![]() |
With
cedram.org
|
Annales Mathématiques Blaise Pascal |
|
Search within the site
|
Table of contents for this issue | Previous article | Next article
Walid Aloulou Les $(a,b)$-algèbres à homotopie près Annales mathématiques Blaise Pascal, 17 no. 1 (2010), p. 97-151, doi: 10.5802/ambp.279 Article PDF | Reviews MR 2674655 | Zbl 1204.18007 Class. Math.: 18G55, 16W30, 17B63, 16E45 Keywords: Algèbres homotopiques, cogèbres, algèbres de Poisson, algèbres différentielles graduées Résumé - Abstract We study in this article the concepts of algebra up to homotopy for a structure defined by two operations $ \hbox{.}$ and $[~,~]$. Having determined the structure of $ G_\infty $ algebras and $ P_\infty $ algebras, we generalize this construction and we define a structure of $ (a, b)$-algebra up to homotopy. Given a structure of commutative and differential graded Lie algebra for two shifts degree given by $a$ and $b$, we will give an explicit construction of the associate algebra up to homotopy and we clarify the relationship between $(a, b)$-algebra and algebra over the operad of little $n+1$-dimensional cubes. Bibliography [2] W. Aloulou, D. Arnal and R. Chatbouri. Algèbres et cogèbres de Gerstenhaber et cohomologies de Chevalley-Harrison. Bulletin des Sciences Mathématiques, 133(1):1-50, 2009. Article | MR 2483521 | Zbl 1159.18006 [3] D. Arnal, D. Manchon and M. Masmoudi. Choix des signes pour la formalité de M. Kontsevich. Pacific J of Math, 203(1):23-66, 2002. Article | MR 1895924 | Zbl 1055.53066 [4] J. A.de Azcárraga, J. M. Izquierdo, A. M. Perelemov and J. C. Pérez-Bueno. The $\mathbb{Z}_2$-graded Schouten-Nijenhuis bracket and generalized super-Poisson structures. preprint arXiv :hep-th/9612186v2, 1997 arXiv | Zbl 0883.58007 [5] I. Basdouri and M. Ben Ammar. Cohomology of $\mathfrak{osp}(1|2)$ acting on linear differential operators on the supercircle $S^{1|1}$. Preprint arXiv :0709.1768v1 [math.RT] 12, 2007 arXiv | Zbl 1138.53066 [6] J. M. Boardman and R. M. Vogt. Homotopy invariant algebraic structures on topological spaces. Springer-Verlag, 1973 MR 420609 | Zbl 0285.55012 [7] M. Bordemann, G. Ginot, G. Halbout, H.C. Herbig and S. Waldmann. Formalité $G_{\infty }$ adaptée et star-représentations sur des sous variétés coïsotropes. Preprint arXiv :math.QA/0504276 v 1, 2005 arXiv [8] A. S. Cattaneo and G. Felder. Relative formality theorem and quantisation of coisotropic submanifolds. Adv. Math., 208(2):521-548, 2007. Article | MR 2304327 | Zbl 1106.53060 [9] F. Cohen. Homology of $\Omega ^{n+1}\Sigma ^{n+1}X$ and $C_{n+1}X$, $n>0$. Bull. Amer. Math. Soc., 79(6):1236-1241, 1973. Article | MR 339176 | Zbl 0281.55004 [10] R. L. Cohen and A. A. Voronov. Notes on string topology, string topology and cyclic homology. Adv. courses Math. CRM Barcelona, Birkhäuser, Basel:1-95, 2006. MR 2240287 [11] B. Fresse. Théorie des opérades de Koszul et homologie des algèbres de Poisson. Annales mathématiques Blaise Pascal, 13(2):237-312, 2006. Cedram | MR 2275449 | Zbl 1141.55006 [12] E. Getzler. Batalin-Vilkovisky algebras and two-dimensional topological field theories. Comm. Math. Phys, 159(2):265-285, 1994. Article | MR 1256989 | Zbl 0807.17026 [13] E. Getzler and J.D.S. Jones. Operads, homotopy algebra and iterated integrals for double loop spaces. Preprint arXiv :hep-th/9403055, 1994 arXiv [14] G. Ginot. Homologie et modèle minimal des algèbres de Gerstenhaber. Annales mathématiques Blaise Pascal, 11(1):95-126, 2004. Cedram | MR 2077240 | Zbl 1139.16301 [15] G. Ginot and G. Halbout. A formality theorem for Poisson manifolds. Lett. Math. Phys., 66:37-64, 2003. Article | MR 2064591 | Zbl 1066.53145 [16] M. Kontsevich and Y. Soibelman. Deformations of algebras over operads and the Deligne conjecture. Conférence Moshé Flato 1999, vol I (Dijon), Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht:255-307, 2000. MR 1805894 | Zbl 0972.18005 [17] B. Kupershmidt. Odd and even Poisson brackets in dynamical systems. Lett. Math. Phys., 9:323-330, 1985. Article | MR 796633 | Zbl 0585.58020 [18] D. A. Leites. New superalgebras and mechanics. Sov. Math. Dokl., 18:1277-1280, 1977. Zbl 0403.17002 [19] J.L. Loday. Cyclic Homology. Second Edition Grundlerhren der Mathematischen Wissenschaften A series of comprehensive studies in mathematics Springer-Verlag, 1992 MR 1217970 | Zbl 0780.18009 [20] S. MacLane. Homology. Grundlerhren der Mathematischen Wissenschaften Springer-Verlag, Berlin, 1963 MR 349792 | Zbl 0133.26502 [21] J.P. May. The geometry of iterated loop spaces. Springer-Verlag, Berlin-New York, 1972 MR 420610 | Zbl 0244.55009 [22] D. Tamarkin. Another proof of M. Kontsevich formality theorem. Preprint arXiv :math.QA/9803025 v 4, 1998 arXiv [23] D. Tamarkin and B. Tsygan. Noncommutative differential calculus, homotopy BV algebras and formality conjectures. Methods Funct. Anal. Topology, 6(2):85-100, 2000. MR 1783778 | Zbl 0965.58010 |
© 2019
Annales Mathématiques Blaise Pascal Published by the Laboratoire de mathématiques CNRS - UMR 6620 Université Blaise Pascal de Clermont-Ferrand |