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Finite element solution of Navier-Stokes

equations in shallow domains.

O. Besson

ANNALES MATHEMATIQUES BLAISE PASCAL 9, 161-180 (2002)

Abstract

A finite element method for the numerical solution of the anisotropic
Navier-Stokes equations in shallow domain is presented. This method
take into account the low regularity of the vertical component of the

’ 

velocity in the hydrostatic approximation of the Navier-Stokes equa-
tions [2, 3, 5]. . A projection method [8] is used for the time discretiza-
tion. The linear systems are solved via a some preconditioned con-
jugate algorithm, well adapted to massively parallel computers [4].
Some results are presented for the wind driven water circulation in
lakes Geneva and Neuchatel.

1 A common feature of geophysical fluids.

Water flows in oceanography and limnology are governed by the Navier-
Stokes equations. In numerical simulations, asymptotic models are in current
use (see [10], [12]). These are all based on the following remark:

The horizontal dimensions are much larger than the vertical one.

Table (1) illustrates this fact.

Table 1: The puddle law
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The simplest model using the fact that

_ 

h

d
is very small is the hydrostatic model. In this model, we take care of turbu-
lence effects by setting an anisotropic viscosity, much smaller in the vertical
direction than in the horizonzal one (see [10]).

2 Anisotropic Navier-Stokes equations.

Let WE C R~ be the sufficiently regular domain defined by

W~ = {ç = (03BE1,03BE2,03BE3) E R3, (03BE1, 03BE2) E Gs, -h(03BE1,03BE2)  03BE3  0}
where Gs is the surface of the domain and h : : Gs - R is its depth. Let

Gb = âWE B Gs be the bottom of the domain (Fig. 1). It is assumed that

the water motion is generated by horizontal tractions, induced by some wind
on the surface Gs. This motion is driven by the anisotropic Navier-Stokes
equations and is influenced by the Coriolis force.

Figure 1: Illustration of the shallow domain

in WE
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div v = 0 in WE

v==0 on~6

03BD3~v1 ~03BE3 = 1, v3 w2 = 2, v3 = o on Gs

where v = (v1, v2, v3) is the fluid velocity, c~ _ (0, o, W3) is the angular ve-
locity of the Earth (projected onto the vertical in local coordinates), p is the
pressure, v = (vl, v2, v3) is the turbulent viscosity tensor, 81 and 82 are the
tractions induced by the wind and

039403BD03C6 = 
1 

v, .7 ~203C6 ~03BEj2.

Let us do the following change of variables and functions

~1=~1~ a x2 = ~2, ~3 = ~3~E

u1 = v1, u2 = v2, u3 = v3/E
and set

~ = (xn x2~ x3)s E TS, -- 1 x2)  x3  0 .
rs = GS

0393b = ~03A9B0393s,
With this scale change we get

~u1 ~t 
+ u.~u1 - 039403BD~u1 - fu2 + 

~p ~x1 
=0 in 03A9

au2 + u . ~u2 - OvEu2 + fu1 + ap = 0 in H
or ax2

~ au3 u . ~u - 3 0 v E u 3}’f’ -~- == o in ~
(~t O~x3

div u = 0 in H

u = 0 on 0393b
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aul au2
03BD3~x3

- ~1, 03BD3~x3
= ~2, u3 = 0 on rs

u(., t = 0) = 0 in 03A9.

with vE = (03BD1, vz, 03BD3/~2), and f = 203C93.
Set

vl = ~1, v2 = ~2~ v3 = E 2 ~3~

i = ~03B8i i i = 1, 2,

~ _ B~1~ ~2~ ~3~~
When E -> 0, this problem becomes the hydrostatic approximation of Navier-
Stokes equations.

~u1 ~t + u . ~u1 - 039403BBu1 - fu2 + ~p ~x1 = 0 in 03A9

~u2 + u . ~u2 - 039403BBu2 + fu1 + ~p ~x2 = 0 in 03A9

ap = 0 in S2 (2.1)
~x3

div u = 0 in SZ

u=0 0 onrb

03BB3~u1 ~x3 = Bi , 03BB3~u2 ~x3 = Bz, us = 0 on rs

u1(., t = 0) = u2(., t = 0) = 0 in 03A9.

A week formulation of this problem is the following. Define

V = {cp E Hl(Sl); 03C6 = 0 sur 0393b}

H(~i,03A9) = {03C6 E L2(03A9); ~03C6 ~xi E L2(03A9)}
H0(~i, 03A9) _ {03C6 E H(~i, 03A9); 03C6 ni = 0 on aS2}

Lo(52) _ ~cp E L2(S2); J cp(x) dx = 0~ .
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If T > 0 and K = x V x H0(~3, S2)) x Lo(S2)), for 03B81, BZ E
H-1/2(rs), we seek for (u, p) E K, such that

03A9 atl vl dx + J (u - vl .03A9 u2 vl dx +03BBi03A9 axi 11 dx

+ l’ au2 v2 dx (u . ~u2) vz dx + f . 03A9 ul v2 dx + 03BBi03A9 au2 lii 
dx+ 03A9 ~u2 ~t

v2 dx + 03A9(u . ~u2) v2 dx + f . 
03A9 
u1 v2 dx + 03BBi

03A9 ~u2 ~xi ~v2 ~xi 
dx

- 10 p . div v dx - 10 div u ’ q dx
= / 9i vi ds + / ?2 v2 ds (2.2)= 

0393s e 
Bl vl ds + 

J r 9 
BZ v2 ds (2.2)

for all v in V x V x H0(~3, S2) and all q in L20(03A9).
The above problem (2.2) has been studied in [2] and [3]. Some finite

elements adapted to this problem was established in [I], see also [2]. The

stationary case was studied in [6, 5].

3 Some finite element discretization.

Let Th be a finite element mesh of the domain H into hexaedric (or prisatic)
elements and set

lfi,h = V2,h = {~ E 0(0) n V ; E ~w2~xl~ x2~ x3~ dT E ThJ

V3,h = {03C6 E C(S2) n I Q1(1, 2, 3) ~T E Tn }

Wh = f cp : 03A9 ~ R, p | E Q1(1, 2, 3) dT E h}
where t is as usual a reference element. These spaces take into account the
degenerated characteristics of the hydrostatic approximation of the Navier-
Stokes equations (2.1) (see also [1, 2, 5] ).

In this section, some results in the case of the full Navier-Stokes equations
are presented, using the above spaces. For this the following projection
method like in [8] is used, see also [11].
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For all n > 0, assume u" and p" given, find w" e Vh, w" = ~, ~)
such that for all p 6 Vh

1 k 03A9wn103C61 + 03BBi03A9~wn1 ~xi ~03C61 ~xi = / 03B81 03C61 ds + 03A9pn~03C61 ~x1

+ 1 k 03A9un103C61 (3.3)

1 k 03A9 wn2 03C62 +  03BBi03A9 ~wn2 ~xi ~03C62 ~xi = 0393s 03B82 03C62 ds + 03A9 pn ~03C62 ~x2
- f.03A9un103C62-03A9(un . ~un2)03C62

+~ ~2~2 (3.4)

1 k 03A9 wn3 03C63 + 03BBi 03A9 ~wn3 ~xi ~03C63 ~xi = 03A9(un . ~un3)03C63 - 03A9(un . ~un3)03C63

+ 1 k 03A9un303C63 (3.5)

Then find qn such that

(3.6)
03A9 ~xi ~xi 

for all 03C8 ~ V3,h, and set

(3.7)
Finally un+1 is the solution of

03A9un+1 . 03C6 = - 03A9qn div 03C6 (3.8)

for all p G V~. .
The solution of the linear systems (3.3) to ( 3.8) are performed via a

preconditioned conjugate gradient. Various band matrix preconditionners,
well adapted to massively parallel computers can be used. These results are
presented in [4].
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4 Some numerical results: lakes Neuchatel and Geneva.

Lakes Neuchâtel and Geneva are located in the North-West and West part of
Switzerland. Lake Neuchatel has 38 km long, 7 km width and 150 m depth
and lake Geneva has 65 km long, 13 km width and 300 m depth. The level
curves are presented in figures (2) and (3). On figure (2), the level curves
show la Motte, this is a submarine hill culminating at 8 m below the lake
level. This hill has an important influence on the water circulation.

Figure 2: Lake Neuchâtel, level curves: 30 m
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Figure 3: Lake Geneva, level curves: 50 m

The dominant winds in this region are the SW and NW wind. They are
exactly along the main axe of lake Neuchatel.

The currents are presented in lakes Neuchâtel and Geneva. They are
induced by a Beaufort 3 SW wind (7.5 m/s) blowing on the lake during 12
hours. The following physical constants are used in the equations (see [7, 9]):

. v = (100, 10, 2.5 . 10-3 ) ~m2 ~ s~,

~ f = 10-4 (latitude 47° N),

2022 03B8i = 0152’ (Ul + U22)1/2Ui, where U is the wind velocity and a is a traction
coefficient ( a = 2.5 . 10-6 ) .

In the following figures, some numerical results for the currents in the
mentioned lakes at different depth and times are presented. First we give
some pictures of the currents after 12 hours of wind tractions (i.e. at the

time when the wind just stops). Then the residual currents after a 24 hours
simulation (i.e. 12 hours after the wind stops) are given. The influence of
the Coriolis force on the currents in both lakes can be seen as well as the

evident effect of la Motte on the water circulation in lake Neuchatel.
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Figure 4: Lake Neuchatel, flow after 12h. at the surface, max. max. : 45 cm/s

Figure 5: Lake Neuchatel, flow after 12h. depth 50 m, max. velocity : 6.8 cm/s

Figure 6: Lake Neuchatel, flow after 12h. depth 100 m, max. velocity : 3.2 cm/s
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Figure 7: Lake Neuchatel, flow after 24h. at the surface, max. velocity : 3.5 cm/s

- 

Figure 8: Lake Neuchatel, flow after 24h. depth 50 m, max. velocity : 1.8 cm/s

Figure 9: Lake Neuchatel, flow after 24h. depth 100 m, max. velocity : 0.4 cm/s
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Figure 10: Streamlines in lake Neuchatel, flow after 12h.
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Figure 11: Lake Neuchatel, flow after 12h, vertical velocities in the y-z plane.
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Figure 12: Lake Neuchatel, flow after 12h, vertical velocities in the y-z plane.
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Figure 13: Lake Geneva, flow after 12h. at the surface, max. velocity : 50 cm/s

Figure 14: Lake Geneva, flow after 12h. depth 50 m, max. velocity : 5.5 cm/s
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Figure 15: Lake Geneva, flow after 12h. depth 100 m, max. velocity : 3.2 cm/s

Figure 16: Lake Geneva, flow after 12h. depth 200 m, max. velocity : 2.0 cm/s
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Figure 17: Lake Geneva, flow after 24h. at the surface, max. velocity : 15 cm/s

Figure 18: Lake Geneva, flow after 24h. depth 50 m, max. velocity : 2.7 cm/s
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Figure 19: Lake Geneva, flow after 24h. depth 100 m, max. velocity : 3.4 cm/s

Figure 20: Lake Geneva, flow after 24h. depth 200 m, max. velocity : 2.3 cm/s
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Figure 21: Streamlines in lake Geneva, flow after 12h.
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