|  22.
k+l>m2+n2
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Choose 7~3 + ~3 > 7~2 + ~2 such that

SUP |am3,n3,k,l|  22;
1~k+l~m2+n2

sup |am3,n3,k,l| > (2 03C1)8 ;B~y
and

sup 
k+l>m3+n3

Inductively, choose mp + np > mp-1 + np-1, such that

+ 
 ~’~ (13)

i

sup |amp,np,k,l| > (2 03C1)2p+2 (14)k+l~1

and

sup I  2~-’. (15)
k+l>mp+np 

Using (13), (14), (15), we have,

sup > - - 22p-2 - 2p-1

~ (2 03C1)2p+2 - (2 03C1)2p-2 - (2 03C1)p-1, since 1 03C1 > 1

= (2 03C1)p-1[(2 03C1)p+3 - (2 03C1)p-1 - 1]
~ (2 03C1)p-1 [(2 03C1)p+3 -(2 03C1)p-1 -(2 03C1)p-1, since (2 03C1)p-1 ~ 1

= (2 03C1)p-1 [(2 03C1)4(2 03C1)p-1 - 2(2 03C1)p-1],
> (2 03C1)03C1-1 [(2 03C1)4 (2 03C1)p-1 - (2 03C1) (2 03C1)p-1], since 2 03C1 > 2
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= (2 03C1)2p-1 [(2 03C1)3 - 1

(2)2p-1
> - ~23 -1J, since - > 2

P

~ 2p-1
- 7 _P

2 2p-~

> 4 -P
= 

22p+1 03C12p-1
22p+~ 1

> , since - > 1. ( 16)
P~ P

Thus there exist kp and lp, mp-1 + np-1  kp + lp  mp + np such that

|amp,np,kp,lp| > 
22p+1 

. (17)

Now, define the sequence {xk,l} as follows:

_ 03C0p, if k = kp, l = lp, p =1, 2, ... ;
~°~’~ ~ 0, otherwise.

VVe note that lim x~ i = 0. Now

|ymp,np| I = , amp,np,k,lxk,l|

> £ amp,np,k,lxk,l|
k+l=(mp-1+np-1)+1

mp-1+np-1
_ | amp,np,k,lxk,l|

k+l=1

00

- £ amp,np,k,lxk,l|
k+l=(mp+np)+1



93

> |amp,np,kp,lp| X |xkp,lp | -

sup |amp,np,k,l| - sup |amp,np,k,l|
mp+npk+l~

> -pP - 22p-2 - 2p-1, using (13), (15) and ( 17)
- 22p+1 - 22p-2 - 2p-1
== 22p-2(23 _ 1) - 2p-1
== 22p_2(7) - 2p_1
== 2p 1 l7 ~ 2~-1] J
> 2p-1 [7. ~ 2p~1 - 2p-2~
= 2p 1~2p 2(14 -1)~
= 2p-1 [13 . 2p-2]
- 13 , ~2p-~

i.e., |ymp,np ( > 13 . 22p-3, p = 1, 2, ...,
i.e., lim ymn = 0 does not hold, which is a contradiction. Thus (e) is

m+n~~
necessary.
Proof of Sufficiency.

Let lim xm,n = x. Then’ 
-

ym,n 
- x = am,n,k,lxk,l - x.

From (b) we have

am,n,k,l + rm,n = 1,

where
lim rm,n = 0. (18)

m+n~~

Hence,
00,00

ym,n - x = 03A3 am,n,k,l(xk,l - x) + rm,nx.

Given E > 0, we can choose sufficiently large p and q such that

sup |xk,l - xl  E , (19)



94

where H = sup Observe that H > 0 (from (b)).
m,n,k,l~1

Let L = sup x|. We now choose N E N such that whenever m + n >
k+t~1

N, the following are satisfied:

(i) |am,n,k,l|  ~ 5pqL, using (a); (20)
1~k+l~p+q

(ii) sup |am,n,k,l|  ~ 5qL, l=1,2 ...., q, using (c); (21)
k~1

(iii) |am,n,k,l|  ~ 5pL, k = 1, 2, ...,p, using (d); (22)
l~1 

and

(iv)  ~ 5|x|, from the equation (18). (23)

Whenever m + n > N, we thus have,

~,~

xl = L x) + rm,nx
k=1,l=1

p,q p,oo

 L x) + L am,n,k,l(xk,l _ x)
k=l,I=1 k=l,l=q+l

oo,q 00,00

+ L x) + L x)
|k=p+1,l=1 | |k=p+1,l=q+1 |

+|rm,n| |x|
 

~ 5pqL 

Lpq + 
~ 5pL

Lp + 
~ 5qL 

Lq + ~ 5HH + 
~ 5|x| 

|x|

= 6, using (19), (20), (21), (22) and (23).

Thus

lim ym,n = x,
m+n~~

which completes the proof of the theorem.
Norlund means for simple sequences and series in complete, non-trivially

valued, non-archimedean fields were introduced by Srinivasan [9] and studied
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later in detail by Natarajan (for instance, see [7]). Norlund means for dou-
ble sequences and series in classical analysis were introduced by Moore [5].
We now define Norlund means for double sequences and series in complete,
non-trivially valued, non-archimedean fields and apply Theorem 2 for these
means.

Definition 4. Given a doubly infinite set of elements pm,n E K, m, n =

p~ 1 ~ 2a ... ~ where ~ 0, ~  (2, ~ ) ~ (~~ ~) ~ = 0,1, 2, ... ~ ,
let 

Pm,n = pi, j , m, n = 0,1,2,....
i, j=0

Given any double sequence {sm,n~ we define

m,n

03C3m,n = (N,pm,n)(sm,n) = Sm,n Pm,n = Pm,n , m, n = 0,1,2,...,

If lim 03C3m,n = 03C3, we say that the double sequence is summable
m+n~~

to the value o~, written as

sm,n ~ 03C3(N, pm,n).

Any double series is said to be summable (N, pm,n) to the value
m,n

o~ if the double sequence {sm,n~, where

m,n

sm,n = ~ m, n = 0, 1, 2, ... ,
i, j=0

is summable (N,Pm,n) to the value o~.

Definition 5. Given the Norlund means (N,pm,n), (,lV, qm,n), we say that
they are consistent if

sm,n ~ 03C3(N,pm,n) and sm,n ~ 03C3’(N, qm,n) ~ Q = 03C3’.

We say that is included in (N, qm,n), written as

C ( N~ qm,n ) 
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if

Sm,n ~ 03C3(N,pm,n) ~ Sm,n ~ 03C3(N, qm,n).
The two methods (N, qm,n) are said to be equivalent if

C (N, qm,n) and (N, (N,pm,n).

In view of Theorem 2, it is easy to prove the following result.
Theorem 3. The necessary and sufficient conditions for the regularity of
the Nörlund means (N, pm,n) are:

lim sup (pm-i,n-j ~ _ ~a ~ ~ 2 ~ m; (24)
m+n~~ 0~j~n

lim sup = 0, ~ ~ ~ ~ n. (25)
m+n~~ n~i~m

In the sequel let (N, pm,n), (N, qm,n) be two regular Nörlund methods
such that each row and each column of the infinite matrices (qm,n) is

a regular Nörlund mean for simple sequences.
Theorem 4. Any two such regular Nörlund methods are consistent.
Proof. Given two Nörlund methods (N,Pm,n) and (N, qm,n), where each
row and each column of the infinite matrices (pm,n), (qm,n) is a regular Nor-
lund mean for simple sequences, we define a third method (N, rm,n) by the
equation

m,n

rm,n - ’ pi, j qm-i,n- j ~ m~ ~ _ ~, ~, 2, ... ,

i,j=0

We then readily obtain, for s = {sm,n},
m,n

(N~ rm>n)(s) _ ‘ ,

i,j=0

where 
m,n

03B3m,n,i,j = pm- ,n-03BDQ ,03BD.

Since (N,pm,n) and (N, qm,n) are regular, we have,

lim sup I = 0 = lim sup Ipm-i,n- j ( .
m+n~~ 0~j~n m+n~~ 0~i~m
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It now follows that

lim sup 03B3m,n,i,j = o ‘ hm Sup 
0~i~m

Consequently (N, rm,n) is regular. The regularity of this transformation
enables us to infer that

sm,n --~ ~~ ( y qm,n) ~ sm,n --~ 0’~ ( N, r m,n). .

Similarly we can show that

sm,n ~ 03C3(N, pm,n) ~ sm,n ~ 03C3(N,rm,n) .

These imply that the two Norlund methods (N,pm,n) and (N, qm,n) are

consistent, completing the proof of the theorem.
If (N,pm,n), (N, qm,n) are regular, in view of conditions (24), (25), we

have,

P(x,y) = 03A3Pm,nxmyn,
Q(x,y ) = 03A3Qm,nxmyn,
p(x,y ) - 03A3pm,nxmyn,
q(x, y) "’ ‘ qm,nxmyn,

all converge for |x|, |y|  1. The series

k(x,y) _ 03A3km,nxmyn _ q(x,y) _ _ Q(x,y) P(x,y),

y) - 03A3lm,nxmynyn = p(x,y) q(x,y) = 
P(x,y) Q(x,y)

are convergent for |x|, |y|  1 and further

m,n m,n

03A3 ki,jpm-i,n-j = qm,n; 03A3 ki,jPm-i,n-j = Qm,n, (26)
i, j =o i, j =o

m,n m,n

ti, j qm-i,n- j = pm,n; ‘ - Pm,n. (27)
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Theorem 5. If (N, pm,n), (N, qm,n) are regular, then C (N, qm,n)
if and only if lim km,n = o.

m+n~~

Proof. Let s(x, y) _ 03A3 sm,nxmyn. Then for |y|  1, we have,

m,n

L Qm,n(N, qm,n) (s)xmyn = L qm-i,n-jsi,j) xmyn
= ~J)~ 3

similarly

‘ = y)~ .

Thus

, - 03A3km,nxmyn03A3Pm,n(N,pm,n)(s)xmyn
which implies that

m,n

, 
i,j=0

Hence,
m,n

‘ ~ (28)
i,j=0

where

cm,n,i,j - 

If C (N, qm,n), (cm,n,i,j) is regular and so, by Theorem 2 (a),
lim cm,n,0,0 = 0,",

i.e., lim 
|km,n| |p0,0| |q0,0| 
= 0,

m+n~~ |q0,0 |
which implies that lim km,n = 0.

m+n~~

Conversely, if lim km,n = 0, we can easily verify that (cm,n,i,j) is reg-
m+n~~

ular. Consequently, using (28), it follows that (N, pm,n) C (N, qm,n). This
completes the proof of the theorem.
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Theorem 6, stated below, is an immediate consequence of Theorem 5.

Theorem 6. If (N, pm,n) and (N, qm,n) are regular Nörlund methods, then
they are equivalent if and only if lim km n = 0 and lim l~ n = 0.

m+n~~ 
’ 

m+n-3oo ’ ’

Remark. For the analogue of Theorem 6 in the classical case, see [5], The-
orem III. Theorem 5, Theorem 6, in the case of regular Norlund means for
simple sequences, were established earlier by Natarajan (see[7], Theorem 3,
Theorem 4).
Acknowledgement. The authors profusely thank Prof. W.H. Schikhof
for pointing out errors in the original version of the paper and for giving
constructive and valuable suggestions to retain the main results of the paper.
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